

QCD background processes in BSM searches

Paolo Gunnellini on behalf of the ATLAS and CMS Collaborations

August 2018 QCD@LHC 2018 Dresden (Germany)

Outline

- General points on background estimation
- Bump hunt
- ABCD, alpha and alphabet methods
- Control regions and transfer functions
- Template method
- Parametrized extrapolation
- Matrix element method (tight/loose ratio)
 - Summary

see talk by Pawel Klimek, Thursday 17.15h see talk by Matthias Sampert, Thursday 17.40h

The CMS and ATLAS detectors

- Excellent performance on lepton identification
- Fine granularity and accurate single-particle reconstruction
- Very good jet energy resolution
- Hermetic coverage for reliable reconstruction of E_T^{miss}

Understanding detector and predictions

 \rightarrow Detector performance and measured observables generally well understood

 \rightarrow Tremendous progress in Monte Carlo predictions

ATLAS-JETM-2016-008

Standard Model processes are backgrounds for searches and need to be carefully evaluated in the extreme regions of the phase space where we look for New Physics

 \rightarrow Too large number of events to be simulated \rightarrow Corners of phase space might be suboptimally predicted by available MC \rightarrow Theory uncertainties become large when parton shower effects are relevant DATA-DRIVEN BACKGROUND ESTIMATION METHODS

Which method to use?

Definition of control and validation regions

 \rightarrow Determination of background normalization \rightarrow Determination of background shape

 \rightarrow Transfer function used for background evaluation in signal region

METHOD DEPENDS ON STUDIED SIGNAL

Resonance-like signal

- Bump hunt methods
- Pactorization cuts (ABCD / Alpha/ Alphabet methods)

Contribution on tail of distributions

- I Factorization cuts (ABCD / Alpha/ Alphabet methods)
- Parametrized extrapolation
- Template methods
- Matrix method, smearing (replacement) method

Selection is also crucial for increasing sensitivity to signal (trigger, jet substructure, specific taggers..)

Tagging boosted heavy objects against QCD

Large variety of techniques to discriminate the different substructure configurations

- \bullet large-cone jets (anti- k_{T} algorithm with R = 0.8, 1.0)
- removing soft radiation (pruning, grooming, soft-drop...)
- looking at the prongness of the fat jet (τ , ECF variables..)
- looking at the constituents ("deep" taggers)

BUT.. residual contribution from QCD is unavoidable

See talk Thursday morning by E. Ferreira De Lima and S. Marzani

Methods for background estimation in searches for resonances decaying into heavy bosons or quark pairs

Bump hunt method

Fit measured distribution of a certain variable (e.g. dijet mass) and investigate the presence of a peak above the QCD background

Search for massive resonances decaying into VV or qV

One or two V-tagged (substructure-based) jets selected in the central region

No control region used \rightarrow Dijet invariant mass fit with background and signal shapes

Uncertainties coming from different parametrizations of the background fit function

(CMS) PRD 97 (2018) 072006 (ATLAS) Phys. Lett. B 777 (2017) 91

QCD@LHC 2018

Bump hunt method

Fit measured distribution of a certain variable (e.g. dijet mass) and investigate the presence of a peak above the QCD background

Signal parametrized by a crystal ball function for various mass points Fisher F-test drives the choice of the parametrization (CMS) PRD 97 (2018) 072006 Fit measured distribution of a certain variable (e.g. dijet mass) and investigate the presence of a peak above the QCD background

PROS:

- A completely data-driven method
- Easy to setup!
- Suitable for background falling spectrum and peaked signal
- It gives a clear and convincing proof of a discovery (presence of heavy resonance)

CONS:

- Choice of fitted function and number of parameters is arbitrary
- Hard to parametrize turn-on in mass spectrum
- Not very robust at the end of the spectrum
- Very large width resonances may be absorbed in the fit
- Possible spurious signal contamination

By considering two uncorrelated variables, one splits a 2D phase space, in order to obtain a signal-like and a background-like region

If signal region is A:

$$N_A = N_B \ \frac{N_C}{N_D}$$

Assumptions:

- Signal contribution is negligible in regions B, C, D
- X variable has no impact on studied background
- X and Y should be uncorrelated

VAR X

PROS: easy to setup + completely data-driven (which can be validated in MC)

CONS: difficult to test the lack of correlation between the two variables + needed extrapolation, which might be difficult to control

Bump hunt method tested on ABCD

\sim 80 fb^{-1}, data recorded in 2015-2016-2017

Two large-R (=1.0) jets with $\Delta y < 1.2$ and small p_T asymmetry

V-boson tagger based on jet mass and energy correlation function ratio D_2

Fit function used in signal region: $\frac{dN}{dm} = p_1(1-x)^{p_2 - \epsilon p_3} x^{-p_3}$

ABCD method applied as validation of the assumed parametric shape

Search for diboson resonances decaying in hadronic final states

VAR X = Δ y, VAR Y = V-tagging

QCD@LHC 2018

Factorization cuts: ABCD method

Paolo Gunnellini

QCD@LHC 2018

Hamburg University

Region D

Region C

Factorization cuts: alpha method

Definition of control region in order to estimate the background and evaluation of a transfer function (α ratio) to propagate these events to the signal region

Uncertainties driven by the statistical accuracy of the data in the control region

$$\alpha(\mathbf{x}) = \frac{\mathbf{x}_{MC}^{SR}}{\mathbf{x}_{MC}^{CR}} \qquad \qquad \mathbf{N}_{bkg}^{SR}(\mathbf{x}) = \mathbf{N}_{data}^{CR} \cdot \alpha(\mathbf{x})$$

ASSUMPTIONS:

- Absence of signal in the control region
- MC simulation good in describing the measured x variable

PROS: Easy, reliable and powerful (for an appropriate MC simulation) CONS: Function estimated from MC might have large errors EXAMPLE: Searches for heavy resonances decaying into VH pairs

CMS-B2G-17-004 ATLAS-CERN-EP-2017-111

Factorization cuts: alpha method

Definition of control region in order to estimate the background and evaluation of a transfer function (α ratio) to propagate these events to the signal region

QCD@LHC 2018

Paolo Gunnellini

Factorization cuts: alpha method

Paolo Gunnellini

Search for heavy resonances decaying into VH (\rightarrow qqbb)

Two large-R (1.0) jets at high p_T (one V-tagged, one H-tagged)

Definition of a "0 b-tag" control region for multijet background estimation in 1-tag and 2-tag signal regions

4000

Hamburg University

m,,[GeV]

Data

////, Uncertainty

2000

QCD@LHC 2018

IVT Model B Z' (2 TeV) x 5

Other Backgrounds

3000

Background estimation improved by fits in the high-mass tail PLB 774 (2017) 494

16

Use of multiple sidebands according to two variables, which encapsulate the signal region

Uncertainties coming from statistical uncertainty of the control regions

PROS:

- It interpolates, instead of extrapolates (more robust)
- If enough statistics in control regions → reliable method also for regions with low statistics (tails)
- no assumption on shape

Factorization cuts: alphabet method

Search for Higgs boson pairs in four b-jet final states

Semi-resolved selection: 2 small-cone b-tag. jets 1 large-cone double b-tag. jet Dominant background: QCD multijet processes

> Pass/fail ratio $(R_{p/f})$: $R_{p/f} = \frac{N_{pass}}{N_{fail}}$ (on double b-tagger requirement)

Estimated in sidebands (quadratic fit) and interpolated in the signal region

Background from $t\bar{t}$ taken from Monte Carlo simulation (@NLO)

CMS-B2G-17-019 - Subm. to JHEP

Methods for background estimation in searches for signals in tails of distributions

Missing transverse energy

Normalization to control regions

Definition of control regions for estimation of background normalization

Search for new phenomena in events with one high- p_T jet and large missing transverse energy Main background processes are W+jets,

 $Z(\rightarrow \nu \nu)$ +jets, $t\bar{t}$ final states

ATLAS - JHEP 01 (2018) 126 CMS - PRD 97 (2018) 092005

 $\begin{array}{l} \mbox{Definition of various control regions:}\\ \rightarrow \mbox{One for each background process}\\ \rightarrow \mbox{Using similar cuts as the signal region}\\ \rightarrow \mbox{Simultaneous fit of background normalizations}\\ \rightarrow \mbox{Shape taken from simulation} \end{array}$

Correction factors:

W/Z+jets(NLO): 1.27

tt (NLO): 1.31

Paolo Gunnellini

Hamburg University

Normalization to control regions

Definition of control regions for estimation of background normalization

Paolo Gunnellini

QCD@LHC 2018

Hamburg University

Factorization cuts: parametrized extrapolation

Search for new phenomena in multijet final states + lepton

 \rightarrow Main background from W/Z+jets and $t\overline{t}$ processes

ATLAS (JHEP (2017) 88) CMS (JHEP 05 (2018) 088)

Background normalization based on extrapolation from a lower jet multiplicity \rightarrow "staircase-scaling" assumption

ightarrow b-tag multiplicity distributions modelled by simulation

$$\begin{split} N_{j,b}^{W/Z+jets} &= \frac{MC_{j,b}^{W/Z+jets}}{MC_{j}^{W/Z+jets}} \cdot N_5^{W/Z+jets} \cdot \prod_{j'=5}^{j'=j-1} r(j'), \\ \text{N}_5 \text{ measured from data} \end{split} \qquad \qquad r(j) = c_0 + c_1/(j+1), \\ c_0, c_1 \text{ measured from data} \end{split}$$

Uncertainties from statistical accuracy and modelling of b-tag multiplicity distribution

Factorization cuts: parametrized extrapolation

Search for new phenomena in multijet final states + lepton

ATLAS (JHEP (2017) 88)

Example: estimation of W/Z+jet background

Stair-case scaling confirmed by data

Background extrapolation gives very good compatibility with data in signal region

> Similar procedure for $t\bar{t}$ background estimation

Template method

Search for SUSY particles in multijet final states

 \rightarrow Main background from QCD multijet processes

ATLAS (CERN-EP-2017-298) - Subm. to PLB

 \rightarrow Selection based on observables from large-radius jets (R = 1.0) \rightarrow Signal extraction from $M_J^{\Sigma} = \sum_{j=1..4} m_{jet}^j$

Single-jet templates as a function of jet p_T , η and b-quark content \rightarrow assuming absence of correlation among jets

 $\begin{array}{l} \rightarrow \mbox{ Uncertainties estimated through uncertainty determination regions} \\ (difference between predictions and observations) \\ \rightarrow \mbox{ Four validation regions and five overlapping signal regions} \end{array}$

Paolo Gunnellini

QCD@LHC 2018

Hamburg University

Template method

Search for SUSY particles in multijet final states

Control region requiring exactly three high- p_T jets

ATLAS (CERN-EP-2017-298) - Subm. to PLB

→ Selection based on observables from large-radius jets (R = 1.0) → Signal extraction from $M_J^{\Sigma} = \sum_{i=1..4} m_{iet}^j$

Templates are used for extracting M_J^{Σ} and normalized to the region between 0.2 and 0.6 TeV \rightarrow looking for discrepancies at large M_I^{Σ}

Paolo Gunnellini

Matrix method (tight/loose ratio)

Data-driven estimation of fake lepton identification from QCD multijet events

 \rightarrow Definition of a lepton "tight-selection" and a "loose-selection" sample in QCD-enriched control regions

$$\begin{split} N^{loose} &= N^{loose}_{real} + N^{loose}_{fake} \qquad \qquad N^{tight} = \epsilon_{real} \cdot N^{loose}_{real} + \epsilon_{fake} \cdot N^{loose}_{fake} \\ N^{tight}_{fake} &= \frac{\epsilon_{fake}}{\epsilon_{real} - \epsilon_{fake}} (N^{loose} \epsilon_{real} - N^{tight}) \end{split}$$

Challenge: determination of ϵ_{real} and ϵ_{fake}

 ϵ_{fake} : percentage of jets, selected with the loose lepton selection passing the tight selection

 ϵ_{real} : percentage of loose leptons passing the tight selection

Search for gluinos with an isolated lepton, jets and E_T^{miss} - ATLAS - EPJC 76 (2016) 565

Matrix method (tight/loose ratio)

Determination of ϵ_{real} : tag-and-probe method

- Require a lepton-pair to be within the Z mass window
- Tag electron selected with tight selection
- Probe electron identified with loose selection

Measurement of the percentage of loose electrons which pass also the tight selection

Determination of $\epsilon_{\textit{fake}}$: QCD-dominated control regions with loose selection

 \rightarrow measurement of percentage of jets that also pass the tight lepton selection

 \rightarrow Selection in control region as independent as possible from the signal selection

PRO: can be used for a general number of final-state leptons CON: possible overlaps between various backgrounds

QCD@LHC 2018

7 hoson

Tag electron

Probe electron

- LHC is delivering a large amount of data, which are being used for precision measurements and searches for new physics
- A large variety of clever and robust methods to estimate contributions from Standard Model processes directly from data is available and well understood
- The variety of methods allows cross check and their combination is useful to reduce systematic uncertainties/biases
- Input from theory more substantial for searches of non-resonant signals
- So far, no deviations from QCD/SM predictions in data even in remote corners of phase space

THANKS FOR YOUR ATTENTION

...and thanks to the EXO, SUSY, SMP, B2G conveners of the ATLAS and CMS collaborations for the help during the preparation of the slides!

QCD background processes in BSM searches: theory

Jonas M. Lindert

Dresden, 28. August 2018

• Higgs at 125 GeV allowed for very clean discovery in $\gamma\gamma$ & 41 channels

From a theory/pheno perspective finding resonances is very easy...

• Bump hunting: little to no theoretical input needed.

Look for BSM effects in small deviations from SM predictions:

→ Higgs processes natural place to look at

 \rightarrow good control on theory necessary!

- Dark Matter particles produced at the LHC leave the detectors unobserved: signature missing transverse energy
- large irreducible SM backgrounds
- → good control on theory necessary!

Theoretical Predictions for the LHC

Lange and the second

1000000000

Hard (perturbative) scattering process N(N)LO QCD + EW

 $d\sigma = d\sigma_{\rm LO} + \alpha_{\rm S} \, d\sigma_{\rm NLO} + \alpha_{\rm EW} \, d\sigma_{\rm NLO \, EW}$

 $+\alpha_{S}^{2} d\sigma_{\rm NNLO} + \alpha_{\rm EW}^{2} d\sigma_{\rm NNLO\,EW} + \alpha_{S} \alpha_{\rm EW} d\sigma_{\rm NNLO\,QCDxEW}$

QCD Bremsstrahlung

- ▶ parton shower
- matched to NLO matrix elements

QED Bremsstrahlung

- parton shower
- ▶ matched to NLO matrix elements

Numerically $\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2) \Rightarrow | \text{NLO EW} \sim \text{NNLO QCD} |$

Possible large (negative) enhancement due to soft/collinear logs from virtual EW gauge bosons:

 \rightarrow overall large effect in the tails of distributions: p_T , m_{inv} , H_T ,... (relevant for BSM searches!)

Relevance of EW higher-order corrections in the tails of kinematic distributions

[Ciafaloni, Comelli,'98; Lipatov, Fadin, Martin, Melles, '99; Kuehen, Penin, Smirnov, '99; Denner, Pozzorini, '00]

 $\delta \mathcal{M}_{\text{LL+NLL}}^{1-\text{loop}} = \frac{\alpha}{4\pi} \sum_{k=1}^{n} \left\{ \frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{\pm}} I^{a}(k) I^{\bar{a}}(l) \ln^{2} \frac{\hat{s}_{kl}}{M^{2}} + \gamma^{\text{ew}}(k) \ln \frac{\hat{s}}{M^{2}} \right\} \mathcal{M}_{0}$

5

off-shell vector-boson pair production at NLO QCD+EW

off-shell vector-boson pair production at NLO QCD+EW

missing transverse energy

we hope to see:

SM backgrounds in monojet / MET+X searches

SM backgrounds in monojet / MET+X searches

- hardly any systematics (just QED dressing)
- very precise at low pT
- but: limited statistics at large pT

| |

- hardly any systematics (just QED dressing) fairly large data samples at large pT
- very precise at low pT
- but: limited statistics at large pT

• systematics from transfer factors

- hardly any systematics (just QED dressing)
 fairly large data samples at large pT
- very precise at low pT
- but: limited statistics at large pT

• systematics from transfer factors

- very precise at low pT
- but: limited statistics at large pT

- systematics from transfer factors

QCD corrections

- mostly moderate and stable QCD corrections
- (almost) identical QCD corrections in the tail, sizeable differences for small pT

EW corrections

- correction in $pT(Z) > correction in pT(\chi)$
- ► -20/-8% for Z/γ at I TeV
- EW corrections > QCD uncertainties for $p_{T,Z}$ > 350 GeV

Prelude: Z/γ pT-ratio

- **QCD** corrections 10-15% below 250 GeV ≤ 5% above 350 GeV

EW corrections

 sizeable difference in EW corrections results in 10-15% corrections at several hundred GeV

• remarkable agreement with data at @ NLO QCD+EVV!

16

how to correlate scale uncertainties in ratios?

how to estimate uncertainties due to missing higher-order EW?

how to combine higher-order QCD and EW correction? what is the related uncertainty?

Uncertainty estimates at (N)NLO QCD + (n)NLO EW

Precise predictions for V+jet DM backgrounds

work in collaboration with: R. Boughezal, J.M. Campell, A. Denner, S. Dittmaier, A. Huss, A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, S. Kallweit, M. L. Mangano, P. Maierhöfer, T.A. Morgan, A. Mück, M. Schönherr, F. Petriello, S. Pozzorini, G. P. Salam, C. Williams

• Combination of state-of-the-art predictions: (N)NLO QCD+(n)NLO EW in order to match (future) experimental sensitivities (1-10% accuracy in the few hundred GeV-TeV range)

$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}y}\sigma^{(V)}(\vec{\varepsilon}_{\mathrm{MC}},\vec{\varepsilon}_{\mathrm{TH}}) \coloneqq \frac{\mathrm{d}}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}y}\sigma^{(V)}_{\mathrm{MC}}(\vec{\varepsilon}_{\mathrm{MC}}) \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}x}\sigma^{(V)}_{\mathrm{TH}}(\vec{\varepsilon}_{\mathrm{TH}}) \\ \frac{\mathrm{d}}{\mathrm{d}x}\sigma^{(V)}_{\mathrm{MC}}(\vec{\varepsilon}_{\mathrm{MC}}) \end{bmatrix}$$

ne-dimensional reweighting of MC samples in $x = p_{\mathrm{T}}^{(V)}$
th $\frac{\mathrm{d}}{\mathrm{d}x}\sigma^{(V)}_{\mathrm{TH}} = \frac{\mathrm{d}}{\mathrm{d}x}\sigma^{(V)}_{\mathrm{QCD}} + \frac{\mathrm{d}}{\mathrm{d}x}\sigma^{(V)}_{\mathrm{mix}} + \frac{\mathrm{d}}{\mathrm{d}x}\Delta\sigma^{(V)}_{\mathrm{EW}} + \frac{\mathrm{d}}{\mathrm{d}x}\sigma^{(V)}_{\gamma-\mathrm{ind}}.$

$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}\vec{y}}\sigma^{(V)}(\vec{\varepsilon}_{\mathrm{MC}},\vec{\varepsilon}_{\mathrm{TH}}) \coloneqq \frac{\mathrm{d}}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}\vec{y}}\sigma^{(V)}_{\mathrm{MC}}(\vec{\varepsilon}_{\mathrm{MC}}) \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}x}\sigma^{(V)}_{\mathrm{TH}}(\vec{\varepsilon}_{\mathrm{TH}}) \\ \frac{\mathrm{d}}{\mathrm{d}x}\sigma^{(V)}_{\mathrm{MC}}(\vec{\varepsilon}_{\mathrm{MC}}) \end{bmatrix}$$
one-dimensional reweighting of MC samples in $x = p_{\mathrm{T}}^{(V)}$
with $\frac{\mathrm{d}}{\mathrm{d}x}\sigma^{(V)}_{\mathrm{TH}} = \frac{\mathrm{d}}{\mathrm{d}x}\sigma^{(V)}_{\mathrm{QCD}} + \frac{\mathrm{d}}{\mathrm{d}x}\sigma^{(V)}_{\mathrm{mix}} + \frac{\mathrm{d}}{\mathrm{d}x}\Delta\sigma^{(V)}_{\mathrm{EW}} + \frac{\mathrm{d}}{\mathrm{d}x}\sigma^{(V)}_{\gamma-\mathrm{ind.}}$

Note: analysis cuts can be considerable different from reweighting setup

- Robust uncertainty estimates including
 - I.Pure QCD uncertainties
 - 2. Pure EW uncertainties
 - 3. Mixed QCD-EW uncertainties
 - 4. PDF, γ -induced uncertainties

- Prescription for **correlation** of these uncertainties
 - within a process (between low-pT and high-pT)

[1705.04664]

▶ across processes

Ζ

Pure QCD uncertainties

[*ML et. al.:* 1705.04664]

$$\frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{QCD}}^{(V)} = \frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{LOQCD}}^{(V)} + \frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{NLOQCD}}^{(V)} + \frac{\mathrm{d}}{\mathrm{d}x}\sigma_{\mathrm{NNLOQCD}}^{(V)}$$

$$\mu_{0} = \frac{1}{2} \left(\sqrt{p_{\mathrm{T},\ell^{+}\ell^{-}}^{2} + m_{\ell^{+}\ell^{-}}^{2}} + \sum_{i \in \{q,g,\gamma\}} |p_{\mathrm{T},i}| \right)$$

this is a 'good' scale for V+jets

- at large pTV: $HT'/2 \approx pTV$
- modest higher-order corrections
- sufficient convergence

scale uncertainties due to 7-pt variations:

O(20%) uncertainties at LO O(10%) uncertainties at NLO O(5%) uncertainties at NNLO

with minor shape variations

How to correlate these uncertainties across processes?

19

consider Z+jet / W+jet p_{T,V}-ratio @ LO

uncorrelated treatment yields O(40%) uncertainties

 $p_{T,V}$ [GeV]

[1705.04664]

consider Z+jet / W+jet p_{T,V}-ratio @ LO

uncorrelated treatment yields O(40%) uncertainties

correlated treatment yields tiny O(<~ 1%) uncertainties

[1705.04664]

consider Z+jet / W+jet $p_{T,V}$ -ratio @ LO

uncorrelated treatment yields O(40%) uncertainties

correlated treatment yields tiny O(< 1%) uncertainties

check against NLO QCD!

NLO QCD corrections remarkably flat in Z+jet / W+jet ratio! → supports correlated treatment of uncertainties!

 $p_{T,V}$ [GeV]

[1705.04664]

consider Z+jet / W+jet $p_{T,V}$ -ratio @ LO

uncorrelated treatment yields O(40%) uncertainties

correlated treatment yields tiny O(< ~ 1%) uncertainties

check against NLO QCD!

NLO QCD corrections remarkably flat in Z+jet / W+jet ratio! → supports correlated treatment of uncertainties!

 $p_{T,V}$ [GeV]

Also holds for higher jet-multiplicities \rightarrow indication of correlation also in higher-order corrections beyond NLO!

How to correlate these uncertainties across processes?

• take scale uncertainties as fully correlated: NLO QCD uncertainties cancel at the <~ | % level

How to correlate these uncertainties across processes?

- take scale uncertainties as fully correlated: NLO QCD uncertainties cancel at the $<\sim$ 1 % level
- introduce **process correlation uncertainty** based on K-factor difference: →effectively degrades precision of last calculated order

δ<2%

$$\delta K_{\rm NLO} = K_{\rm NLO}^V - K_{\rm NLO}^Z$$

δ < 3-4 %

How to correlate these uncertainties across processes?

- take scale uncertainties as fully correlated: NLO QCD uncertainties cancel at the $<\sim$ 1 % level
- introduce **process correlation uncertainty** based on K-factor difference: →effectively degrades precision of last calculated order

$$\delta K_{\rm NLO} = K_{\rm NLO}^V - K_{\rm NLO}^Z$$

check against NNLO QCD!

How to correlate these uncertainties across processes?

- take scale uncertainties as fully correlated: NLO QCD uncertainties cancel at the <~ 1 % level
- →effectively degrades precision of last calculated order

• introduce process correlation uncertainty based on K-factor difference: $\delta K_{(N)NLO} = K_{(N)NLO}^V - K_{(N)NLO}^Z$

Uncertainty estimates at NNLO QCD

Pure EW uncertainties

EW corrections become sizeable at large p_{T,V}: -30% @ I TeV

Origin: virtual EW Sudakov logarithms

How to estimate corresponding pure EW uncertainties of relative $\mathcal{O}(\alpha^2)$?

[JML et. al.: 1705.04664]

Large EW corrections dominated by Sudakov logs

Pure EW uncertainties

 $p_{T,V}$ [GeV]

$$\kappa_{\rm NLO\,EW}(\hat{s}, \hat{t}) = \frac{\alpha}{\pi} \left[\delta_{\rm hard}^{(1)} + \delta_{\rm Sud}^{(1)} \right]$$
$$\kappa_{\rm NNLO\,Sud}(\hat{s}, \hat{t}) = \left(\frac{\alpha}{\pi}\right)^2 \delta_{\rm Sud}^{(2)}$$

[*ML* et. al.: 1705.04664]

Large EW corrections dominated by Sudakov logs

check against two-loop Sudakov²⁰⁰logs^{800 1000 1200}

NNLO/LO - 1 -

[Kühn, Kulesza, Pozzorini, Schulze; 05-07]

+ additional uncertainties for hard non-log NNLO EW effects

(uncorrelated)

Pure EW uncertainties: ratios

• NLO EW: $\sim 5\%$ for pT=1 TeV nNLO EW: ~1% for pT=1 TeV

Mixed QCD-EW uncertainties

Given QCD and EW corrections are sizeable, also mixed QCD-EW uncertainties of relative $\mathcal{O}(\alpha \alpha_s)$ have to be considered.

Additive combination $\sigma_{\rm QCD+EW}^{\rm NLO} = \sigma^{\rm LO} + \delta \sigma_{\rm QCD}^{\rm NLO} + \delta \sigma_{\rm EW}^{\rm NLO}$ (no $O(\alpha \alpha_s)$ contributions) Multiplicative combination

$$\sigma_{\rm QCD\times EW}^{\rm NLO} = \sigma_{\rm QCD}^{\rm NLO} \left(1 + \frac{\delta \sigma_{\rm EW}^{\rm NLO}}{\sigma^{\rm LO}}\right)$$

(try to capture some $\mathcal{O}(\alpha \alpha_s)$ contributions, e.g. EW Sudakov logs × soft QCD)

Difference between these two approaches indicates size of missing mixed EW-OCD corrections.

$K_{\rm QCD\otimes EW} - K_{\rm QCD\oplus EW} \sim 10\%$ at 1 TeV

Too conservative!?

For dominant Sudakov EW logarithms factorization should be exact!

$$\frac{\mathrm{d}\sigma_{\mathrm{NLO}\,\mathrm{EW}}}{\mathrm{d}\sigma_{\mathrm{LO}}}\Big|_{V+2\mathrm{jet}} - \frac{\mathrm{d}\sigma_{\mathrm{NLO}\,\mathrm{EW}}}{\mathrm{d}\sigma_{\mathrm{LO}}}\Big|_{V+1\mathrm{jet}} \lesssim 1\%$$

$$\delta K_{\rm mix}^{(V)}(x) = 0.1 \left[K_{\rm TH,\oplus}^{(V)}(x,\vec{\mu}_0) - K_{\rm TH,\otimes}^{(V)}(x,\vec{\mu}_0) \right]$$

Black ratio from data and statistical uncertainties / Red from MC

Grey band includes theoretical uncertainties

dashed lines -> what the uncertainties would have been without the work of the theory community

Experimental closure tests CMS monojet searches

[slide: Zeynep Demiragli, DM@LHC 2018]

Conclusions

- There is no clear scale/signature for new physics effects: Let's explore the unknown leaving no stone unturned!
- Theory precision is often key to fully harness power of BSM searches.
- Detailed understanding of theory systematics is becoming pivotal.
- Automation of higher-order corrections allows for detailed phenomenological analyses for a multitude of process. But: need to look inside the black box.
- Let's push the precision frontier!

Alphabet-assisted bump hunt method

Applicable when both alphabet and bump hunt methods can be used

EXAMPLE: heavy resonances decaying into two Higgs bosons

Simultaneous fit of a control and signal region

→ Background normalization in signal region constrained by the pass/fail ratio from the alphabet method (sidebands region)

$$N_{\rm SR} = N_{\rm CR} \cdot R_{\rm p/f}$$

 \rightarrow background shape extracted by fit using the same parametric function for both regions

PRO: smooth fluctuations from the alphabet predictions

QCD@LHC 2018

Alphabet-assisted bump hunt method

Applicable when both alphabet and bump hunt methods can be used

Paolo Gunnellini

QCD@LHC 2018

2D fit of jet p_{T} and ρ (instead of mass), in order to avoid sculpting and correlation

Decorrelation of variables avoid mass sculpting and achieves better performance (and smaller uncertainty)

Parametrize the pass/fail ratio in 2D (ρ and p_T) (ideally it is flat, in reality has a little slope)

Factorization cuts: BDT-based event reweighting

Definition of a control region (two-tag) and extrapolation to four-tag region through a BDT (fully data-driven transfer function)

Search for higgsinos pair production with b-tagged jets

Low-mass analysis:

 \rightarrow jets paired according to their mass, being close to the Higgs mass

 \rightarrow Main background from QCD multijet processes

Control region defined by two b-tagged jets and two anti b-tag jets

Kinematic differences between 2-tag and 4-tag regions need to be corrected for \rightarrow reweighting based on a BDT output

ATLAS - CERN-EP-2018-050 (Subm. to PRD) CMS - PRD 97, 032007 (2018)

Factorization cuts: BDT-based event reweighting

Extrapolation to the signal region performed through a BDT regression based on 27 variables of Higgs candidates and event topology

QCD@LHC 2018

Automation of NLO EW

MoCaNLO+Recola	$pp \rightarrow \parallel + 2 \text{ jets}$ $pp \rightarrow e^+e^-\mu^+\mu^-/\mu^+\mu^-\mu^+\mu^-/e^+\nu_e\mu^-\nu_\mu$ $pp \rightarrow e^+\nu_e\mu^-\nu_\mu \text{ bb (tt)}$ $pp \rightarrow e^+\nu_e\mu^+\nu_\mu + 2 \text{ jets (VBS)}$ $pp \rightarrow e^+\nu_e\mu^-\nu_\mu \text{ bbH (ttH)}$	[1411.0916] [1601.07787] [1611.05338 [1607.05571] [1611.02951] [1708.00268] [1612.07138]
Sherpa/Munich+OpenLoops POWHEG+OpenLoops	$pp \rightarrow W+1,2,3 \text{ jets}$ $pp \rightarrow II/Iv/vv + 0, 1, 2 \text{ jets} (V+\text{jets})$ $pp \rightarrow IIvv (VV)$ $pp \rightarrow IIH/IIvH+0, 1 \text{ jet} (HV)$	[1412.5156] [1511.08692] [1705.00598] [1706.03522]
MadGraph_aMC@NLO +MadLoop	$pp \rightarrow tt + H/Z/W$ $pp \rightarrow tt$ $pp \rightarrow 2 jets$	[1504.03446] [1606.01915] [1705.04105] [1612.06548]
MadDipole+GoSam Sherpa+GoSam	$pp \rightarrow W+2 \text{ jets}$ $pp \rightarrow \chi\chi+0,1,2 \text{ jets}$	[1507.08579] [1706.09022]

- many NLO QCD+EW calculations for multi-particle processes are becoming available

• NLO QCD+EW matching and merging with parton showers is under way (approximations available)

• Given the achieved automation: attention is shifting towards detailed phenomenological applications
Caveat: **y**+jet

Note: this modelling of process correlations assumes close similarity of QCD effects between different V+jets processes

- apart from PDF effects it is the case for W+jets vs. Z+jets
- at pT > 200 GeV it is in principle also the case for γ +jets vs. Z/W+jets

BUT: different logarithmic effects from fragmentation even at $pT \gg M_V$ W/Z+jet: mass cut-off $\rightarrow \log(pT/M_{y_2})$ Y^+ jet: Frixione-isolation cone of radius $R_0 \rightarrow \log(\mathbb{R}_0)$ 1.8 $R_{\mathrm{dyn}}^{\mathrm{l}}(p_{\mathrm{v}})$ Consider dynamic γ -isolation with $d\sigma_{V+j}^{NLO QCD}/d\sigma_{V+j}^{LO}$ 2.21002 (fix) + j(dyn)+j 1.8 1.62001.4 1.2100 2001000 3000 50050 $p_{\mathrm{T,V}}\left[\mathrm{GeV}\right]$

Mixed QCD-EW uncertainties

N-jettiness cut ensures approx. constant ratio V+2jets/V+jet

$$\tau_1 = \sum_k \min_i \left\{ \frac{2p_i \cdot q_k}{Q_i \sqrt{\hat{s}}} \right\}$$

Estimate of non-factorising contributions

(tuned to cover above difference of EW K-factors)

PDF uncertainties (LUXqed=PDF4LHC) LUXqed PDF uncertanties for V+jet ratios @ 13 TeV 1.1 $Z(\ell^+\ell^-)$ / $W(\ell\nu)$ 1.05 1.0 1.0 0.95 0.9 1.1 \blacksquare Z($\ell^+\ell^-$) / γ 1.05 1.0 1.0 0.95 0.9 1.1 $W^{-}(\ell^{-}\bar{\nu}) / W^{+}(\ell^{+}\nu)$ 1.05 *R/R*NLO QCD 0.95 0.9 1.1

• δ_{PDF} < 5 % for pT,V < 1500 GeV

- $\begin{array}{c} 1.05 \\ 1.0 \\ 0.95 \\ 0.9 \\ 100 \\ 200 \\ 500 \\ 1000 \\ 3000 \\ p_{T,V} \\ [GeV] \end{array}$
- Z/W: $\delta_{PDF} < 0.5\%(2\%)$ for pT,V < 800 GeV(1.5 TeV)
- Z/ γ & W/ γ : δ_{PDF} < 2% for pT,V < 1.3 TeV
- W-/W+: $\delta_{\text{PDF}} > 5\%$ for pT,V < I TeV (due to large uncertainties on u/d ratio at large Bjorken-x)

ntal closure tests & CMS monojet searches

[CMS PAS EXO-16-048]

