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LHC Physics
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The kinematic range for particle
production at the LHC is
shown.

x1,2 =x0 exp(±y), x0 = M√
s
.

x ∼ 0.001 − 0.01 parton
distributions therefore vital
for understanding standard
production processes at the
LHC.

However, even smaller (and
higher) x required when one
moves away from zero rapidity,
e.g. when calculating total
cross-sections.
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Comparisons between different sets.

From a few years ago when LHC data started appearing. Watt
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Differences due to data sets fit, theory methods (e.g FFNS or GM-VFNS
for heavy flavour. Updates in the past few years have led to changes.
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PDF Updates

ABM12 PDFs – Include combined HERA charm DIS data, and
ATLAS, CMS, LHCb Drell-Yan data, and improved DIS charged current
description at Q2 � m2

c. Also investigate top pair production data.

CT14 PDF sets - changes due to new data sets – including ATLAS,
CMS LHCb W,Z data and initial ATLAS, CMS inclusive jet data. Also
new parameterisation – Bernstein polynomials - peak at specific x.

NNPDF3.0 PDFs – newer HERA data (also on charm), initial ATLAS,
CMS inclusive jet data, ATLAS, CMS LHCb W,Z,W + c,WpT data
and top pair production data. Also significant improved methodology
- closure test improved procedures in finding best fit using their
procedure, i.e. inputs to algorithm, training length etc.

MMHT2014 – Changes in theoretical procedures – parameterisation
with Chebyshev polynomials, freedom in deuteron nuclear corrections;
“optimal” GM-VFNS choice; improved D-meson branching ratio with
error which feeds into PDFs. Changes in data sets - updates of HERA
data and Tevatron data LHC data on W,Z top pair production data. 25
eigenvector pairs, rather than the 20 in MSTW.
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Developments soon after.

HERAI+II combination data.

Makes HERAPDF PDFS more precise, but in general a bit further from
other PDFs in some places, e.g high-x up quark.
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HERA II Combined data in other PDFs
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Updated PDFs very well within MMHT2014 uncertainties. PDFs from
HERA II data only fit in some ways similar to HERAPDF2.0.
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x ∼ 0.2 enhancement in up quark preferred by HERA e− charged-
current data in tension with recent most accurate measurement of single
top ratio (different to older, but less precise measurements).

Also disfavours any other reason for enhanced u(x)/d(x) for x ∼ 0.1.

Dresden – Aug 2018 6



Comparison of state-of-the-art PDFs (late 2015)
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Some good agreement between CT14, MMHT2014 and NNPDF3.0.

Some differences in some PDF sets in central values and uncertainty.
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Comparison of Combination of CT, MMHT, NNPDF using “Monte
Carlo” sets to the Individual PDFs

Works well if PDFs are fairly compatible.

Dresden – Aug 2018 8



The PDF4LHC Prescription

Perform a Monte Carlo combination of the included PDF sets.

Sets entering into the combination must satisfy requirements, i.e. be
compatible for combination. αS(M2

Z) = 0.118

Deliver a single combined PDF set - either Monte Carlo or Hessian form
for combined PDF.

– Monte Carlo - A set of PDF replicas is delivered. The mean is the
central value and the standard deviation the uncertainty.

– Hessian - A central set and eigenvectors representing orthogonal
sources of uncertainty are delivered. Uncertainty obtained by summing
each uncertainty source in quadrature.

In each case a single combined set at both αS(M2
Z) = 0.1165

and αS(M2
Z) = 0.1195 is provided to give αS(M2

Z) uncertainty (i.e.
∆αS(M2

Z) = 0.118) to be added in quadrature with other uncertainties.
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Alternative Viewpoint put forward Eur.Phys.J. C76 (2016) no.8, 471.
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ABMP16 PDFs

Alekhin PDF4LHC 2017
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ABMP16 PDFs

Alekhin DIS 2018
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ABMP16 PDFs – impact at high x from LHC and Tevatron data.

Details at high x depend on whether W or lepton data are used.
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ABMP16 PDFs – now also at NLO

Alekhin DIS2018 2018
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CJ15 PDFs – simultaneous study of precision proton and deuteron data
fit/verify deuteron corrections.
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NNPDF3.1 Now released.

Rojo DIS2017
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Theory developments

LHC W,Z data prefer lower charm for 0.01 < x < 0.1.

Rojo, DIS 2017
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Only full study of Z pT data so far.
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Still good agreement with CT14 and MMHT14 but change in gluon
shape and quark increase.
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Some impact on cross sections.
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Some preliminary CT17 results
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CT intrinsic charm

Huston PDF4LHC 2017
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MMHT preliminary set - fit to new hadron collider (mainly LHC) data

Fit new LHCb data at 7 and 8 TeV, W + c jets from CMS, CMS W+,−

data, and also the final e asymmetry data from D0.

no. points NLO χ2
pred NLO χ2

new NNLO χ2
pred NNLO χ2

new

σtt̄ Tevatron +CMS+ATLAS 18 19.6 20.5 14.7 15.5
LHCb 7 TeV W + Z 33 50.1 45.4 46.5 42.9
LHCb 8 TeV W + Z 34 77.0 58.9 62.6 59.0
LHCb 8TeV e 17 37.4 33.4 30.3 28.9
CMS 8 TeV W 22 32.6 18.6 34.9 20.5
CMS 7 TeV W + c 10 8.5 10.0 8.7 8.0
D0 e asymmetry 13 22.2 21.5 27.3 25.8
total 3738/3405 4375.9 4336.1 3741.5 3723.7

Predictions good, and no real tension with other data when refitting, i.e.
changes in PDFs relatively small, mainly in dV (x,Q2).

Investigated more flexible d̄(x,Q2)− ū(x,Q2) parameterization.

At NLO ∆χ2 = 9 for the remainder of the data and at NNLO ∆χ2 = 8.

Some reduction in details of flavour decomposition uncertainties, e.g.
low-x valence quarks.
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Recent extremely high precision data on W,Z from ATLAS

Sommer DIS2017
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Fixed by increase in strange
quark fraction in ATLAS study.
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Studied by NNPDF - smaller strange enhancement.

σW ∝ cs̄, σZ ∝ gS ∗ ss̄+ gd ∗ cc̄, where gs > gc.

Smaller strange correlated with smaller charm, i.e. σZ/σW rises with
smaller charm.

Improved fit to older ATLAS W,Z data with larger mc evident in
MMHT2014. Usually interplay with fitting HERA data.
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MMHT – updated fits also with high precision ATLAS W, Z data.

Including ATLAS W, Z data in fit goes from χ2/Npts ∼ 387/61 →
χ2/Npts ∼ 130/61, similar to ATLAS profiling.

Deterioration in fit to other data ∆χ2 = 54. CMS double differential Z/γ
data (∆χ2 = 17) and CCFR/NuTeV dimuon data (∆χ2 = 16).

Also fixed target DIS , E866 Drell-Yan asymmetry and CDF W -
asymmetry.

Also try fit with scales set to µR,F = MW,Z/2 rather than µR,F = MW,Z

(thanks to V. Radescu, A. Cooper-Sarkar)

As in ATLAS study find reduction in χ2 of about 20 units.

Almost no change in fit to other data or PDFs.
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Ratio of (s+ s̄) to ū+ d̄, i.e. Rs at Q2 = 1.9 GeV2.

At x = 0.023 Rs ∼ 0.83± 0.15. Compare to ATLAS with Rs = 1.13+0.08
−0.13
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Details of tension of W,Z data may be mitigated by NNLO corrections
to dimuon production (Phys. Rev. Lett. 116 (2016), Berger et al., J.
Gao, arXiv:1710.04258).

NNLO correction negative, but larger in size at lower x
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Some slight increase in strange in ABM - Alekhin PDF4LHC

Stress than it is shape dependent and related to d̄ determination –
ATLAS PDFs are not consistent with E866 Drell-Yan asymmetry data.
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Direct constraint on Strange – W + c differential distributions.
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MSTW2008 a bit low (especially for ATLAS), but MMHT2014 seems fine
particularly for CMS (shown). Data will add some constraint.
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Newer CMS data at 13 TeV – doesn’t favour very large s+ s̄.
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Fit to high luminosity ATLAS 7 TeV inclusive jet data – MMHT
(JHEP 02 (2015) 153)

Initially take as default R = 0.4 and µ = pT,1 and work at NLO.

Prediction at NLO gives χ2/Npts = 413.1/140.

Refit gives improvement only to χ2/Npts = 400.4/140.

Deterioration in other data ∆χ2 ∼ 3, so no strong tensions.

Cannot simultaneously fit data in all rapidity bins. Mismatch in one bin
different in form to neighbouring bin constraining PDFs of similar x,Q2.

Similar results also seen by other groups.

Qualitative conclusion shown to be independent of jet radius R, choice
of scale or inclusion of NNLO corrections.
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Fit
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Mismatch in one rapidity
bin different to others
probing PDFs of similar
flavour, x and Q2.
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NNLO corrections

Now calculated Currie et
al Phys.Rev.Lett. 118
(2017) 072002.

Fit quality can slightly
improve or decrease compared
to NLO depending on
choices.

Electroweak corrections
to jets different in different
bins, but much smaller
than systematic effect.

Exact form dependent on R and on scale choice, e.g µ = pT,1 or pT . Up
to 20% at low pT . Authors now recommend using more physical scale,
p̂T – sum of parton pT (arXiv:1807.03692), improved convergence
criteria properties. Can also resum R dependence Liu, Moch and
Ringer – Phys.Rev.Lett. 119 (2017) 212001.
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Exercise on decorrelating uncertainties

We consider the effect on the χ2 of the simultaneous fit to all data of
decorrelating two uncertainty sources, i.e. making them independent
between the 6 rapidity bins.

Compared to the original χ2/Npts = 2.85 we get instead

Very significant improvement, particularly from decorrelating jes21.

With correlations between rapidity bins relaxed for just two sources of
systematics χ2/Npts = 178/140 = 1.27.

More extensive decorrelation study in ATLAS – JHEP 09 020 (2017).

Similar results using new NNLO results.
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New data results of fits
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Central values and uncertainties insensitive to decorrelation of two
sources between rapidity bins. Find softer gluon, reduced uncertainty.

Also relatively little sensitivity to scales and jet radius.
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Differential tt̄ data.

A similar issue noticed in ATL-PHYS-PUB-2018-017 –(NNLO Differential
top-antitop production now available Czakon et al).
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Distributions in mtt̄ and ptT both fit well with similar pulls on gluon.

However, χ2 in joint fit very poor.
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Again because some correlated systematic uncertainties require very
different pulls. All related to 2-point model uncertainties.

Decorrelation between distributions give much better fit but very similar
effect on the gluon distribution.
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CMS Drell Yan data. Fit very poor at NLO in lowest mass bins (where
it is effectively LO), even when data highly weighted.
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Enormously better fit quality at NNLO. Potentially important to perform
small-x resumed fits?

Sensitivity to strange fraction in quarks, but differs at NLO and NNLO
and weak compared to direct constraint from di-muon data.

Cannot use 8 TeV data due to problems in understanding uncertainties.
(Also found by CSKK - Phys.Rev. D98 (2018) 014027 study where
ATLAS W, Z data dominate.)
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xFitter tool for individual PDF studies
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I would advise caution in use to assess “impact” of new data set.

Must consider what already constrains given PDF (not just HERA data).
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Final HERA heavy flavour data – Cooper-Sarkar PDF4LHC

To be included in updated fits – some problems compared to predictions.
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Important developments in other PDF tools.

Gwenlan, DIS 2018
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Heading towards full results for jets.

Gwenlan, DIS 2018
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Also, new site for grids under construction.

Gwenlan, DIS 2018
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Photon PDF in proton

LUXqed photon PDF (A. Manohar et al., PRL 117, 242002 (2016),
JHEP 1712, 046 (2017)) relates photon to structure functions.

Breakdown into well-known elastic (coherent) contribution and
moderately model dependent inelastic part Harland-Lang et al. PRD94
(2016) 074008. Much better constraint on input.
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LUX Contributions and Uncertainties

Fractional contributions to high-Q2 photon. At high-x elastic important,
at low x PDF contribution dominates.

Uncertainty contributions. Very precise up to very high x.
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NNPDFLux PDFs with QED corrections

Iterative procedure starting with LUX type photon.

Calculate γ(x,Q2) at Q2 = 100GeV2 using LUX procedure, but NNPDF
PDFs.

Evolve down perturbatively to Q2
0 = (1.65)2GeV2 and use as input for

new fit – iterate.
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MMHT PDFs with QED corrections – Nathvani

We now base photon input for PDFs at low Q2 on LUX.

Effect of photon evolution fully incorporated to couple with that of quarks
and gluon for both proton and neutron.

The photon input is defined at Q2
0 = 1GeV2, the same as our other

PDFs. Input momentum 0.00195.

Input defined by integrating LUX expression up to scale µ2 = Q2
0. Hence

contribution up to this scale should be identical. (Minor difference from
using µ2 rather than µ2/(1 − z) as integral limit, with correction in last
term ∝ α ln(1− z)Pγq.)

PDFs evolve up using DGLAP splitting functions to given order in αs
with α, ααS and α2 corrections (De Florian et al) included.

In addition the photon receives contributions/corrections from “higher
twist” sources above Q2

0 = 1GeV2 – elastic, target mass, kinematic cuts,
higher twist operators ......
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Change in PDFs due to refit

Gluon affected mainly at high x, loss of momentum.

Small x flavour rearrangement in quarks – less strange.

Quarks lose momentum at high x from QED evolution, but reduction in
high Q2 up quark less as compensated for by input.
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Modern LUX-based PDFs all in excellent agreement with very small
uncertainty.

Historical photon PDFs have much more variation.
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Impact on fit to ATLAS¸ high-mass Drell-Yan data.

This data no longer constrains the photon in any meaningful way. Fit
quality including photon contributions χ2/Npts = 65/48.

In some bins QED-altered evolution of quarks more important than
photon contribution.
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Revival of studies with ln(1/x) resummation (Fit in Eur.Phys.J. C78
(2018) no.4, 321.)

Based on results previously obtained from studies by Altarelli, Ball,
Forte, Ciafaloni, Colferai, Salam, Stasto and RT, White.
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Also resolves problems in fitting charm data at NNLO.
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General results also found by xFitter Eur.Phys.J. C78 (2018) 621, but
no issue with fit to charm data in this instance.

Bertone, DIS 20178
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LHCb heavy flavour data potentially constrains this region
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PDFs the dominant uncertainty source for MW determination.
Bozzi et al, Phys. Rev. D91 (11) (2015) 113005.

Significant variation between some PDF sets depending on whether
W+ or W− used.

There will be some impact for the most recently incorporated LHC data,
and from some methodology changes.
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Also playing and important role in sin2 θW extraction.
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Very recent study on potential impact of High Lumi LHC on PDFs
– Bailey, Gao, Harland-Lang, Khalek, Rojo.
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Studies on best-fit αS(M2
Z)
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For MMHT2014 αS(M2
Z) = 0.1172 ± 0.0013 (αS(M2

Z) = 0.1178 when
world average added as data point). With 8 TeV data on σt̄t and final
HERA data went to αS(M2

Z) = 0.118.

For further addition of LHC jets and removal of Tevatron jet data,
αS(M2

Z) = 0.1164. When Tevatron jets also added back αS(M2
Z) =

0.1173

MMHT + Tevatron jets + LHC (new)
MMHT + LHC, Tevatron jets

MMHT + LHC jets

αS

χ2
global − χ2

global,min, NNLO

.

0.1210.120.1190.1180.1170.1160.1150.114

100

80

60

40

20

0

Also look at inclusion of newer W,Z data from ATLAS, CMS, LHCb.
Without newer LHC jet data αS(M2

Z) = 0.1179 but with these data
αS(M2

Z) = 0.1176.
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Reaching the point where theory unrelated related to PDFs
becoming vital. First attempts by varying scales by NNPDF.

Uncertainties related to PDFs not the same as uncertainties on PDFs.
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However, also some progress on explicitly obtaining higher corrections
Ueda, et al.
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or on calculating PDFs in a complete different manner, i.e. lattice.
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Nuclear PDFs

Main recent result, evidence for gluon
shadowing at small-x from heavy meson
production (right Kusina DIS2018)
and jets (below Paakkinen DIS2018).

Also results on W,Z production.
Information on flavour.
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Conclusions

LHC data starting to have a significant impact on PDF extractions.

Theory catching up for fitting precision data, e.g NNLO jets, differential
top, ....

Significant changes in strange distribution most likely first major change
(uncertainty and/or central value).

Many new tools becoming available – practical and potentially
theoretical.

Precision data and theory throwing up problems in cases where
correlated systematics are important. Improved interplay between
theory/experiment on these seems a priority.
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Back-up
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Parton Fits and Uncertainties. Two main approaches.

Most groups use a parton parameterization and Hessian approach.

χ2 − χ2
min ≡ ∆χ2 =

∑
i,jHij(ai − a(0)

i )(aj − a(0)
j )

Often ∆χ2 > 1 to account for inconsistencies between data sets (or
other sources), e.g dynamical tolerance.

Can find and rescale eigenvectors of H leading to ∆χ2 =
∑
i z

2
i

Uncertainty on physical quantity then given by

(∆F )2 = 0.5 ∗
∑
i

(
F (S(+)

i )− F (S(−)
i )

)2
,

where S
(+)
i and S

(−)
i are PDF “error sets”. (Can also allow for

asymmetric uncertainties.)
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Neural Network group (Ball et al.) limit parameterization dependence.
Leads to alternative approach to “best fit” and uncertainties.

First part of approach, no longer perturb about best fit.

Where r(k)
p are random numbers following Gaussian distribution.

Fit to the data replicas obtaining PDF replicas q(net)(k)
i (follows Giele et

al.)

Mean µO and deviation σO of observable O then given by

µO = 1
Nrep

∑Nrep
1 O[q(net)(k)

i ], σ2
O = 1

Nrep

∑Nrep
1 (O[q(net)(k)

i ]− µO)2.

Eliminates parameterisation dependence by using a neural net which
undergoes a series of (mutations via genetic algorithm) to find the best
fit. In effect is a much larger sets of parameters – ∼ 37 per distribution.

However, can now generate “Monte Carlo” PDF sets from eigenvectors
directly, and vice versa.
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Choices for Heavy Flavours in DIS.

Near threshold Q2 ∼ m2
H massive quarks not partons. Created in final

state. Described using Fixed Flavour Number Scheme FFNS (used in
ABM(P) PDF determination).

F (x,Q2) = C
FF,nf
k (Q2/m2

H)⊗ fnfk (Q2)

Does not sum αnS lnnQ2/m2
H terms in perturbative expansion.

Variable Flavour - at high scales Q2 � m2
H heavy quarks behave like

massless partons. Sum ln(Q2/m2
H) terms via evolution. Partons in

different number regions related to each other perturbatively.

f
nf+1

j (Q2) = Ajk(Q2/m2
H)⊗ fnfk (Q2),

Can define a General-Mass Variable Flavour Number Scheme taking
one from Q2 ≤ m2

H to Q2 � m2
H in a well-defined manner.

Variants used in CT, HERA, MMHT, NNPDF fits. Different versions
converge at higher orders.
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Difference between FFNS and GM-VFNS
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At higherQ2 charm structure function for FFNS nearly always lower than
any GM-VFNS. NNLO uses O(α2

S) coefficient functions for F c2 (x,Q2).
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Included in HERAPF2.0 fits. A.M. Cooper-Sarkar

Make HERAPDF PDFS more precise, but in general a bit further from
other PDFs in some places, e.g high-x up quark.
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There are basically two kinds of situation. The recommendation
advises:

l For assessment of the PDF uncertainty in searches, discovery,
acceptance corrections . . . (e.g. Higgs, Susy). Use the PDF4LHC
prescription.

l When comparing predictions to theory in well-determined standard
model processes, e.g. jets, W,Z distributions, top pair cross sections
. . .. Use the individual PDF sets (ABM, CT, HERAPDF, JR, MMHT,
NNPDF)

An alternative viewpoint soon after in Accardi et al., Eur.Phys.J. C76
(2016) 471.

Dresden – Aug 2018 83



NNLO Differential top-antitop production now available and studied in
Czakon et al. JHEP 1704 (2017) 044.

Incompatibility between distributions and some very difficult to fit.
Overall imply softer gluon and slightly reduced high-x uncertainty.

Dresden – Aug 2018 84



Settle on using ATLAS yt distribution and CMS ytt̄ distribution, both
normalised.
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Still lower αS(M2
Z) (0.1147) and different gluon shape.
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Extension of d̄− ū parameterisation.

Currently use 3 parameters, (d̄− ū)(x,Q2
0) = A(1− x)ηsea+2xδ(1 + γx+

∆x2),

Extend to (d̄− ū)(x,Q2
0) = A(1− x)ηsea+2xδ(1 +

∑4
i=1 aiTi(1− 2x

1
2)),

where Ti(1 − 2x
1
2)) are Chebyshev polynomials. So 5 free parameters.

Easily allows multiple turning points (seen in first fit iteration).
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All groups have difficulties with the ATLAS jets Huston - PDF4LHC.

Recent proposals by ATLAS to alleviate this.
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µ=100 GeV
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Results for F c2 (x,Q2) in GM-VFNS compared to those for FFNS similar
to results for PDFs by Alekhin et al. in Phys.Rev. D81 (2010) 014032
comparing NNLO evolution to the fixed order result up to O(α2

S).

Use of FFNS rather than GM-VFNS leads to smaller high-x gluon and
smaller αS (RT, Eur.Phys.J. C74 (2014) 2958).
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Why is αS lower in FFNS?
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Look at parton ratios at lower
Q2 where evolution must match
data, and respective αS(M2

Z)
values are 0.1171 and 0.1136.

Gluon needs to be bigger at
x ∼ 0.001-0.1 – smaller at high
x – to fit data. Feeds to lower x
at higher Q2.

Inverse correlation between
high-x gluon and αS. Without
high-x gluon quark evolution
too quick.
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Easier to see impact in predictions for benchmark cross sections.

For MMHT very little change in central values. Up to about 10%
improvement in uncertainty for σt̄t and σ(gg → h), i.e. in gluon
dominated processes. Less in (anti)quark initiated final states.
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Comparison of PDFs
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Three Options Provided

PDF4LHC15-mc: A compressed Monte Carlo set with Nrep = 100.

PDF4LHC15-30: A symmetric Hessian set with Neig = 30. (Meta-PDF
approach - refit combination to functional form.)

PDF4LHC15-100: A symmetric Hessian set with Neig = 100. (MC-H
representing eigenvectors on linear basis of replica.)

Some suggestions for which ones to use

Monte Carlo contains non-gaussian features – important for searches
at high masses (high x).

Hessian 30 set has good precision and useful for many experimental
needs and when using nuisance parameters.

Hessian 100 set has optimal precision if running time not a problem or
extreme accuracy needed.
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MMHT Included some more up-to-date results on σt̄t.
tt, NNLO, Data/Theory

ATLAS 8 TeV

CMS 8 TeV

CMS 7 TeV

ATLAS 7 TeV

Tevatron
.
1.61.41.210.80.60.4

Fit very good and with αS(M2
Z) = 0.118 the fitted mpole

t = 173.4 GeV.
At NLO mpole

t = 170.2 GeV. MMHT values mpole
t = 174.2 GeV and

mpole
t = 171.7 GeV

Helps drive slight increase in αS(M2
Z)
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Prediction and Fit to data
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Slight reduction in lower |η|W− required and opposite for W+.
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Significant change in shape required for Z production, Higher at low |η|
and lower at high |η|

Even with fit difficulty in shape for lower mass data.
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Change scales to µR,F = MW,Z/2
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More noticeable improvement for W+.
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Marginal improvement in shape problem at lower mass.

Less fluctuation for Z peak rapidity distribution.
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Electroweak corrections
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CMS 7 TeV jets.

Here take as default R = 0.7 and µ = pT .

Larger R, and µ = pT rather than µ = pT1, lead to more stable NNLO
corrections.

Therefore good NLO fit maintained at NNLO and little change in gluon.

More stability from NLO to NNLO expected for ATLAS jets if larger R
and different scale chosen for fit?
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Some changes in quark decomposition.
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Photon-Photon Luminosity
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Smaller effect than for NNPDF3.0 photon (right), F. Giuli, et al, EPJC77
(2017) 400.

(Note different scale on horizontal axes.)
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Threshold resummations Bonvini.

Larger at NLO than NNLO. Also some effect from data missed out in the
fit. Correct PDFs bring cross section back slightly towards fixed order.
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