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Jet substructure as a tool

Grooming and tagging algorithms
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EW-scale particles get a boost

• Standard analysis: the heavy particle X decays into two partons, reconstructed
as two jets.

• Search strategy: look for bumps in the dijet invariant mass distribution.

• What about EW-scale particles at the LHC?

Flavor

Low boost:
unmerged decay products
→ top decay products 
resolved as 3 R=0.4 jets

Medium boost:
Partial merging of decay prod.
->Reconstruct a W and a b

Large boost: 
Top products merged

ΔR~2M/pT Mj~Mt

Boost (pT [jet]) Substructure

(Figure by L. Gouskos)

• Ec.o.m. � mEW, hence they are abundantly produced with a large boost.

• Their decay-products are then collimated and, if they decay into hadrons, we
end up with localised deposition of energy in the hadronic calorimeter: a jet.
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pt > 2m/R

we want to look inside a jet
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pt > 2m/R

we want to look inside a jet
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exploit jets’ properties  
to distinguish signal 
jets from bkgd jets

pt > 2m/R

RR

h q

we want to look inside a jet
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The jet invariant mass
• Signal jets have an intrinsic energy scale: the mass of the decaying object

(mjet ∼ mEW).
• Background (QCD) jets acquire their mass through parton branching

(mjet ∝ pT )
• Cut on the jet mass to separate signal and background!
• This simple observation still remains at the core of every substructure analysis,

however it is not enough.
[JHEP09 (2013) 076] [JHEP09 (2013) 076]

• Non-perturbative contributions (hadronisation, underlying event and pile-up)
pollute and deform our jets.
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Grooming & Tagging

• We need to go beyond the mass and exploit jet substructure:

• Two key principle (often combined in actual algorithms):
• grooming: clean the jets up by removing soft radiation;
• tagging: identify the features of hard decays and cut on them.

• Core idea for grooming

1 identify the “right” angular scale for a jet
2 throw away what is soft and at large angle

need to go beyond the mass and exploit jet 
substructure : grooming and tagging: 

clean the jets up by removing soft radiation  

 identify the features of hard decays and 
cut on them                                                                               

⌘

�

core-idea for grooming:
 identify the “right”  

angular scale

beyond the mass: substructure
need to go beyond the mass and exploit jet 
substructure : grooming and tagging: 

clean the jets up by removing soft radiation  

 identify the features of hard decays and 
cut on them                                                                               

⌘

�

core-idea for grooming:
 identify the “right”  

angular scale
 throw away what is soft 

& large angle
left with a groomed jet

beyond the mass: substructure
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Grooming & Tagging

• We need to go beyond the mass and exploit jet substructure:

• Two key principle (often combined in actual algorithms):
• grooming: clean the jets up by removing soft radiation;
• tagging: identify the features of hard decays and cut on them.

• Core idea for (2-prong) tagging

1 H/Z/W characterised by symmetric energy sharing: Ph→qq̄ = 1

2 QCD splitting is enhanced in the soft limit Pgq = CF
1+(1−z)2

z

h q z

1 � z

z

1 � z

beyond the mass: substructure
need to go beyond the mass and exploit jet 
substructure : grooming and tagging: 

clean the jets up by removing soft radiation  

 identify the features of hard decays and 
cut on them                                                                               
core-idea for 2-body tagging:

h q

Pgq = CF
1 + (1 � z)2

zPh!qq̄ = 1

z

1 � z

z

1 � z

min(z, 1 � z) > zcut

symmetric 
sharing of 
the energy

asymmetric 
sharing of 
the energy

beyond the mass: substructure
need to go beyond the mass and exploit jet 
substructure : grooming and tagging: 

clean the jets up by removing soft radiation  

 identify the features of hard decays and 
cut on them                                                                               
core-idea for 2-body tagging:

min(z , 1− z) > zc
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An expanding universe of jet substructure techniques

�38

Some taggers and jet-substructure observables

Jet Declustering

Jet Shapes

Matrix−Element

Seymour93

YSplitter

Mass−Drop+Filter

JHTopTagger TW

CMSTopTagger

N−subjettiness (TvT)

CoM N−subjettiness (Kim)

N−jettiness

HEPTopTagger
(+ dipolarity)

Trimming

Pruning

Planar Flow

Twist

ATLASTopTagger

Templates

Shower Deconstruction

Qjets

Multi−variate tagger

ACF

apologies for omitted taggers, arguable links, etc.

Gavin Salam (CERN/Princeton/CNRS) Boost Theory Summary Boost 2012-07-27 6 / 33

Boost ‘12

Gavin Salam 
2012

• How well do we understand them?
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An expanding universe of jet substructure techniques

the space of methods

�71

Jet Declustering

Jet Shapes

Matrix−Element

Seymour93

YSplitter

Mass−Drop+Filter

JHTopTagger TW

CMSTopTagger

N−subjettiness (TvT)

CoM N−subjettiness (Kim)

N−jettiness

HEPTopTagger

(+ dipolarity)

Trimming

Pruning

Planar Flow

Twist

ATLASTopTagger

Templates

Shower Deconstruction

Qjets

EEC

Multi−variate tagger

c. 2018

machine learning  
DNN, CNN,  

RNN, LSTM, etc 

Cn, Dn, ven(β), Mn, Nn, 
Un,  EFPs

Degree Connected Multigraphs

d = 0

d = 1

d = 2

d = 3

d = 4

d = 5

Table 3: All non-isomorphic, loopless, connected multigraphs organized by the total number

of edges d, up to d = 5, sorted by their number of vertices N . Note that for a fixed number of

edges d, the total number of multigraphs (connected or not) is finite. These graphs correspond

to the d  5 prime EFPs counted in Table 2a. Image files for all of the prime EFP multigraphs

up to d = 7 are available here.

– 8 –

modified mass drop  
soft drop  

iterated soft drop  
recursive soft drop

classification without labels  
weak supervision

etc.

Quark gluon jet substructure

Image recognition using convolutional neural network

I A convolutional neural
network is trained on GPU
using quark and gluon jet
images

I New jet features are learned
with significantly improved
tagging performance

I In this work we use grey
scale jet images encoding
jet energy distribution

Schwartz et al, Deep learning in color, JHEP01(2017)110

Y.-T. Chien (MIT) Quark and gluon jet substructure 9 / 21

Gavin Salam 
2018

• How well do we understand them?
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Example of a groomer: soft drop

• The algorithm starts from a C/A clustered jet and proceeds as follows:

[Larkoski, SM, Soyez, Thaler (2013)]

1 Undo the last stage of the clustering. Label the two subjets j1 and j2.

2 If min(pT1,pT2)
(pT1+pT2)

> zc
(

∆12
R

)β
then deem j to be the soft-drop jet.

3 Otherwise redefine j to be the harder subjet and iterate

Jesse Thaler — New Physics Gets a Boost 41

Soft Drop Declustering

!
[Larkoski, Marzani, Soyez, JDT, 2014; see also Butterworth, Davison, Rubin, Salam, 2008; Dasgupta, Fregoso, Marzani, Salam/Powling, 2013]

Original Jet

=

Clustering Tree

Jesse Thaler — New Physics Gets a Boost 42

Soft Drop Declustering

Groomed	
Clustering Tree

=

Groomed Jet

!
[Larkoski, Marzani, Soyez, JDT, 2014; see also Butterworth, Davison, Rubin, Salam, 2008; Dasgupta, Fregoso, Marzani, Salam/Powling, 2013]

zg

1–zg
θg

⇒

zg > zcut θgβ

• Groomer built to be both efficient and robust.

• Amenable for theoretical calculations (see later).
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Examples of two-prong taggers (H/Z/W)

• General strategy:

1 groom to remove contamination;
2 select the mass window of interest;
3 use a jet shape to determine the prong structure.

• N-subjettiness is prototype [Thaler and Van Tilburg (2011)].
• Often used in the experiments: τ32 = τ3

τ2
and τ21 = τ2

τ1
.

• Ratios of energy correlation functions also offer a powerful way of discriminating
the prong structure [Larkoski, Salam, Thaler (2013)].

• Phase-space analysis can guide us in building the optimal ratio: D2 [Larkoski, Moult, Neill

(2014)].
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Figure 2: Distributions of (a) τ1 and (b) τ2 for boosted W and QCD jets. For these plots, we

impose an invariant mass window of 65 GeV < mjet < 95 GeV on jets of R = 0.6, pT > 300 GeV,

and |η| < 1.3. By themselves, the τN do not offer that much discriminating power for boosted

objects beyond the invariant mass cut.
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Figure 3: (a): Distribution of τ2/τ1 for boosted W and QCD jets. The selection criteria are the

same as in Fig. 2. One sees that the τ2/τ1 ratio gives considerable separation between W jets and

QCD jets beyond the invariant mass cut. (b): Density plot in the τ1–τ2 plane. Marker sizes are

proportional to the number of jets in a given bin. In principle, a multivariate cut in the τ1–τ2 plane

would give further distinguishing power.

to have large τ1, QCD jets with a diffuse spray of large angle radiation can also have large

τ1, as shown in Fig. 2(a). However, those QCD jets with large τ1 typically have large values

of τ2 as well, so it is in fact the ratio τ2/τ1 which is the preferred discriminating variable.

As seen in Fig. 3(a), W jets have smaller τ2/τ1 values than QCD jets. Of course, one can

also use the full set of τN values in a multivariate analysis, as suggested by Fig. 3(b), and

we will briefly explore this possibility in Sec. 3.4.

As mentioned in the introduction, N -subjettiness is adapted from the similar quantity

N -jettiness introduced in Ref. [28]. There are three important differences: the sum over

k only runs over the hadrons in a particular jet and not over the entire event, we do not

have candidate (sub)jets corresponding to the beam directions, and our distance measure

– 5 –

• Grooming modifies the emission phase-space:
shapes that work well on ungroomed jet may
loose their discrimination power.
• design correlation functions that work

specifically on groomed jets M2.
[Moult, Necib, Thaler (2016)]

• dichroic ratios, e.g. τ21 =
τ

SDβ>0
2

τ
SDβ=0
1

.
[Salam, Schunk, Soyez (2016)]
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Top tagging

• Top-taggers try to discriminate the three-pronged nature of a top-initiated jet
from the background.

• Use shapes and correlation functions that are sensitive to three prongs, e.g. τ32.

• Actual algorithms used by the collaboration can involve many steps (CMS Top
Tagger, HEP Top Tagger, HOVRT...).

• Gaining analytic insight is more difficult because of the more complicated
phase-space, but recently a breakthrough [Dasgupta, Guzzi, Rawling, Soyez (2018)].Results

• Resummation of Log(!/!min) terms does matter
• Inclusion of secondary emissions important at small mmin
• Overall a good agreement with PS.

Comparison between analytic results and Pythia simulations for the QCD background efficiency 

17
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A Matrix-Element-Method-inspired solution: Shower
Deconstruction
• Takes the probability for signal and background jets → defines a likelihood-ratio

discriminant χSD [1102.3480] [1211.3140]

• Recluster jet in small sub-jets and use them as top decay partons → test
compatibility with a top/H shower.

• Best tagging performance within non-MVA-based solutions → using a
theoretically motivated approach.

χSD =

∑
histories P(pi |signal)∑

perm. P(pi |background)

y
­1 ­0.5 0 0.5 1 1.5 2 2.5

φ

0

0.5
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1.5
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2.5
Preliminary Simulation  ATLAS

 = 1.75 TeVZ’m event, tt → Z’

 = 180.1 GeVWbm = 77.7 GeV, Wm

 = 1.0R tkAnti­

Calorimeter clusters

 = 0.2RSubjets, C/A 
 bosonW

 jetb
Top radiation
ISR

[ATLAS-CONF-2014-003]
[ATLAS-CONF-2014-003]
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Jet substructure as a tool

Efficiency and performance
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X → bb̄ methods in ATLAS

• ATLAS studied using R = 0.2 track-jets,
variable-R track jets and exclusive kT
subjets for the X → bb̄.

hBeamline

Primary Vertex

B

C

B

hBeamline

Primary Vertex

B

C

B

R=0.2 Track Jets VR Track Jets

[ATL-PHYS-PUB-2017-010]

R=1.0 Trimmed Calo Jet

R=0.2 Track Jet
R=0.2 Track Jet

C

hBeamline

Primary Vertex

BB

[ATL-PHYS-PUB-2017-010]

ExKt Calo SubjetsR=1.0 Trimmed Calo Jet

hBeamline

Primary Vertex

hBeamline

Primary Vertex

[ATL-PHYS-PUB-2017-010]
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X → bb̄ methods in ATLAS – comparison

• Variable-R jets and exclusive kT sub-jets
show an improvement in performance.

• R = 0.2 track jets fail to resolve the Higgs
decay products as the pT become higher than
∼ 1 TeV.

• Variable-R sub-jets lead to high rejection and
reconstruct the direction of the sub-jets very
well, relative to the b-hadron.
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h→ bb̄ and h→ cc̄ identification in CMS

• Optimised neural network training for double b- and c-tagging for h→ bb̄ and
h→ cc̄ .

• Using convolutional neural networks with constituents and secondary vertex
information as inputs.

• Uses the CMS double b-tagger (BTV-16-002) features to detect a boosted
object to b-jet pair decay → exploits correlations between the flight directions
of the b-jets, using N-subjettiness axes.
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h→ bb̄ and h→ cc̄ identification in CMS

• Much better performance than the double b-tagger.

[DP 2018-046] [DP 2018-046]
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bb̄ vs. cc̄ separation
• After tagging bb̄ decays, a veto on cc̄ decays can be useful to orthogonalise

analyses.
• The c vs. b tagger can be used to select c-jets → useful to reject cc̄

background in a bb̄ analysis or vice-versa.

[DP 2018-046]
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Top and W tagging
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Cut-based taggers in ATLAS

• Improved mass resolution using combined
track and calo. information.

• Using trimming to reduce the pile up effects.

• Cutting on the combined mass and D2 or τ32

provides significant rejection.
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Cut-based top-taggers in CMS

• CMS uses a soft-drop mass estimate, PUPPI for pile up correction and
N-subjettiness as a top-tagger.

[DP 2017-026] [DP 2017-026]
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Top and W MVA-based taggers in ATLAS
• Top and W tagging using BDTs and neural networks combining several

discriminant variables provide significant rejection.
• Variables can be added sequentially → no point adding more inputs without a

significant benefit in classification.
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How much benefit do the MVA taggers provide?
• Up to 30% improvement in W tagging and 100% improvement in top-tagging

rejection.
• MVA taggers provide a significant gain in top tagging.
• Where is the extra gain coming from?
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MVA methods with lower level inputs
• Using a lower level input for neural network, we may gain significantly in

classification power. [1511.05190] [1603.09349] [1701.08784] [1704.02124]

• But there can be a significant impact from detector effects → need to be
evaluated with detector simulation.

[arXiv:1704.02124]
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A comparison of techniques

• Huge performance gain by MVA
techniques at low and high pT , but
also at low and high rejection
working points.

• Actually implemented TopoDNN in
ATLAS.
• Best performance even compared

with BDT or NN methods which
use a higher level input (other jet
substructure variables).
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Top tagging using MVA in CMS
• Convolutional NN used in CMS does better than BDT approach.
• Inputs can be constituent’s kinematics (pT , η, φ, ∆R between subjets) in the

“kinematics” version.
• “Full” version adds information about the secondary vertex and track

displacement and quality.

[DP2017-049]
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Efficiency – ATLAS SD and HTTv1

• And so are more complex taggers, such as Shower Deconstruction and
HEPTopTagger v1.
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Efficiency – ATLAS TopoDNN

• Best performant MVA tagger has a very good agreement with data, both as a
function of pT and < µ >.
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Tagging effects on mass
• Taggers often use the mass information to optimise the selection.
• This leads to sculpting of the mass spectrum in both signal and background.
• We might want to tag a generic X → qq′ resonance without using its

(unknown) mass.
• Or we might want to avoid using the mass information to define a background

control region.
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Mass decorrelation in ATLAS – methods

• The taggers can be made more general by not using the mass information.

• Several methods were studied in ATLAS to decorrelate the mass and other jet
substructure information.
• Fixed-efficiency regression [1710.00159] .
• Designed decorrelated taggers [1603.00027] .
• Convolved substructure [1710.06859] .
• Adversarially trained NNs [1703.03507] .
• Boosting for uniform efficiency [1305.7248] .

• ATLAS defined a metric for decorrelation using the symmetrised
Kullback-Leibler divergence (JSD):
• JSD(fractionpass

bkg ||fractionfail
bkg) → measure distance between distributions of

background events that pass and fail the selection.
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Mass decorrelation in ATLAS
• The mass histograms below show the fraction of signal (W+jets) and

background (QCD multi-jets) before and after the selection.
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Mass decorrelation vs. background rejection
• It is possible to perform a fair comparison on several decorrelation methods

using this metric.
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W ′ → tb search

• ATLAS search for W ′ → tb
uses Shower Deconstruction
to achieve a huge
background reduction.

• A cut is made in the χSD

likelihood ratio observable.
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h→ bb̄ search
• CMS uses the soft drop mass for a search for a highly boosted SM Higgs

decaying into bb̄.

• The soft drop groomed jets allow us to see quite clearly the Z → bb̄ events.
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Jet substructure for precision

Precision calculations meet the data
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Precision calculations for the soft-drop jet mass

• All-order calculations, with meaningful uncertainty bands, are now available for
the soft-drop jet mass. [Frye, Larkoski, Schwartz, Yan (2016)], [SM, Schunk, Soyez (2017)], [Kang, Lee, Liu, Ringer (2018)].
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Results: NNLL+αs2 Jet Substructure

NLL+αs NNLL+αs2

Significant decrease in residual scale uncertainty at NNLL+αs2!

Soft Drop:

Frye, AJL, Schwartz, Yan 2016
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Figure 6. The ungroomed (solid blue) and groomed (dashed lines) jet mass distributions for

di↵erent values of the angular exponent �. The same kinematical setup is used as in Fig. 5. We

only show the purely perturbative results plotted as a function of log10(m
2
J,gr/p2

T ). In the limit

� ! 1, the ungroomed distribution is recovered from the groomed case.

becomes more likely to observe smaller values of the jet mass after the grooming procedure

which removes soft wide-angle radiation from the jet. As expected a smooth transition

between the groomed and ungroomed case can be observed for � ! 1. This feature of

the jet mass distributions can be particularly useful in order to understand the impact of

grooming in heavy-ion collisions, see for example [16, 51].

The groomed jet mass distributions for di↵erent values of � all become very similar at

the transition point ⌧gr = m2
J,gr/p2

T = zcutR
2. This can also be seen from the values of the

soft scales. By identifying ⌧gr = zcutR
2, we find from Eqs. (3.15) and (3.20),

µgr
S |⌧gr=zcutR2 = µ/2gr

S |⌧gr=zcutR2 =
pT ⌧gr

R
= µS , (4.12)

which makes the scales of the soft functions in the groomed case to be identical to the

scale of the soft function for the ungroomed case, see Eq. (2.21). This makes the evolution

factors identical independent of � values and whether there is a grooming or not, and �

dependence only enters from the renormalized expressions of the soft functions at the fixed-

order. Therefore, although in reality the perturbative results do not all intersect exactly

at ⌧ = zcutR
2, they become very similar at ⌧ = zcutR

2 as can be seen from Fig. 6. At

larger values, the grooming does not play a role and the ungroomed jet mass distribution

is recovered. See the discussion in section 3.3 and the Appendix A.2.

Recently the ATLAS collaboration reported on a measurement of the soft drop groomed

jet mass distribution in [48]. A similar analysis was performed by CMS in [47]. The

measurement is performed in an inclusive way in the sense that no additional cuts are

imposed on the hadronic activity outside the signal jets. However, additional cuts are

imposed on the observed jet transverse momenta which unfortunately hinders a direct one-

– 23 –

• Non-pert. corrections greatly reduced, perturbative convergence is improved.
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• Great opportunity to test and constrain simulation tools. e.g. parton showers
and their hadronisation models.
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CMS jet substructure measurements
• CMS has provided measurements of several jet substructure variables. Showing

the soft drop mass and N-subjettiness.
• Good agreement with simulation over a large phase space range.
• Some disagreement at higher pT .
• Also unfolded the N-subjetiness observables.
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ATLAS soft drop mass measurement

• ATLAS has published measurements of
log10[msoft drop/pT ,ungroomed]2 for
β ∈ {0, 1, 2}.

• Disagreements where non-perturbative
effects are expected to appear.

• Large uncertainty from the QCD modeling.
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ATLAS colour flow measurement
• ATLAS used tt̄ events to measure magnitude angle

of the pull vector: allows a test of the colour flow.

• Colour flow angle between the W jets shown below
after unfolding.

• Very subtle effect not well predicted by most
simulators and measured with great precision.
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Jet substructure for precision

Towards the extraction of Standard Model parameters
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Towards αs extraction

Current precision is <1% and 
is dominated by the lattice + 
B-hadron mass differences

19�19Case study: αs with JSS?

One “number” governs 
number of jets, their energy, 
and their internal structure

Next-post-precise is from LEP 
and differs by ~5% (3s)

There are many reasons to care 
about this - for example, a3 ~ sa
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Figure 9.2: Summary of determinations of αs(M
2
Z) from the six sub-fields

discussed in the text. The yellow (light shaded) bands and dashed lines indicate the
pre-average values of each sub-field. The dotted line and grey (dark shaded) band
represent the final world average value of αs(M

2
Z).

whereby the dominating contributions to the overall error are experimental (+0.0017
−0.0018), from

parton density functions (+0.0013
−0.0011) and the value of the top quark pole mass (±0.0013).
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[PDG, ’18]

(from B. Nachman, BOOST’s talk)

• Current precision is less than 1% and is
dominated by the lattice.

• Next-most precise is LEP event shapes and
differs by ∼5% (3σ).

• Preliminary studies show that using soft-drop
mass (or other angularities) can lead to an
extraction with 10% uncertainty. [Les Houches (2017)]

25�25

sensitive to pileup; for example, the jet mass scales as O(A2) [94] for the jet catchment area A [95]
(whereas the jet pT scales linearly with A). The jet-area subtraction that works well for pT has been
extended to event shapes [96], but must be re-calibrated per observable. Constituent-based pileup sub-
traction schemes [97, 98, 99, 100, 101] show great promise and are actively being studied and adapted
to the actual experimental settings [102, 103, 104, 105, 106]. Even without constituent-based subtrac-
tion techniques, though, there is a large reduction in pileup sensitivity to jet substructure from groom-
ing [102, 107, 106, 3]. Grooming systematically removes soft and wide-angle radiation, which is exactly
the profile characteristic of pileup. Even with extreme levels of pileup (up to 300 collisions), grooming
can preserve the distribution of the jet mass distribution [108].

Despite the power of grooming for pileup suppression, there is still a residual degradation of reso-
lution with increased levels of pileup which makes precision jet substructure measurements challenging
at high instantaneous luminosity. Track-based observables are robust to pileup because their vertex of
origin can be well-distinguished from pileup vertices. Precision track-based substructure observables
have been calculated [109, 110, 111, 112], but typically require universal NP input. It may be interesting
to do a track- and jet-substructure-based extraction of ↵s, but this is left as a possibility for future work.

1.4 Observable Sensitivity to ↵s

In this subsection, we study the sensitivity of the groomed jet mass to variations in the value of ↵s. We
begin with a discussion based on the analytic formulae at LL accuracy. We then perform a PS study,
highlighting the interplay between the sensitivity of different parts of the distribution to variations in the
value of ↵s and NP effects. Finally, we discuss the issue of Casimir scaling and the related issue of using
normalized versus unnormalized distributions.

1.41 Analytic Understanding

To get an understanding of the sensitivity of the groomed mass distribution both to the value of ↵s as
well as to the quark and gluon composition, it is enlightening to study the LL distribution. Here, for
simplicity, we consider only the leading logs in the observable, in the resummation region; complete
expressions can be found in Refs. [52, 55, 54, 53]. For � = 0, the LL result at fixed coupling for the
cumulative distribution in the resummation region takes the schematic form

⌃(e
(2)
2 ) = exp


�↵sCi

⇡
[log(zcut) � Bi] log(e

(2)
2 )

�
, (9)

where Bi = �3/4 for quarks and Bg = �11
12 +

nf

6CA
for gluons (nf is the number of active quark flavors).

This highlights that for � = 0, the groomed jet mass is a single-logarithmic observable, contrasting with
the standard double-logarithmic behavior of plain jet mass. Differentiating the cumulative distribution,
we obtain the spectrum

e
(2)
2

�

d�

de
(2)
2

= �↵sCi

⇡
[log(zcut) � Bi] exp


�↵sCi

⇡
[log(zcut) � Bi] log(e

(2)
2 )

�
. (10)

Here, we immediately see several interesting consequences. In the resummation region, the slope of
the distribution when plotted against log e

(2)
2 is set by the product ↵sCi, where Ci is the Casimir factor,

namely CF = 4/3 for quarks and CA = 3 for gluons. We therefore see that the groomed mass is indeed
sensitive to the value of ↵s. Due to the larger color charge of gluons, we expect that samples of pure
gluon jets would have a significantly higher sensitivity to the value of ↵s; this expectation will be born
out in our PS studies below. Because ↵s is always multiplied by a color factor, though, knowing the
precise quark/gluon composition of a sample is essential, as discussed in Sec. 1.43. In practice, the PS
studies and the analytic studies that follow (see Sec. 1.5) include higher-order effects, such as subleading
terms in the splitting functions, that violate Casimir scaling.

⇡
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(a) (b)

(c) (d)

Figure 12: Comparison between soft-drop groomed e
(2)
2 distributions with zcut = 0.1 and

� = 0 (top) and � = 1 (bottom) for matched and normalized NNLL, parton-level, and hadron-

level Monte Carlo. All curves integrate to the same value over the range e
(2)
2 2 [0.001, 0.1].

The uncertainty band for soft drop with � = 1 at NNLL includes the variation of the two-loop

non-cusp anomalous dimension.

Fig. 12 also illustrates that soft drop grooming eliminates sensitivity to both hadroniza-

tion and underlying event until deep in the infrared. The parton-level and hadron-level dis-

tributions for each Monte Carlo agree almost perfectly until below about e
(2)
2 . 10�3. That

hadronization e↵ects are small is expected from our e+e� analysis, but this also demonstrates

that underlying event e↵ects are negligible. A similar observation was made in Ref. [8], though

at a much higher jet pT (pT > 3 TeV). As in e+e� collisions, we expect that the hadronization

e↵ects that are observed in the Monte Carlo can be explained by a shape function, though

we leave this to future work.
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Color factor and aS are ~degenerate!

Example: groomed jet mass

e2 ~ m/pT

…can’t distinguish higher aS / more gluons

• Not yet competitive for the world average but
worth pursuing.
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Groomed e+e− event shapes

• This study can pave the way for a more competitive measurement in e+e−

• Groomed event shapes show reduced sensitivity to hadronisation and may help
breaking degeneracy with non-perturbative effects and resolve long-standing
puzzle of low αs . [Baron, SM, Theeuwes (2018)]

• this can pave the way for a more competitive 
measurement in e+e- 

• use of grooming may help breaking degeneracy 
with non-perturbative effects and resolve long-
standing puzzle 
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FIG. 17: The smaller elongated ellipses show the experimental
39% CL error (1-sigma for αs) and best fit points for different
global data sets at N3LL′ order in the R-gap scheme and
including bottom quark mass and QED effects. The default
theory parameters given in Tab. III are employed. The larger
ellipses show the combined theoretical plus experimental error
for our default data set with 39% CL (solid, 1-sigma for one
dimension) and 68% CL (dashed).

experimental error ellipses, hence to larger uncertainties.

It is an interesting but expected outcome of the fits
that the pure experimental error for αs (the uncertainty
of αs for fixed central Ω1) depends fairly weakly on the
τ range and the size of the global data sets shown in
Fig. 17. If we had a perfect theory description then we
would expect that the centers and the sizes of the error
ellipses would be statistically compatible. Here this is
not the case, and one should interpret the spread of the
ellipses shown in Fig. 17 as being related to the theo-
retical uncertainty contained in our N3LL′ order predic-
tions. In Fig. 17 we have also displayed the combined
(experimental and theoretical) 39% CL standard error
ellipse from our default global data set which was al-
ready shown in Fig. 11a (and is 1-sigma, 68% CL, for
either one dimensional projection). We also show the
68% CL error ellipse by a dashed red line, which corre-
sponds to 1-sigma knowledge for both parameters. As
we have shown above, the error in both the dashed and
solid larger ellipses is dominated by the theory scan un-
certainties, see Eqs. (68). The spread of the error ellipses
from the different global data sets is compatible with the
1-sigma interpretation of our theoretical error estimate,
and hence is already represented in our final results.

Analysis without Power Corrections

Using the simple assumption that the thrust distribution
in the tail region is proportional to αs and that the main

αs(mZ)±(pert. error) χ2/(dof)

N3LL′ with ΩRgap
1 0.1135 ± 0.0009 0.91

N3LL′ with Ω̄MS
1 0.1146 ± 0.0021 1.00

N3LL′ without Smod
τ 0.1241 ± 0.0034 1.26

O(α3
s) fixed-order

without Smod
τ

0.1295 ± 0.0046 1.12

TABLE VII: Comparison of global fit results for our full anal-
ysis to a fit where the renormalon is not canceled with Ω̄1, a
fit without Smod

τ (meaning without power corrections with
Smod

τ (k) = δ(k)), and a fit at fixed order without power cor-
rections and log resummation. All results include bottom
mass and QED corrections.

effect of power corrections is a shift of the distribution
in τ , we have estimated in Sec. I that a 300 MeV power
correction will lead to an extraction of αs from Q = mZ

data that is δαs/αs ≃ (−9 ± 3)% lower than an anal-
ysis without power corrections. In our theory code we
can easily eliminate all nonperturbative effects by set-
ting Smod

τ (k) = δ(k) and ∆̄ = δ = 0. At N3LL′ or-
der and using our scan method to determine the per-
turbative uncertainty a global fit to our default data set
yields αs(mZ) = 0.1241 ± (0.0034)pert which is indeed
9% larger than our main result in Eq. (68) which ac-
counts for nonperturbative effects. It is also interesting
to do the same fit with a purely fixed-order code, which
we can do by setting µS = µJ = µH to eliminate the
summation of logarithms. The corresponding fit yields
αs(mZ) = 0.1295±(0.0046)pert, where the displayed error
has again been determined from the theory scan which in
this case accounts for variations of µH and the numerical
uncertainties associated with ϵ2 and ϵ3. (A comparison
with Ref. [22] is given below in Sec. IX.)

These results have been collected in Tab. VII together
with the αs results of our analyses with power corrections
in the R-gap and the MS schemes. For completeness we
have also displayed the respective χ2/dof values which
were determined by the average of the maximal and the
minimum values obtained in the scan.

VIII. FAR-TAIL AND PEAK PREDICTIONS

The factorization formula (4) can be simultaneously used
in the peak, tail, and far-tail regions. To conclude the
discussion of the numerical results of our global analysis
in the tail region, we use the results obtained from this
tail fit to make predictions in the peak and the far-tail
regions.

In Fig. 18 we compare predictions from our full N3LL′

code in the R-gap scheme (solid red line) to the accurate
ALEPH data at Q = mZ in the far-tail region. As input
for αs(mZ) and Ω1 we use our main result of Eq. (68)
and all other theory parameters are set to their default
values (see Tab. III). We find excellent agreement within
the theoretical uncertainties (pink band). Key features
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FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (68). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

αs(mZ) is ±0.0009 compared to ±0.0021 with Ω̄1 in the
MS scheme. Also at NNLL′ and N3LL we see that the
removal of the O(ΛQCD) renormalon leads to a reduction
of the theoretical uncertainties by about a factor of two
in comparison to the results with Ω̄1 in the MS scheme
without renormalon subtraction. The proper treatment
of the renormalon subtraction is thus a substantial part
of a high-precision analysis for Ω1 as well as for αs.

It is instructive to analyze the minimal χ2 values for
the best fit points shown in Fig. 11. In Fig. 12 the dis-
tributions of the best fits in the αs-χ

2
min/dof plane are

shown using the color scheme of Fig. 11. Figure 12a dis-
plays the results in R-gap scheme, and Fig. 12b the ones
in the MS scheme. For both schemes we find that the
χ2

min values and the size of the covered area in the αs-
χ2

min/dof plane systematically decrease with increasing
order. While the analysis in the MS scheme for Ω̄1 leads
to χ2

min/dof values around unity and thus an adequate
description of the entire global data set at N3LL′ order,
we see that accounting for the renormalon subtraction in
the R-gap scheme leads to a substantially improved the-
oretical description having χ2

min/dof values below unity
already at NNLL′ and N3LL orders, with the N3LL′ or-
der result slightly lower at χ2

min/dof ≃ 0.91. This demon-
strates the excellent description of the experimental data
contained in our global data set. It also validates the
smaller theoretical uncertainties we obtain for αs and Ω1

at N3LL′ order in the R-gap scheme.

As an illustration of the accuracy of the fit, in Fig. 13
we show the theory thrust distributions at Q = mZ for
the full N3LL′ order with the R-gap scheme for Ω1, for
the default theory parameters and the corresponding best
fit values shown in bold in Tabs. IV and V. The pink

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

band displays the theoretical uncertainty from the scan
method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit
values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which

Abbate et al. 
(2010)

�39

(not so) crazy idea
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Figure 9.2: Summary of determinations of αs(M
2
Z) from the six sub-fields

discussed in the text. The yellow (light shaded) bands and dashed lines indicate the
pre-average values of each sub-field. The dotted line and grey (dark shaded) band
represent the final world average value of αs(M

2
Z).

whereby the dominating contributions to the overall error are experimental (+0.0017
−0.0018), from

parton density functions (+0.0013
−0.0011) and the value of the top quark pole mass (±0.0013).
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• New NNLO results for groomed event shapes are presented at this confernece
[Kardos, Somogyi, Troócsányi (2018)]

• No time to cover it here but also: extraction of top mass with light grooming.
[Hoang, Mantry, Pathak, Stewart (2017)]
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Jet substructure goes nuclear
• Ideas and observables to study jets in proton collisions have made their way into

the heavy-ion community.
• Jets and their structure offer a unique probe for the quark-gluon plasma.
• Tough both theoretically and experimentally, but results are pouring in.

8Jesse Thaler — Boost 2018:  Theory Summary

ALI-PREL-155677
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ATLAS measurement of m/pT in PbPb and pp

• The nuclear modification
factor, RAA, is measured.

• No visible change in the
m/pT distribution shapes
between PbPb and pp.

• We are not yet sensitive to
quark-gluon plasma effects
in this variable.
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New ideas and techniques

News from BOOST 2018
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Deep Thinking VS Deep Learning

• Particle physics (and jet physics) undergoing a machine-learning revolution.

• New ideas and techniques are pouring into the field.

12Jesse Thaler — Boost 2018:  Theory Summary
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@ LBNL

first review
A. Larkoski, I. Moult, 

BPN, 1709.04464

ML4Jets '18 
@ FNAL

Today!

[will send around 
more information in 
the next week(s)!]

[F. Dreyer, G. Salam, 
G. Soyez, ‘18]

https://indico.cern.ch/event/745718/

• Techniques met with a mixture of excitement and skepticism.

• Many studies to investigate the information content exploited by these methods
(make the black box more transparent)

• Deep Thinking & Deep Learning can lead to Deep Understanding
• Join the Machine Learning for Jet Physics workshop in November if you are

interested in contributing: https://indico.cern.ch/event/745718/
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Physics intuition meets computer science I: Lund plane

• Standard approach is supervised learning: apply classification algorithms to
large collections of (simulated) samples, e.g. the jet image. [de Oliveira, Kagan, Mackey,

Nachman, Schwartzman (2015)]

• Physics intuition can lead us to construct better representations of a jet: the
Lund plane. [Dreyer, Salam, Soyez (2018)] (see talk in parallel session)Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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Lund images for QCD and W jets

I Hard splittings clearly visible,
along the diagonal line with jet
mass m ⇤ mW .

I Depletion of events around W
peak due to shadow cast by
leading emission.

Frédéric Dreyer 10/20

• Decluster the jet following the hard branch and record (kt ,∆) at each step

• Use this representation as input of log-likelihood or ML algorithms.
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Physics intuition meets computer science II: Junipr

• Physics intuition can lead us to construct better representations of a jet: Jets
using UNsupervised Interpretable PRobabilistic models. [Andreassen, Feige, Frye, Schwartz (2018)]

Summary So Far
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…where each time step is decomposed into 3 parts:

Pt = P2M/ · PKQi?2` · P#`�M+?
slide by Chris Frye 
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slide by Chris Frye 

• Implemented using Recurrent Neural Networks, which are trained on
(simulated) data.

• The trained model (106 parameters) can be used for discrimination as well as
for generation!
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Physics intuition meets computer science III: Jet Topics
• Quark/gluon tagging always a hot (and controversial) topic in jet substructure.
• Jet topics exploit the technology of topic modelling from texts. [Medotiev, Thaler (2018)]

26Jesse Thaler — Boost 2018:  Theory Summary

Jet Topics for Quark/Gluon Definitions	
Eric Metodiev

୯୳ୟ୰୩݌ ࢞ ؠ ௣ಲ ࢞ ି఑ఽా ௣ಳ ࢞
ଵି఑ఽా

୥୪୳୭୬݌ ࢞ ؠ ௣ಳ ࢞ ି఑ాఽ ௣ಲ ࢞
ଵି఑ాఽ

୯୳ୟ୰୩݌ ࢞ ؠ ௣ಲ ࢞ ି఑ఽా ௣ಳ ࢞
ଵି఑ఽా

୥୪୳୭୬݌ ࢞ ؠ ௣ಳ ࢞ ି఑ాఽ ௣ಲ ࢞
ଵି఑ాఽ

Les Houches Logorrhea

⇒

Use insights from	
topic modeling

஺݌ ࢞ ൌ ஺݂
௤ ୯୳ୟ୰୩݌ ࢞ ൅ ͳ െ ஺݂

௤ ሻ࢞୥୪୳୭୬ሺ݌
஻݌ ࢞ ൌ ஻݂

௤ ୯୳ୟ୰୩݌ ࢞ ൅ ͳ െ ஻݂
௤ ሻ࢞୥୪୳୭୬ሺ݌

୅୆ߢ ؠ ���
࢞

஺݌ ࢞
஻݌ ࢞

ൌ ଵି௙ಲ
೜

ଵି௙ಳ
೜

୆୅ߢ ؠ ���
࢞

஻݌ ࢞
஺݌ ࢞

ൌ ௙ಳ
೜

௙ಲ
೜

஺݂
௤ ൌ

ͳ െ ୅୆ߢ
ͳ െ ୆୅ߢ୅୆ߢ

୆݂
௤ ൌ

୆୅ሺͳߢ െ ୅୆ሻߢ
ͳ െ ୆୅ߢ୅୆ߢ

୯୳ୟ୰୩݌ ࢞ ൌ ௣ಲ ࢞ ି఑ఽా ௣ಳ ࢞
ଵି఑ఽా

୥୪୳୭୬݌ ࢞ ൌ ௣ಳ ࢞ ି఑ాఽ ௣ಲ ࢞
ଵି఑ాఽ

“…and then you just solve.”

 

PRELIMINARY

better

Towards	
self-calibrated classifiers

 Key:  Anchor Bins

Operational Definition

26Jesse Thaler — Boost 2018:  Theory Summary

Jet Topics for Quark/Gluon Definitions	
Eric Metodiev

୯୳ୟ୰୩݌ ࢞ ؠ ௣ಲ ࢞ ି఑ఽా ௣ಳ ࢞
ଵି఑ఽా

୥୪୳୭୬݌ ࢞ ؠ ௣ಳ ࢞ ି఑ాఽ ௣ಲ ࢞
ଵି఑ాఽ

୯୳ୟ୰୩݌ ࢞ ؠ ௣ಲ ࢞ ି఑ఽా ௣ಳ ࢞
ଵି఑ఽా

୥୪୳୭୬݌ ࢞ ؠ ௣ಳ ࢞ ି఑ాఽ ௣ಲ ࢞
ଵି఑ాఽ

Les Houches Logorrhea

⇒

Use insights from	
topic modeling

஺݌ ࢞ ൌ ஺݂
௤ ୯୳ୟ୰୩݌ ࢞ ൅ ͳ െ ஺݂

௤ ሻ࢞୥୪୳୭୬ሺ݌
஻݌ ࢞ ൌ ஻݂

௤ ୯୳ୟ୰୩݌ ࢞ ൅ ͳ െ ஻݂
௤ ሻ࢞୥୪୳୭୬ሺ݌

୅୆ߢ ؠ ���
࢞

஺݌ ࢞
஻݌ ࢞

ൌ ଵି௙ಲ
೜

ଵି௙ಳ
೜

୆୅ߢ ؠ ���
࢞

஻݌ ࢞
஺݌ ࢞

ൌ ௙ಳ
೜

௙ಲ
೜

஺݂
௤ ൌ

ͳ െ ୅୆ߢ
ͳ െ ୆୅ߢ୅୆ߢ

୆݂
௤ ൌ

୆୅ሺͳߢ െ ୅୆ሻߢ
ͳ െ ୆୅ߢ୅୆ߢ

୯୳ୟ୰୩݌ ࢞ ൌ ௣ಲ ࢞ ି఑ఽా ௣ಳ ࢞
ଵି఑ఽా

୥୪୳୭୬݌ ࢞ ൌ ௣ಳ ࢞ ି఑ాఽ ௣ಲ ࢞
ଵି఑ాఽ

“…and then you just solve.”

 

PRELIMINARY

better

Towards	
self-calibrated classifiers

 Key:  Anchor Bins

Operational Definition

On the Topic of JetsEric M. Metodiev, MIT 3

What are “Quark” and “Gluon” Jets?

[Les Houches 2015 Report]
[P. Gras, et al., 1704.03878]
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adapted from E. Metodiev and J. Thaler

On the Topic of Jets

Demixing the mixtures

Eric M. Metodiev, MIT 11

𝑝𝐴 𝒙 = 𝑓𝐴
𝑞 𝑝quark 𝒙 + 1 − 𝑓𝐴

𝑞 𝑝gluon(𝒙)
𝑝𝐵 𝒙 = 𝑓𝐵

𝑞 𝑝quark 𝒙 + 1 − 𝑓𝐵
𝑞 𝑝gluon(𝒙)

𝜅AB ≡ min
𝒙

𝑝𝐴 𝒙
𝑝𝐵 𝒙

= 1−𝑓𝐴
𝑞

1−𝑓𝐵
𝑞

𝜅BA ≡ min
𝒙

𝑝𝐵 𝒙
𝑝𝐴 𝒙

= 𝑓𝐵
𝑞

𝑓𝐴
𝑞

𝑓𝐴
𝑞 =

1 − 𝜅AB
1 − 𝜅AB𝜅BA

𝑓B
𝑞 =

𝜅BA(1 − 𝜅AB)
1 − 𝜅AB𝜅BA

Solve for the quark and gluon distributions and fractions:

𝑝quark 𝒙 = 𝑝𝐴 𝒙 −𝜅AB 𝑝𝐵 𝒙
1−𝜅AB

𝑝gluon 𝒙 = 𝑝𝐵 𝒙 −𝜅BA 𝑝𝐴 𝒙
1−𝜅BA

Defined from data Ambiguous?

• Basic assumptions: categories exist and they are mutually irreducible (∃ region
of 100 % purity for each topic).

Jet substructure and H/V/top-tagging Danilo Ferreira de Lima and Simone Marzani 54



Summary

• Many ideas from both ATLAS and CMS on top/V/Higgs tagging!

• A lot of dialogue with the phenomenology community, recycling, improving and
creating new methods.

• How can we understand the improvements observed from Machine Learning?
• Analytical calculations are excellent tools:

• to understand jet substructure and . . .
• to develop new taggers.

• The time has come to move from just tagging jets to also measuring jets.
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Summary
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Extra slides

Jet substructure and H/V/top-tagging Danilo Ferreira de Lima and Simone Marzani 57



HEPTopTagger v. 1

• Tests the compatibility with a 3-prong decay based on the sub-jets mass ratios.
[0910.5472] [1006.2833]

• Cuts on mass ratio of the 3 decay products.

[1006.2833]
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CMS: h→ bb̄ and h→ cc̄ tagger pT dependency

• Not a huge dependency on pT .

[DP 2018-046] [DP 2018-046]
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CMS: Mass sculpting

• But are the previous taggers relying on the jet mass?

• If the tagger uses the jet mass directly, the performance may be different for a
Higgs or a Z → bb̄.
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CMS: Mass sculpting – effect of decorrelation
• Decorrelating the jet mass and the tagger may allow the tagger to be applicable

in more analyses.

[DP 2018-046]

Before decorrelation

[DP 2018-046]

After decorrelation
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