Top quark measurements in CMS

CMS Experiment at LHC, CERN Data recorded: Wed Jul 8 19:26:24 2015 CEST Run/Event: 251244 / 83494441 Lumi section: 151 Orbit/Crossing: 39572626 / 358

MET = 164.0 GeV $Jet p_{T} = 81.6 \text{ GeV}$ $P_{T} = 56.8 \text{ GeV}$ $P_{T} = 57.7 \text{ GeV}$ $Muon p_{T} = 53.8 \text{ GeV}$

Till Arndt for the CMS Collaboration

QCD@LHC 2018 Dresden, 27.08.2018

The top quark

Heaviest known particle

- Strong coupling to the Higgs boson
- Point-like according to current understanding
- > Decays before hadronization
 - Does not form bound states
 - Bare quark properties measurable
- > Physics goals
 - Increase precision of results
 - Differential distributions
 - Associated production

Top Pair Decay Channels

Top pair production and decay

Single top production and decay

s- and t-channel production, associated production, V_{tb} ,polarization, mass

LHC as a top factory

LHC is a top factory

- Roughly 100 million top pairs produced in LHC-Run 2 at 13 TeV
- Todays results mostly with 2016 dataset
 - 35.9 fb⁻¹ taken by CMS

Inclusive top quark pair production

- Measured for multiple decays and energies
 - So far confirms SM

Inclusive $\sigma_{t\bar{t}}$ at 5.02 TeV

Combination of I+jets and di-lepton channel

> $\sigma_{\text{NNLO}} = 68.9^{+3.3}_{-3.4} \text{ pb}_{(\text{PRL 110 (2013), 252004)}}$ $\sigma_{t\bar{t}}(\text{comb}) = 69.5 \pm 6.1(\text{stat}) \pm 5.6(\text{syst}) \pm 1.6(\text{lumi}) \text{ pb}$

Inclusive $\sigma_{t\bar{t}}$ in association with (b)-jets

q 00000 \overline{b} \overline{b} \overline{c} $\overline{$

• Measure $\sigma_{t\bar{t}b\bar{b}}$, $\sigma_{t\bar{t}jj}$ and their ratio

- Test of higher order QCD calculations
- Depends on two different scales: m_t, p_T(j)

> Challenging to separate the processes

Phase space		$\sigma_{t\bar{t}b\bar{b}}$ [pb]	$\sigma_{ m t\bar{t}jj}$ [pb]	$\sigma_{ m t\bar{t}b\bar{b}}/\sigma_{ m t\bar{t}jj}$
Visible	Measurement	$0.088 \pm 0.012 \pm 0.029$	$3.7 \pm 0.1 \pm 0.7$	$0.024 \pm 0.003 \pm 0.007$
	SM (POWHEG)	0.070 ± 0.009	5.1 ± 0.5	0.014 ± 0.001
Full	Measurement	$4.0\pm0.6\pm1.3$	$184\pm 6\pm 33$	$0.022 \pm 0.003 \pm 0.006$
	SM (POWHEG)	3.2 ± 0.4	257 ± 26	0.012 ± 0.001

Differential measurements of $\sigma_{t\bar{t}}$

> Test of perturbative QCD

- $\sigma_{t\bar{t}}$ measured in bins of kinematic variables
- Unfolding algorithms correct for acceptance, efficiency, resolution
- Defined with respect to tt signal: Parton level (full phase space)
 - After QCD radiation and before decay
 - Mimics definitions of bare quark widely used in theory calculations
 - Used for extraction of SM parameters

Particle Level (fiducial phase space, CMS-NOTE-17-004)

- Based on stable particle after hadronization
- Fiducial phase space defined according to detector level cuts
- Used for MC tuning and test of BSM models

Differential measurements of $p_T(top)$

- Measurements softer than predictions
- Measurements and predictions agree for most other distributions

Differential measurements of the $t\bar{t}$ system

- Most distributions well modeled
- Disagreement for low m(tt̄)

Differential measurements of additional jets

Powheg/aMC@NLO + Pythia8 describe large parts of the data

- Pythia8 : CUETP8M2T4, Herwig++: EE5C
- No model consistently predicts all results

Double differential measurements

- Most distributions well modeled with Powheg + Pythia
- > Without uncertainties no prediction describes data

Interpretation of differential cross sections in an EFT

CMS-PAS-TOP-17-014

Several BSM scenarios include anomalous chromomagnetic dipole moment (CMDM)

- Modelled by higher dimension operator in EFT framework
- Probes anomalous top-gluon coupling
- No deviation from SM

Top quark mass measurements

Top quark mass in the single-lepton channel

> Measure m_t from the invariant mass of its decay products

New color reconnection model in Pythia8 compared to previous measurement

$$m_t = 172.25 \pm 0.08(\text{stat.} + \text{JSF}) \pm 0.62(\text{syst})\text{GeV}$$

Single top production

Single top t-channel production

Ratio of top/anti-top production sensitive to PDF

> CKM element from total x-section: $|V_{tb}| = 1.0 \pm 0.05(exp) \pm 0.02(theo)$

Single top production in association with W boson

arXiv:1805.07399 submitted to JHEP

- > Interference with $t\bar{t}$ at NLO in $pp \rightarrow Wb Wb$
- Challenging to separate tW and tt experimentally

> $\sigma_{tW} = 63.1 \pm 1.8(\text{stat}) \pm 6.4(\text{syst}) \pm 2.1(\text{lumi})\text{pb}$ $\sigma_{tW}^{NNLO} = 71.7 \pm 1.8(\text{scale}) \pm 3.4(\text{PDF})\text{pb}$

Underlying event in $t\bar{t}$ production

- > Hadronic activity not from hard scattering
 - Subtract impact of PU and $t\bar{t}$ decay
- > The UE model is tested up to a scale of $\approx 2m_{top}$
 - Measurements in m_{ll} categories suggest viability at higher scales
- > Differential cross sections in dileptonic $t\bar{t}$ events

Underlying event in tt production

> Measured in many different categories

- MPI effects important, CR more subtle,
- Data favors $\alpha_s^{FSR}(m_Z) = 0.120 \pm 0.006$, disfavors high value

> Powheg + Pythia8 [CUETP8M2T4] agrees with data within uncertainties

Jet substruture in $t\bar{t}$ events

- Differential cross section in semi-leptonic tt events
 - Test parton shower and fragmentation models
- With default tunes none of the generators provides good description of data

Jet substructure in $t\overline{t}$ events

arXiv: 1808.07340 sub. to PRD

- Strong coupling preferred by the jet substructure extracted
- > Angle between groomed sub-jets for b-jet sample

> $\alpha_S (m_Z) = 0.115 \pm 0.015$

Constrains renormalization scale of top measurements in CMS

Conclusions

- Top cross quark physics are an important part of research at CMS and provide stringent tests of QCD
 - Differential / inclusive σ_{tt̄}, associated production, single top, top mass, QCD related observables in tt̄ events
 - Compared to MC models and beyond NLO predictions
 - Sensitivity to PDF parameters and α_s
 - Constrain BSM predictions
- > Overall good agreement with SM predictions
 - But remaining disagreement in parts of the phase space
 - No single model describes the data
 - Need for further tuning of MC models
- Measurements have reached a precision regime
 - Larger dataset opening new possibilities

BACKUP

Differential $\sigma_{t\bar{t}}$ for kinematic event variables in the single Arxiv: 1803.0391 lepton channel

- Kinematic event variables
 - No need to reconstruct tt
 - Particle level
- > Absolute and normalized differential $\sigma_{t\bar{t}}$
 - Compared to different parameters in Powheg + Pythia
- Dominant uncertainties:
 - Modelling: underlying event, color reconnection
 - Jet energy scale
 - Background estimation

Differential $\sigma_{t\bar{t}}$ for kinematic event variables in the single Arxiv: 1803.0391 lepton channel

- > Absolute and normalized differential $\sigma_{t\bar{t}}$
 - Compared to predictions with multiple MC algorithms
- Dominant uncertainties:
 - Modelling: shower scales
 - Jet energy scale
 - Background estimation
- Powheg + Pythia model consistent with data within its uncertainties
- Powheg+Herwig++ and aMC@NLO-NLO consistent for most distributions
 - Uncertainties on models not considered

Differential $\sigma_{t\bar{t}}$ in the single-lepton channel

> Double differential $\sigma_{t\bar{t}}$

- Correlations between kinematic properties
- Insight into more extreme regions of phase space
- Parton and particle level
 - Compared to MC predictions
- Substantial difference between data and prediction for p_T(t) vs M(tt̄)
- Measured p_T(t) softer than predictions in all rapidity regions
- Most distributions comparable to Powheg + Pythia and Sherpa within uncertainties

Differential $\sigma_{t\bar{t}}$ in the single-lepton channel

- Double differential $\sigma_{t\bar{t}}$ of jet multiplicities and properties
 - Particle level only
- Compared to MC predictions
- Most distributions well modeled with Powheg + Pythia
 - Inconsistencies for $p_T(j)$, η_j , $p_T(t\bar{t})$
 - Other generators mostly fail to describe data at chosen settings
- Without uncertainties on predictions no model describes the data consistently

Differential $\sigma_{t\bar{t}}$ in the dilepton channel

CMS-PAS-TOP-17-014

- > Absolute and normalized $\sigma_{t\bar{t}}$
- > Top quarks are reconstructed
- Parton and particle level
 - Compared to both MC predictions and fixed order calculations
- Generally good agreement between data and prediction
- > $p_T(t)$ softer than predictions
 - Described well by Powheg + Herwig++
- No model describes all distributions
- Disagreement between data and prediction for low M(tt)

Differential $\sigma_{t\bar{t}}$ in the dilepton channel

CMS-PAS-TOP-17-014

- > $\sigma_{t\bar{t}}$ in bins of jet and lepton kinematics
 - Particle level only
 - Compared to MC predictions
- No model consistently describes the number of jets
 - Disagreement for either high or low number of jets
- Δφ(l, l

 precisely measured for good lepton resolution
 - Can be used to constrain new physics model

Top quark mass in the single-lepton channel

- > Measure m_t in bins of kinematic properties
 - Probe effects from parton shower scale, color reconnection
 - Difference between each bin and inclusive measurement
- Data compared to multiple MC models
- No evidence of bias for the measurement
 - Only Powheg+Herwig shows deviations
 - Uncertainties to large to rule out differences for CR models

Underlying event in $t\bar{t}$ production

- > Average of differential cross sections in event categories
- Large effect from the number of extra jets
- Dominant uncertainties:
 - Experimental: Tracking efficiency
 - Theoretical: p_T(t), PS scale
- MPI effects are crucial
 - CR effects more subtle
- Powheg + Pythia agrees with data within uncertainties
 - Herwig, Sherpa worse agreement

arXiv:1807.02810 sub. to Eur. Phys. J. C

