Inclusive jet and dijet production at the LHC

Bogdan Malaescu (LPNHE Paris - CNRS, CERN)

on behalf of the ATLAS and CMS collaborations

QCD at LHC - 2018

Introduction

Numerous "Standard Model publications" by ATLAS and CMS

Focusing on a few (recent) jet measurements

Motivation:

Status: July 2018

- → test SM on wide phase-space range
- → important ingredients to PDF fits
- → sensitivity to New Physics

Content of the talk:

- → Inclusive jet and dijet cross-sections
- → Angular and energy correlation

Theory talk by Joao Pires

→ Quantitative data/theory comparisons

Jet production at LHC

Jet calibration, resolution and uncertainties

• Anti-k_T calorimeter / p-flow jets

- Uncertainties (similar for ATLAS and CMS: ~5% on wide range, sub-% statistical
- → precision era)
- in-situ baseline
- jet flavor
- pile-up

- → Sub-components (ATLAS >60; CMS ~16) allow to keep track of correlations (between phase-space regions & between measurements)
- → ATLAS: Uncertainties on the correlations available & propagated too
- Jet Energy Resolution studied in-situ (see talks by A. Dattagupta and R. Cameron)

Data correction to particle level

- Measurements corrected back to particle level using a matrix-based method (iterative or matrix inversion); #iterations: data / reco. MC, systematics
 - \rightarrow Transfer matrix relating the particle level & reconstructed observable (MC); CMS: pseudo-events (from NLO + NP&EW corr.) smeared for p_T resolution
 - → In ATLAS, in-situ determination of the shape uncertainty exploiting the data/reco MC shape comparison (performed for several unfolding methods; choosing the most precise)
 - → Comparison of results using different MCs (ATLAS & CMS)

Data correction to particle level

- ATLAS: full propagation of uncertainties and correlations through the unfolding
- → statistical uncertainty (data+MC) using pseudo-experiments
 - cov. matrix on data at reco. level: several entries per event (arXiv:1112.6297)
 - bootstrap method to keep track of correlations between measurements e.g. for combined fits (since arXiv:1312.3524)
- → (asymmetric) systematic uncertainties

 using nuisance parameters; statistical significance (bootstrap method) +
 rebinning / smoothing

• **CMS**:

- → diagonal statistical uncertainties account for several entries per event and are propagated through unfolding → covariance matrix; correlations on data at reco. level to be added; Jackknife - MC in some cases
- → systematic uncertainties evaluated at reconstructed level

Theoretical predictions and uncertainties

- Perturbative QCD predictions from NLOJET++
 - \rightarrow Uncertainties: renormalization & factorization scales (0.5 / 2 variations + (ATLAS) p_T^{jet} vs. p_T^{max} scale choice), PDFs and α_S via APPLGRID / FASTNLO
 - → NNLO prediction: J.Currie et al. Phys. Rev. Lett. 118 (2017) 072002
- EW corrections (inclusive jets & dijets)
 - S. Dittmaier et al. JHEP 11 (2012) 095

More in Joao Pires' talk

p_{T, avg} [GeV]

Theoretical predictions and uncertainties

- Non-perturbative corrections (accounting for hadronization and UE / MPI) and uncertainties: various Pythia tunes + different MC generators (Herwig++); strong dependence on R
 - → Additional comparisons to Powheg (NLO ME + PS)

Inclusive jet and dijet cross sections - ATLAS

• Double-differential measurements for anti- k_T jets with R=0.4, \sqrt{s} =13 TeV, L=3.2fb⁻¹ $(p_T^{jet}; |y|) (m_{ii}; y^*)$

- At least 2 jets: $p_T^{jet} > 75 \text{ GeV}$, |y| < 3
- $p_T^{\text{jet 1}} + p_T^{\text{jet 2}} > 200 \text{ GeV}$

Inclusive jet cross sections: theory/data - ATLAS

Good data/theory agreement within uncertainties observed for most PDF sets: CT14, MMHT 2014, NNPDF 3.0, HERAPDF 2.0, ABMP16

Inclusive jet cross sections: NLO/NNLO - ATLAS

- Better data/theory agreement for NNLO, when using the p_T iet scale choice
- Better data/theory agreement for NLO, when using the p_T scale choice (*backup*)

Dijet 3D measurement - CMS

- Triple-differential measurements for anti- k_T jets with R=0.7, \sqrt{s} =8 TeV, L=19.7fb⁻¹
- 2 leading jets: $p_T^{\text{jet 1};2} > 50 \text{ GeV}, |y| < 3$

Dijet 3D measurement - CMS

→ Jet mass measurements also entering the precision era (see talk by D. Enoque and S. Manzani)

Azimuthal correlations for 2-, 3-, 4-jets by CMS

- Double differential measurements for |y| < 2.5 and $p_{T1(n)} > 200$ (100) GeV
- Level of data/theory agreement strongly depends on the generator

Azimuthal correlations for 2-, 3-, 4-jets by CMS

- Double differential measurements for |y| < 2.5 and $p_{T 1(n)} > 200$ (100) GeV
- Level of data/theory agreement strongly depends on the generator

Azimuthal correlations for ~back-to-back 2-jets

- Double differential measurements for |y| < 2.5 and $p_{T1(2)}$ > 200 (100) GeV in fine $\Delta\Phi_{1.2}$ bins
- MadGraph+Pythia8 describes data somewhat better than Pythia8 and Herwig++

Azimuthal correlations for 3-jet events

- Double differential measurements for |y| < 2.5 and $p_{T.1:2:3} > 200$; 100; 30 GeV
- Pythia8 and Herwig++ describe data somewhat better than MadGraph+Pythia8

$R_{\Lambda \Phi}$ - ATLAS

• $R_{\Delta\Phi}$ measured in H_T , y^* and $\Delta\Phi_{max}$ bins - sensitive to α_S (see talk by K. Rabbertz)

Energy-Energy Correlations - ATLAS

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} = \frac{1}{N} \sum_{A=1}^{N} \sum_{ij} \frac{E_{\mathrm{T}i}^{A} E_{\mathrm{T}j}^{A}}{\left(\sum_{k} E_{\mathrm{T}k}^{A}\right)^{2}} \delta(\cos\phi - \cos\phi_{ij}),$$

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma^{\mathrm{asym}}}{\mathrm{d}(\cos\phi)} \equiv \left. \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}(\cos\phi)} \right|_{\phi} - \left. \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}(\cos\phi)} \right|_{\pi-\phi}$$

- → Energy-weighted angular distributions
- (A)EEC measured in H_{T2} and $\cos\Phi$ bins sensitive to α_S (see talk by K. Rabbertz)

Quantitative comparison between data and theory

After Joao's talk

→ Performed first for the ATLAS 8 TeV inclusive jet study (arXiv:1706.03192) and then studied for 13 TeV data too (arXiv:1711.02692)

Quantitative comparison between data and NLO QCD+NP+EW

 $\rightarrow \chi^2$ and p-values evaluated with full information on statistical and systematic uncertainties, experimental and theoretical, with their correlations

$$\chi^{2}(\mathbf{d};\mathbf{t}) = \min_{\beta_{a}} \left\{ \sum_{i,j} \left[d_{i} - \left(1 + \sum_{a} \beta_{a} \cdot \left(\boldsymbol{\epsilon}_{a}^{\pm}(\beta_{a}) \right)_{i} \right) t_{i} \right] \cdot \left[C_{\text{su}}^{-1}(\mathbf{t}) \right]_{ij} \cdot \left[d_{j} - \left(1 + \sum_{a} \beta_{a} \cdot \left(\boldsymbol{\epsilon}_{a}^{\pm}(\beta_{a}) \right)_{j} \right) t_{j} \right] + \sum_{a} \beta_{a}^{2} \right\}$$

Comparisons performed for a large number of configurations:

- → PDFs: ABM11(as for 7TeV), CT14, MMHT 2014, NNPDF 3.0, HERAPDF 2.0, ABMP16
- → Phase-space regions:

p_T ranges:

- "wide": > 70; > 100; 100 900; 100 400 GeV
- "narrow": 70 100; 100 240; 240 408; 408 642; 642 952; > 952 GeV

y ranges:

- "individual bins": |y| < 0.5; 0.5 1; 1 1.5; 1.5 2; 2 2.5; 2.5 3
- "full range": |y| < 3
- "pairs of consecutive bins": |y| < 1; 0.5 1.5; 1 2; 1.5 2.5; 2 3
- "central-forward pairs": |y| < 0.5 & 2.5 3; < 0.5 & 2 2.5; < 0.5 & 1.5 2
- \rightarrow R=0.4 and R=0.6; $p_T^{\text{leading jet}}$ and p_T^{jet} scale choices

Result quantitative comparisons for "all" PDFs

- Individual |y| bins, wide p_T ranges: p-values generally > 4% (~1% or lower for R=0.6, 0.5 < |y| < 1 at 8 TeV, 1.5 < |y| < 2 at 13 TeV), decreasing when considering wider phase-space regions
- Full |y| range, wide p_T ranges: p-values << 10^{-3} ($p_T > 100 \text{ GeV}$) χ^2/ndf : ~ 313-385/159 (8 TeV); 384-475/177 (13 TeV)
- Data/theory tension also seen initially by CMS in arXiv:1410.6765 when using the original data, uncertainties and correlations from arXiv:1212.6660
- CMS noticed that "Changing the correlation in the JES uncertainty from 0% to 100% produces a steep rise in χ^2 /ndf" and modified the correlation model
- Good data/theory agreement on full phase-space for ATLAS dijets (13 TeV)
- Full |y| range, narrow p_T ranges: good data/theory agreement for $70 < p_T < 100$ GeV; p-values are often below 10^{-3} for the other narrow p_T ranges
- Pairs of |y| bins(consecutive / central-forward), narrow p_T ranges at >100 GeV:
 Good data/theory agreement → source of low p-values not in a single |y| bin, nor due to some possible central/forward tension
- Little sensitivity to choice of non-perturbative correction and to scale choice

Role of uncertainty correlations

- \rightarrow Correlations of uncertainties between various phase-space regions have a key role in χ^2 evaluation (e.g. ignoring correlations yields a very small χ^2 /ndf)
- → Experimental uncertainties (examples for ATLAS measurements):
- JES in-situ statistical uncertainties: correlations well known (e.g. > 240 components for calibration using dijet balance reduce χ^2 by more than 200 units)
- JES Flavour Response, JES MJB Fragmentation, JES Pile-up Rho Topology:
 - "2-point systematics" from comparison of various MC generators unknown correlations
- → Theoretical uncertainties:
- α_s , PDFs: correlations (generally) well known
- Scale variations, alternative scale choice, non-perturbative corrections: "2-point systematics" unknown correlations
- → Good understanding of the sources of systematic uncertainties required in order to evaluate uncertainties on correlations:
 - performed detailed tests using realistic alternative correlation scenarios

Testing realistic alternative correlation assumptions

→ 18 options for splitting the systematics with unknown correlations in

2 or 3 sub-components with smooth p_{τ} and/or |y| dependence

	-
Splitting option	Sub-component(s) definition(s), completed by complementary
1	$L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5))$ · uncertainty
2	$L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5)) \cdot 0.5 \cdot \text{uncertainty}$
3	$L(p_{\rm T}[{\rm TeV}], 0.1, 2.5)$ · uncertainty
4	$L(p_T[\text{ TeV}], 0.1, 2.5) \cdot 0.5 \cdot \text{uncertainty}$
5	$L((\ln(p_T[\text{ TeV}]))^2, (\ln(0.1))^2, (\ln(2.5))^2)$ · uncertainty
6	$L((\ln(p_{\rm T}[{\rm TeV}]))^2, (\ln(0.1))^2, (\ln(2.5))^2) \cdot 0.5 \cdot \text{uncertainty}$
7	L(y , 0, 3)· uncertainty
8	$L(y , 0, 3) \cdot 0.5 \cdot \text{uncertainty}$
9	$L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 0, 3) \cdot \text{uncertainty}$
10	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 3)^2} \cdot \text{uncertainty}$
11	$L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 0, 3) \cdot 0.5 \cdot \text{uncertainty}$
12	$L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 3)^2} \cdot 0.5 \cdot \text{uncertainty}$
13	$L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 1.5)^2} \cdot \text{uncertainty}$
	$L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 1.5, 3) \cdot \text{uncertainty}$
14	$L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 1)^2} \cdot \text{uncertainty}$
	$L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 1, 3) \cdot \text{uncertainty}$
15	$L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 2)^2} \cdot \text{uncertainty}$
	$L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 2, 3) \cdot \text{uncertainty}$
16	$\sqrt{1 - L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5))^2} \cdot \sqrt{1 - L(y , 0, 1.5)^2} \cdot \text{uncertainty}$
	$\sqrt{1 - L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5))^2} \cdot L(y , 1.5, 3)$ · uncertainty
17	$\sqrt{1 - L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5))^2} \cdot \sqrt{1 - L(y , 0, 1)^2} \cdot \text{uncertainty}$
	$\sqrt{1 - L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5))^2} \cdot L(y , 1, 3)$ uncertainty
18	$\sqrt{1 - L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5))^2} \cdot \sqrt{1 - L(y , 0, 2)^2} \cdot \text{uncertainty}$
	$\sqrt{1 - L(\ln(p_T[\text{ TeV}]), \ln(0.1), \ln(2.5))^2} \cdot L(y , 2, 3) \cdot \text{uncertainty}$
- .	

→ Tested for experimental and theoretical systematic uncertainties

→ One component added to the ones listed for each option in the table, to keep total uncertainty unchanged

 $\overline{L(x, min, max)} = (x-min)/(max-min)$

Testing realistic alternative correlation assumptions

→ Splitting the *theory systematic uncertainties* with unknown correlations in 6 sub-components with smooth $p_{\scriptscriptstyle T}$ and |y| dependence

$$f_{1}(p_{T}, y) = C(p_{T}, y) \cdot c_{1}/\log (M(y)/p_{T})$$

$$f_{2}(p_{T}, y) = C(p_{T}, y) \cdot c_{2} \cdot y^{2}/\log (M(y)/p_{T})$$

$$f_{3}(p_{T}, y) = C(p_{T}, y) \cdot c_{3}$$

$$f_{4}(p_{T}, y) = C(p_{T}, y) \cdot c_{4} \cdot y^{2}$$

$$f_{5}(p_{T}, y) = C(p_{T}, y) \cdot c_{5} \cdot \log (15p_{T}/M(y))$$

$$f_{6}(p_{T}, y) = C(p_{T}, y) \cdot c_{6} \cdot y^{2} \cdot \log (15p_{T}/M(y))$$

$$M(y) = \sqrt{s} \cdot exp(-y)$$

Based on:

Phys. Rev. D81 (2010) 035018 arXiv:0907.5052 [hep-ph]

 \rightarrow 3 options for various values of the coefficients (c_1 - c_6)

Testing realistic alternative correlation assumptions: Results

```
Inclusive jets - nominal \chi <sup>2</sup>/ndf for CT14 with p<sub>T</sub> leading jet scale: 321-360/159 (8 TeV); 419/177(13 TeV)
```

Splitting a single systematic: some χ^2 reduction, but still small p-values.

Splitting simultaneously several uncertainties:

- → JES Flavour Response, JES MJB Fragmentation, JES Pile-up Rho Topology: χ^2 reduction by up to 51 units (8 TeV)
- → scale variations, alternative scale choice, non-perturbative correction: χ^2 reduction by up to 87 units (8 TeV)
 - more work needed on the correlations of theory uncertainties
- → splitting both the experimental and theoretical uncertainties: χ^2 reduction by up to 96 units (8 TeV); 58 units (13 TeV)
- → Possible (extra) motivation for including scale uncertainties in PDF fits in progress

Note: there is also an uncertainty on the phase-space dependence for the size of 2-point systematics \rightarrow may explain part of the observed tension

Summary and conclusions

- Numerous jet cross section measurements performed by ATLAS and CMS
- Performed detailed studies of quantitative data-theory comparisons and their sensitivity to uncertainties on correlations
- LHC data allow tests of the Standard Model, provide constraints on PDFs and are useful inputs for MC tunning
- More measurements to come at 5, 8 and 13 TeV

BACKUP

Trigger and pile-up

- Trigger prescales and pile-up treatment take into account variations in datataking conditions
- Jet trigger efficiencies determined in-situ using unbiased samples
- Each trigger used in the region where it is fully efficient

Inclusive jet cross sections: NLO/NNLO

• Better data/theory agreement for NLO, when using the p_{T}^{max} scale choice

Inclusive jet cross sections: theory/data

Good data/theory agreement within uncertainties observed for most PDF sets:
 CT14, MMHT 2014, NNPDF 3.0, HERAPDF 2.0, ABMP16

Dijet cross sections: theory/data

Good data/theory agreement within uncertainties observed for most PDF sets:
 CT14, MMHT 2014, NNPDF 3.0, HERAPDF 2.0, ABMP16

Dijet cross sections: theory/data

 Good data/theory agreement within uncertainties observed for most PDF sets: CT14, MMHT 2014, NNPDF 3.0, HERAPDF 2.0, ABMP16

Inclusive jet cross sections at $\sqrt{s}=8$ TeV: Theory/Data

Inclusive jet cross sections at $\sqrt{s}=8$ TeV: Theory/Data

Inclusive jet cross sections at $\sqrt{s}=8$ TeV: Theory/Data

Azimuthal correlations for 2-, 3-, 4-jets by CMS

- Double differential measurements of normalized cross sections
- Level of data/theory agreement strongly depends on the generator

Quantitative comparison between data and NLO theory prediction

8 TeV – ATLAS inclusive jets (arXiv:1706.03192)

	$P_{ m obs}$				
Rapidity ranges	CT14	MMHT2014	NNPDF3.0	HERAPDF2.0	
Anti- k_t jets $R = 0.4$					
y < 0.5	44%	28%	25%	16%	
$0.5 \le y < 1.0$	43%	29%	18%	18%	
$1.0 \le y < 1.5$	44%	47%	46%	69%	
$1.5 \le y < 2.0$	3.7%	4.6%	7.7%	7.0%	
$2.0 \le y < 2.5$	92%	89%	89%	35%	
$2.5 \le y < 3.0$	4.5%	6.2%	16%	9.6%	
Anti- k_t jets $R = 0.6$					
y < 0.5	6.7%	4.9%	4.6%	1.1%	
$0.5 \le y < 1.0$	1.3%	0.7%	0.4%	0.2%	
$1.0 \le y < 1.5$	30%	33%	47%	67%	
$1.5 \le y < 2.0$	12%	16%	15%	3.1%	
$2.0 \le y < 2.5$	94%	94%	91%	38%	
$2.5 \le y < 3.0$	13%	15%	20%	8.6%	

→ Generally good agreement for individual |y| bins

Splitting options for $R = 0.4$	CT14	NNPDF3.0
JES Flavour Response Opt 7		
JES MJB Fragmentation Opt 17		
JES Pile-up Rho topology Opt 18		
Scale variations Opt 17		
Alternative scale choice Opt 7		
Non-perturbative corrections Opt 7	268/159	257/159
JES Flavour Response Opt 7		 ,
JES MJB Fragmentation Opt 17		
JES Pile-up Rho topology Opt 18		
Scale variations Opt 20		
Alternative scale choice Opt 17		
Non-perturbative corrections Opt 7	261/159	260/159

χ^2 /ndf	$p_{\mathrm{T}}^{\mathrm{jet,max}}$		$p_{ m T}^{{ m j}et}$	
	R = 0.4	R = 0.6	R = 0.4	R = 0.6
$p_{\rm T} > 70~{\rm GeV}$				
CT14	349/171	398/171	340/171	392/171
HERAPDF2.0	415/171	424/171	405/171	418/171
NNPDF3.0	351/171	393/171	350/171	393/171
MMHT2014	356/171	400/171	354/171	399/171
$p_{\rm T} > 100 {\rm \ GeV}$			•	
CT14	321/159	360/159	313/159	356/159
HERAPDF2.0	385/159	374/159	377/159	370/159
NNPDF3.0	333/159	356/159	331/159	356/159
MMHT2014	335/159	364/159	333/159	362/159
$100 < p_{\rm T} < 900 \; {\rm GeV}$			•	
CT14	272/134	306/134	262/134	301/134
HERAPDF2.0	350/134	331/134	340/134	326/134
NNPDF3.0	289/134	300/134	285/134	299/134
MMHT2014	292/134	311/134	284/134	308/134
$100 < p_{\rm T} < 400 \; {\rm GeV}$				
CT14	128/72	149/72	118/72	145/72
HERAPDF2.0	148/72	175/72	141/72	170/72
NNPDF3.0	119/72	141/72	115/72	139/72
MMHT2014	132/72	143/72	122/72	140/72

 \rightarrow Tension when including all |y| bins

Quantitative comparison between data and NLO theory prediction

13 TeV – ATLAS inclusive jets and dijets (arXiv:1711.02692)

			$P_{ m obs}$		
Rapidity ranges	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$p_{ m T}^{ m max}$					
y < 0.5	67%	65%	62%	31%	50%
$0.5 \le y < 1.0$	5.8%	6.3%	6.0%	3.0%	2.0%
$1.0 \le y < 1.5$	65%	61%	67%	50%	55%
$1.5 \le y < 2.0$	0.7%	0.8%	0.8%	0.1%	0.4%
$2.0 \le y < 2.5$	2.3%	2.3%	2.8%	0.7%	1.5%
$2.5 \le y < 3.0$	62%	71%	69%	25%	55%
$p_{ m T}^{ m jet}$					
	69%	67%	66%	30%	46%
$0.5 \le y < 1.0$	7.4%	8.9%	8.6%	3.4%	2.0%
$1.0 \le y < 1.5$	69%	62%	68%	45%	54%
$1.5 \le y < 2.0$	1.3%	1.6%	1.4%	0.1%	0.5%
$2.0 \le y < 2.5$	8.7%	6.6%	7.4%	1.0%	3.6%
$2.5 \le y < 3.0$	65%	72%	72%	28%	59%

→ Generally good agreement for inclusive jets for individual |y| bins

χ^2/dof all $ y $ bins	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$p_{ m T}^{ m max}$	419/177	431/177	404/177	432/177	475/177
$p_{ m T}^{ m jet}$	399/177	405/177	384/177	428/177	455/177

→ Tension when including all |y| bins for inclusive jets

			$P_{ m obs}$		
y^* ranges	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$y^* < 0.5$	79%	59%	50%	71%	71%
$0.5 \le y^* < 1.0$	27%	23%	19%	32%	31%
$1.0 \le y^* < 1.5$	66%	55%	48%	66%	69%
$1.5 \le y^* < 2.0$	26%	26%	28%	9.9%	25%
$2.0 \le y^* < 2.5$	41%	34%	29%	3.6%	20%
$2.5 \le y^* < 3.0$	45%	46%	40%	25%	38%
all y^* bins	9.4%	6.5%	11%	0.1%	5.1%

→ Good data/theory agreement for dijets