Jet substructure and H/V/top-tagging

Danilo Ferreira de Limaa & Simone Marzanib
aRuprecht-Karls-Universität Heidelberg
bUniversità di Genova and INFN Sezione di Genova.

a on behalf of the ATLAS and CMS collaborations

QCD@LHC 2018
Dresden, 30th August 2018
Outline

1. Jet substructure as a tool
 - Grooming and tagging algorithms
 - Efficiency and performance

2. Jet substructure for precision
 - Precision calculations meet the data
 - Towards the extraction of Standard Model parameters

3. New ideas and techniques
 - News from BOOST 2018

4. Summary
Jet substructure as a tool

Grooming and tagging algorithms
EW-scale particles get a boost

- Standard analysis: the heavy particle X decays into two partons, reconstructed as two jets.
- Search strategy: look for bumps in the dijet invariant mass distribution.
- What about EW-scale particles at the LHC?

(Figure by L. Gouskos)

- $E_{\text{c.o.m.}} \gg m_{\text{EW}}$, hence they are abundantly produced with a large boost.
- Their decay-products are then collimated and, if they decay into hadrons, we end up with localised deposition of energy in the hadronic calorimeter: a jet.
we want to look inside a jet
we want to look inside a jet
exploit jets’ properties to distinguish signal jets from bkgd jets

\[p_t > 2m/R \]

we want to look inside a jet
The jet invariant mass

- Signal jets have an intrinsic energy scale: the mass of the decaying object ($m_{\text{jet}} \sim m_{\text{EW}}$).
- Background (QCD) jets acquire their mass through parton branching ($m_{\text{jet}} \propto p_T$).
- Cut on the jet mass to separate signal and background!
- This simple observation still remains at the core of every substructure analysis, however it is not enough.

- Non-perturbative contributions (hadronisation, underlying event and pile-up) pollute and deform our jets.
Grooming & Tagging

- We need to go beyond the mass and exploit jet substructure:
- Two key principles (often combined in actual algorithms):
 - grooming: clean the jets up by removing soft radiation;
 - tagging: identify the features of hard decays and cut on them.
- Core idea for grooming
 1. identify the “right” angular scale for a jet
 2. throw away what is soft and at large angle

![Diagram of jet substructure](image)
Grooming & Tagging

- We need to go beyond the mass and exploit jet substructure:
- Two key principles (often combined in actual algorithms):
 - **grooming**: clean the jets up by removing soft radiation;
 - **tagging**: identify the features of hard decays and cut on them.
- Core idea for (2-prong) tagging
 1. H/Z/W characterised by symmetric energy sharing: $P_{h\to q\bar{q}} = 1$
 2. QCD splitting is enhanced in the soft limit $P_{gq} = C_F \frac{1+(1-z)^2}{z}$

\[\min(z, 1 - z) > z_c \]
An expanding universe of jet substructure techniques

• How well do we understand them?
An expanding universe of jet substructure techniques

Jet Declustering

Jet Shapes

Matrix–Element

modified mass drop
soft drop
iterated soft drop
recursive soft drop

machine learning
DNN, CNN, RNN, LSTM, etc

classification without labels
weak supervision

How well do we understand them?

C_n, D_n, v_{n}(\beta), M_n, N_n, U_n, EFPs

Gavin Salam
2018
Example of a groomer: soft drop

- The algorithm starts from a C/A clustered jet and proceeds as follows:

1. Undo the last stage of the clustering. Label the two subjets \(j_1 \) and \(j_2 \).
2. If \(\frac{\text{min}(p_T1, p_T2)}{p_T1 + p_T2} > z_c \left(\frac{\Delta_{12}}{R} \right)^\beta \) then deem \(j \) to be the soft-drop jet.
3. Otherwise redefine \(j \) to be the harder subjet and iterate.

- Groomer built to be both efficient and robust.
- Amenable for theoretical calculations (see later).

[Larkoski, SM, Soyez, Thaler (2013)]
Examples of two-prong taggers (H/Z/W)

• General strategy:
 1. groom to remove contamination;
 2. select the mass window of interest;
 3. use a jet shape to determine the prong structure.

• N-subjettiness is prototype [Thaler and Van Tilburg (2011)].
 • Often used in the experiments: \(\tau_{32} = \frac{\tau_3}{\tau_2} \) and \(\tau_{21} = \frac{\tau_2}{\tau_1} \).

• Ratios of energy correlation functions also offer a powerful way of discriminating the prong structure [Larkoski, Salam, Thaler (2013)].

• Phase-space analysis can guide us in building the optimal ratio: \(D_2 \) [Larkoski, Moult, Neill (2014)].

• Grooming modifies the emission phase-space: shapes that work well on ungroomed jet may loose their discrimination power.
 • design correlation functions that work specifically on groomed jets \(M_2 \).
 [Moult, Necib, Thaler (2016)]
 • dichroic ratios, e.g. \(\tau_{21} = \frac{\tau_{SD\beta > 0}}{\tau_{SD\beta = 0}} \).
 [Salam, Schunk, Soyez (2016)]
Top tagging

- Top-taggers try to discriminate the three-pronged nature of a top-initiated jet from the background.
- Use shapes and correlation functions that are sensitive to three prongs, e.g. T_{32}.
- Actual algorithms used by the collaboration can involve many steps (CMS Top Tagger, HEP Top Tagger, HOVRT...).
- Gaining analytic insight is more difficult because of the more complicated phase-space, but recently a breakthrough \cite{Dasgupta, Guzzi, Rawling, Soyez (2018)}.

\begin{itemize}
 \item Resummation of $\log(\frac{!}{\!_{\text{min}}})$ terms does matter
 \item Inclusion of secondary emissions important at small m_{min}
 \item Overall a good agreement with PS
\end{itemize}

Comparison between analytic results and Pythia simulations for the QCD background efficiency \cite{17}.
A Matrix-Element-Method-inspired solution: Shower Deconstruction

- Takes the probability for signal and background jets → defines a likelihood-ratio discriminant χ_{SD} \cite{1102.3480} \cite{1211.3140}
- Recluster jet in small sub-jets and use them as top decay partons → test compatibility with a top/H shower.
- Best tagging performance within non-MVA-based solutions → using a theoretically motivated approach.

$$\chi_{SD} = \frac{\sum_{\text{histories}} P(p_i|\text{signal})}{\sum_{\text{perm.}} P(p_i|\text{background})}$$
Jet substructure as a tool

Efficiency and performance
$X \rightarrow b\bar{b}$ methods in ATLAS

- ATLAS studied using $R = 0.2$ track-jets, variable-R track jets and exclusive k_T subjets for the $X \rightarrow b\bar{b}$.
• Variable-R jets and exclusive k_T sub-jets show an improvement in performance.

• $R = 0.2$ track jets fail to resolve the Higgs decay products as the p_T become higher than ~ 1 TeV.

• Variable-R sub-jets lead to high rejection and reconstruct the direction of the sub-jets very well, relative to the b-hadron.
\(h \rightarrow b\bar{b} \) and \(h \rightarrow c\bar{c} \) identification in CMS

- Optimised neural network training for double \(b \)- and \(c \)-tagging for \(h \rightarrow b\bar{b} \) and \(h \rightarrow c\bar{c} \).
- Using convolutional neural networks with constituents and secondary vertex information as inputs.
- Uses the CMS double \(b \)-tagger (BTV-16-002) features to detect a boosted object to \(b \)-jet pair decay \(\rightarrow \) exploits correlations between the flight directions of the \(b \)-jets, using \(N \)-subjettiness axes.

Jet substructure and H/V/top-tagging

Danilo Ferreira de Lima and Simone Marzani
$h \rightarrow b\bar{b}$ and $h \rightarrow c\bar{c}$ identification in CMS

- Much better performance than the double b-tagger.

Jet substructure and H/V/top-tagging Danilo Ferreira de Lima and Simone Marzani

[DP 2018-046]
$\bar{b}b$ vs. $c\bar{c}$ separation

- After tagging $\bar{b}b$ decays, a veto on $c\bar{c}$ decays can be useful to orthogonalise analyses.
- The c vs. b tagger can be used to select c-jets \rightarrow useful to reject $c\bar{c}$ background in a $\bar{b}b$ analysis or vice-versa.

[DP 2018-046]
Top and W tagging
Cut-based taggers in ATLAS

- Improved mass resolution using combined track and calo. information.
- Using trimming to reduce the pile up effects.
- Cutting on the combined mass and D_2 or τ_{32} provides significant rejection.

Jet substructure and H/V/top-tagging

Danilo Ferreira de Lima and Simone Marzani
Cut-based top-taggers in CMS

- CMS uses a soft-drop mass estimate, PUPPI for pile up correction and N-subjettiness as a top-tagger.
Top and W MVA-based taggers in ATLAS

- Top and W tagging using BDTs and neural networks combining several discriminant variables provide significant rejection.
- Variables can be added sequentially → no point adding more inputs without a significant benefit in classification.

\[\text{ATLAS Simulation} \]
\[\sqrt{s} = 13 \text{ TeV, BDT W Tagging} \]
Trimmed anti-k_t $R = 1.0$ jets
$\varepsilon_{\text{rel}}^{\text{sig}} = 50\%$
$p_T^{\text{true}} = [200,2000]$ GeV
$m^{\text{comb}} > 40$ GeV, $|\eta^{\text{true}}| < 2.0$

\[\text{ATLAS Simulation} \]
\[\sqrt{s} = 13 \text{ TeV, BDT Top Tagging} \]
Trimmed anti-k_t $R = 1.0$ jets
$\varepsilon_{\text{rel}}^{\text{sig}} = 80\%$
$p_T^{\text{true}} = [350,2000]$ GeV
$m^{\text{comb}} > 40$ GeV, $|\eta^{\text{true}}| < 2.0$
How much benefit do the MVA taggers provide?

- Up to 30% improvement in W tagging and 100% improvement in top-tagging rejection.
- MVA taggers provide a significant gain in top tagging.
- Where is the extra gain coming from?

Jet substructure and H/V/top-tagging

Danilo Ferreira de Lima and Simone Marzani
MVA methods with lower level inputs

- Using a lower level input for neural network, we may gain significantly in classification power. [1511.05190] [1603.09349] [1701.08784] [1704.02124]
- But there can be a significant impact from detector effects → need to be evaluated with detector simulation.

Jet substructure and H/V/top-tagging Danilo Ferreira de Lima and Simone Marzani
A comparison of techniques

- Huge performance gain by MVA techniques at low and high p_T, but also at low and high rejection working points.
- Actually implemented TopoDNN in ATLAS.
 - Best performance even compared with BDT or NN methods which use a higher level input (other jet substructure variables).
Top tagging using MVA in CMS

- Convolutional NN used in CMS does better than BDT approach.
- Inputs can be constituent's kinematics (p_T, η, ϕ, ΔR between subjets) in the “kinematics” version.
- “Full” version adds information about the secondary vertex and track displacement and quality.

[DP2017-049]
And so are more complex taggers, such as Shower Deconstruction and HEPTopTagger v1.
Efficiency – ATLAS TopoDNN

- Best performant MVA tagger has a very good agreement with data, both as a function of p_T and $<\mu>$.

![Efficiency Graph](arXiv:1808.07858)

Jet substructure and H/V/top-tagging Danilo Ferreira de Lima and Simone Marzani
Tagging effects on mass

- Taggers often use the mass information to optimise the selection.
- This leads to sculpting of the mass spectrum in both signal and background.
- We might want to tag a generic \(X \rightarrow qq' \) resonance without using its (unknown) mass.
- Or we might want to avoid using the mass information to define a background control region.
Mass decorrelation in ATLAS – methods

- The taggers can be made more general by not using the mass information.
- Several methods were studied in ATLAS to decorrelate the mass and other jet substructure information.
 - Fixed-efficiency regression [1710.00159].
 - Designed decorrelated taggers [1603.00027].
 - Convolved substructure [1710.06859].
 - Adversarially trained NNs [1703.03507].
 - Boosting for uniform efficiency [1305.7248].
- ATLAS defined a metric for decorrelation using the symmetrised Kullback-Leibler divergence (JSD):
 - $\text{JSD}(\text{fraction}_{\text{pass}} \| \text{fraction}_{\text{fail}}) \rightarrow$ measure distance between distributions of background events that pass and fail the selection.
Mass decorrelation in ATLAS

- The mass histograms below show the fraction of signal (W+jets) and background (QCD multi-jets) before and after the selection.

ATLAS Simulation Preliminary

$\sqrt{s} = 13$ TeV, W jet tagging

Cuts at $\varepsilon_{\text{rel}}^{\text{sig}} = 50$

Inclusive selection:
- Multijets
- W jets

[ATL-PHYS-PUB-2018-014]
Mass decorrelation vs. background rejection

- It is possible to perform a fair comparison on several decorrelation methods using this metric.

\[\frac{1}{\varepsilon_{\text{rel}}^{\text{sig}}} = 50\% \]

\[\frac{1}{\varepsilon_{\text{rel}}^{\text{bkg}}} = 50\% \]

\[\sqrt{s} = 13 \text{ TeV} \]

\[W \text{ jet tagging} \]

\[p_T \in [500, 1000] \text{ GeV} \]

\[\varepsilon_{\text{rel}}^{\text{sig}} @ \varepsilon_{\text{rel}}^{\text{bkg}} \]

\[\text{Background rejection, } \frac{1}{\varepsilon_{\text{rel}}^{\text{bkg}}} \]

\[\text{Mass-decorrelation, } \frac{1}{\text{JSD}} \]

\[\text{Analytical:} \]

\[\tau_{21} \]

\[\tau_{21}^{\text{DDT}} \]

\[D_2 \]

\[D_2^{k-\text{NN}} \]

\[D_2^{\text{CSS}} \]

\[\text{MVA:} \]

\[Z_{\text{NN}} \]

\[Z_{\text{ANN}} \]

\[Z_{\text{Adaboost}} \]

\[Z_{\text{uBoost}} \]

\[\alpha = 0.01 \]

\[\alpha = 0.1 \]

\[\alpha = 0.3 \]

\[\alpha = 1 \]

\[\lambda = 0.01 \]

\[\lambda = 1 \]

\[\lambda = 3 \]

\[\lambda = 10 \]

\[\text{Statistical limit} \]

\[\text{No separation} \rightarrow \text{Less sculpting} \rightarrow \text{Greater separation} \]

\[\text{Maximal sculpting} \rightarrow \]
$W' \rightarrow tb$ search

- **ATLAS search for $W' \rightarrow tb$ uses Shower Deconstruction to achieve a huge background reduction.**

- A cut is made in the χ_{SD} likelihood ratio observable.
$h \rightarrow b\bar{b}$ search

- CMS uses the soft drop mass for a search for a highly boosted SM Higgs decaying into $b\bar{b}$.
- The soft drop groomed jets allow us to see quite clearly the $Z \rightarrow b\bar{b}$ events.
Jet substructure for precision

Precision calculations meet the data
Precision calculations for the soft-drop jet mass

- All-order calculations, with meaningful uncertainty bands, are now available for the soft-drop jet mass. [Frye, Larkoski, Schwartz, Yan (2016)], [SM, Schunk, Soyez (2017)], [Kang, Lee, Liu, Ringer (2018)].

- Non-pert. corrections greatly reduced, perturbative convergence is improved.

- Great opportunity to test and constrain simulation tools. e.g. parton showers and their hadronisation models.
CMS jet substructure measurements

• CMS has provided measurements of several jet substructure variables. Showing the soft drop mass and N-subjettiness.
• Good agreement with simulation over a large phase space range.
• Some disagreement at higher p_T.
• Also unfolded the N-subjettiness observables.

[arXiv:1807.05974]

Jet substructure and H/V/top-tagging

[arXiv:1808.07340]

CMS

$\tau \to$ lepton+jets
inclusive jets

$p_T > 30$ GeV
ATLAS soft drop mass measurement

- ATLAS has published measurements of $\log_{10}[m_{\text{soft drop}}/p_T,\text{ungroomed}]^2$ for $\beta \in \{0, 1, 2\}$.
- Disagreements where non-perturbative effects are expected to appear.
- Large uncertainty from the QCD modeling.
ATLAS colour flow measurement

- ATLAS used $t\bar{t}$ events to measure magnitude angle of the pull vector: allows a test of the colour flow.
- Colour flow angle between the W jets shown below after unfolding.
- Very subtle effect not well predicted by most simulators and measured with great precision.

\[
\begin{align*}
\Delta \phi &= \phi - \phi_{j_1} \\
\theta_P &= \theta_{\bar{P}}(j_1, j_2) \\
\Delta y &= y - y_{j_1}
\end{align*}
\]

[arXiv:1805.02935]
Jet substructure for precision

Towards the extraction of Standard Model parameters
Towards α_s extraction

- Current precision is less than 1% and is dominated by the lattice.
- Next-most precise is LEP event shapes and differs by $\sim 5\%$ (3σ).
- Preliminary studies show that using soft-drop mass (or other angularities) can lead to an extraction with 10% uncertainty. [Les Houches (2017)]

- Not yet competitive for the world average but worth pursuing.
Groomed e^+e^- event shapes

- This study can pave the way for a more competitive measurement in e^+e^-
- Groomed event shapes show reduced sensitivity to hadronisation and may help breaking degeneracy with non-perturbative effects and resolve long-standing puzzle of low α_s. [Baron, SM, Theeuwes (2018)]

- New NNLO results for groomed event shapes are presented at this conference [Kardos, Somogyi, Troócsányi (2018)]
- No time to cover it here but also: extraction of top mass with light grooming. [Hoang, Mantry, Pathak, Stewart (2017)]
Jet substructure goes nuclear

- Ideas and observables to study jets in proton collisions have made their way into the heavy-ion community.
- Jets and their structure offer a unique probe for the quark-gluon plasma.
- Tough both theoretically and experimentally, but results are pouring in.
The nuclear modification factor, R_{AA}, is measured.

No visible change in the m/p_T distribution shapes between PbPb and pp.

We are not yet sensitive to quark-gluon plasma effects in this variable.
New ideas and techniques

News from BOOST 2018
Deep Thinking VS Deep Learning

- Particle physics (and jet physics) undergoing a machine-learning revolution.
- New ideas and techniques are pouring into the field.

Techniques met with a mixture of excitement and skepticism.
Many studies to investigate the information content exploited by these methods (make the black box more transparent)

Deep Thinking & Deep Learning can lead to Deep Understanding

Join the Machine Learning for Jet Physics workshop in November if you are interested in contributing: https://indico.cern.ch/event/745718/
Deep Thinking VS Deep Learning

- Particle physics (and jet physics) undergoing a machine-learning revolution.
- New ideas and techniques are pouring into the field.

Techniques met with a mixture of excitement and skepticism.
Many studies to investigate the information content exploited by these methods (make the black box more transparent)

Deep Thinking & Deep Learning can lead to Deep Understanding

Join the Machine Learning for Jet Physics workshop in November if you are interested in contributing: https://indico.cern.ch/event/745718/
Physics intuition meets computer science I: Lund plane

- Standard approach is supervised learning: apply classification algorithms to large collections of (simulated) samples, e.g. the jet image. [de Oliveira, Kagan, Mackey, Nachman, Schwartzman (2015)]

- Physics intuition can lead us to construct better representations of a jet: the Lund plane. [Dreyer, Salam, Soyez (2018)] (see talk in parallel session)

- Decluster the jet following the hard branch and record \((k_t, \Delta)\) at each step
- Use this representation as input of log-likelihood or ML algorithms.

Jets as Lund images
Average over declusterings of hardest branch for 2 TeV QCD jets.

Perturbative
Non-perturbative

Primary Lund-plane regions
- soft-collinear
- hard-collinear (large \(z\))
- ISR (large \(k_t\))
- non-pert. (small \(k_t\))
- MPI/UE

\[\ln \left(\frac{R}{\Delta} \right) \]
\[\ln \left(\frac{k_t}{\text{GeV}} \right) \]

Non-perturbative region clearly separated from perturbative one.

Frédéric Dreyer 7/20

Lund images for QCD and W jets
- Hard splittings clearly visible, along the diagonal line with jet mass \(m_{W} \)
- Depletion of events around \(W\) peak due to shadow cast by leading emission.

Frédéric Dreyer 10/20
Physics intuition meets computer science II: Junipr

- Physics intuition can lead us to construct better representations of a jet: Jets using UNSupervised Interpretable PRobabilistic models. [Andreassen, Feige, Frye, Schwartz (2018)]

\[
\begin{align*}
\text{JUNIPR computes the probability of a jet...} \\
\text{...as a product over time steps in its clustering tree...} \\
\text{...where each time step is decomposed into 3 parts:}
\end{align*}
\]

\[
P_t = P_{\text{end}} \cdot P_{\text{mother}} \cdot P_{\text{branch}}
\]

- Implemented using Recurrent Neural Networks, which are trained on (simulated) data.
- The trained model (10^6 parameters) can be used for discrimination as well as for generation!
Physics intuition meets computer science III: Jet Topics

- Quark/gluon tagging always a hot (and controversial) topic in jet substructure.
- Jet topics exploit the technology of topic modelling from texts. [Medotiev, Thaler (2018)]

adapted from E. Metodiev and J. Thaler

What is a Quark Jet?

From lunch/dinner discussions

<table>
<thead>
<tr>
<th>Ill-Defined</th>
<th>What people sometimes think we mean</th>
</tr>
</thead>
</table>
| Quark as noun | A quark parton
| | A Born-level quark parton
| | The initiating quark parton in a final state shower
| | An eikonal line with baryon number 1/3 and carrying triplet color charge
| | A quark operator appearing in a hard matrix element in the context of a factorization theorem
| | A parton-level jet object that has been quark-tagged using a soft-safe flavored jet algorithm (automatically collinear safe if you sum constituent flavors)
| | A phase space region (as defined by an unambiguous hadronic fiducial cross section measurement) that yields an enriched sample of quarks (as interpreted by some suitable, though fundamentally ambiguous, criterion) |

<table>
<thead>
<tr>
<th>Well-Defined</th>
<th>What we mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quark as adjective</td>
<td></td>
</tr>
</tbody>
</table>

\[p_{\text{quark}}(x) = \frac{p_A(x) - \kappa_{AB} p_B(x)}{1 - \kappa_{AB}} \]

\[p_{\text{gluon}}(x) = \frac{p_B(x) - \kappa_{BA} p_A(x)}{1 - \kappa_{BA}} \]

Basic assumptions: categories exist and they are mutually irreducible (\(\exists \) region of 100% purity for each topic).
Summary

• Many ideas from both ATLAS and CMS on top/V/Higgs tagging!
• A lot of dialogue with the phenomenology community, recycling, improving and creating new methods.
• How can we *understand* the improvements observed from Machine Learning?
 • Analytical calculations are excellent tools:
 • to understand jet substructure and . . .
 • to develop new taggers.
• The time has come to move from just *tagging* jets to also *measuring* jets.
Summary

ATLAS

$\sqrt{s} = 13$ TeV, 32.9 fb$^{-1}$

anti-k, $R=0.8$, $p_T^{\text{lead}} > 600$ GeV

Soft drop, $\beta = 2$, $z_{\text{cut}} = 0.1$

Data

- Pythia 8.1
- Sherpa 2.1
- Herwig++ 2.7

LO+NNLL, large NP effects

LO+NNLL

NLO+NLL

NLO+NLL+NP

Ratio to Data

Jet substructure and H/V/top-tagging Danilo Ferreira de Lima and Simone Marzani
Extra slides
• Tests the compatibility with a 3-prong decay based on the sub-jets mass ratios. [0910.5472] [1006.2833]

• Cuts on mass ratio of the 3 decay products.
CMS: $h \rightarrow b\bar{b}$ and $h \rightarrow c\bar{c}$ tagger p_T dependency

- Not a huge dependency on p_T.

[DP 2018-046]
But are the previous taggers relying on the jet mass?
If the tagger uses the jet mass directly, the performance may be different for a Higgs or a $Z \rightarrow b\bar{b}$.
CMS: Mass sculpting – effect of decorrelation

- Decorrelating the jet mass and the tagger may allow the tagger to be applicable in more analyses.

Before decorrelation

After decorrelation