New Results on Z Boson Production with the ATLAS Detector

Peter Wagner on behalf of the ATLAS Collaboration

QCD @ LHC, 30.8.2018

Overview

Increasing Precision on Z+jets production → better understanding of QCD, more precise modeling:

• Triple-differential measurement of $Z/\gamma^* \rightarrow II$ cross section JHEP 12 (2017) 059

 \sqrt{S} = 8 TeV

 $L = 20 \text{ fb}^{-1}$

• τ polarization in $Z \rightarrow \tau \tau$ events

EPJC 78 (2018) 163

 \sqrt{S} = 13 TeV

 $L = 3 \text{ fb}^{-1}$

EW production of Z bosons

Phys. Lett. B 775 (2017) 206

Triple-diff. σ of $\mathbb{Z}/\gamma^* \rightarrow \mathbb{I}$

- Access to axialvector- and vector couplings via decay kinem.
- Measurement of $\sin^2\theta_w$

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}m_{\ell\ell}\mathrm{d}y_{\ell\ell}\mathrm{d}\cos\theta^*} = \frac{\pi\alpha^2}{3m_{\ell\ell}s}\sum_q P_q\left[f_q(x_1,Q^2)f_{\bar{q}}(x_2,Q^2) + (q\leftrightarrow\bar{q})\right]$$

 M_{\parallel} , y_{\parallel} : Dilepton mass, rapidity

 $cos\theta*$: Decay angle

arxiv:1101.0909

Triple-diff. σ of $\mathbb{Z}/\gamma^* \to \mathbb{I}$

- Access to axialvector- and vector couplings via decay kinem.
- Measurement of $\sin^2\theta_w$

$$\frac{\mathrm{d}^3 \sigma}{\mathrm{d} m_{\ell\ell} \mathrm{d} y_{\ell\ell} \mathrm{d} \cos \theta^*} = \frac{\pi \alpha^2}{3 m_{\ell\ell} s} \sum_q P_q \left[f_q(x_1) Q^2 \right) f_{\bar{q}}(x_2) Q^2 + (q \leftrightarrow \bar{q})$$

$$m_{\parallel}^2 = Q^2$$

- Sensitivity to quark PDFs via $m_{_{\parallel}}$ and $y_{_{\parallel}}$
- Sensitivity to quark vs gluon PDF through $\cos \theta^*$

Triple-diff. σ of $\mathbb{Z}/\gamma^* \rightarrow \mathbb{I}$

- Access to axialvector- and vector couplings via decay kinem.
- Measurement of $\sin^2\theta_w$

$$\frac{\mathrm{d}^3 \sigma}{\mathrm{d} m_{\ell\ell} \mathrm{d} y_{\ell\ell} \mathrm{d} \cos \theta^*} = \frac{\pi \alpha^2}{3 m_{\ell\ell} s} \sum_{q} P_q \left[f_q(x_1, Q^2) f_{\bar{q}}(x_2, Q^2) + (q \leftrightarrow \bar{q}) \right]$$

Contains EW coupling constants $\sim \sin^2 \theta_w$

Depends on $cos\theta^*$

→ Observable:

$$A_{\rm FB} = \frac{\mathrm{d}^3 \sigma(\cos \theta^* > 0) - \mathrm{d}^3 \sigma(\cos \theta^* < 0)}{\mathrm{d}^3 \sigma(\cos \theta^* > 0) + \mathrm{d}^3 \sigma(\cos \theta^* < 0)}$$

Measurement of σ unfolded to Born level

- Sensitivity to quark PDFs via m_{||} and y_{||}
- Sensitivity to quark vs gluon PDF through $\cos \theta^*$
- Sensitivity to $\sin^2 \theta_w$ through forward-backward asymmetry

Triple-diff. σ of $\mathbb{Z}/\gamma^* \rightarrow \mathbb{I}$

- Access to axialvector- and vector couplings via decay kinem.
- Measurement of $\sin^2\theta_w$

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}m_{\ell\ell}\mathrm{d}y_{\ell\ell}\mathrm{d}\cos\theta^*} = \frac{\pi\alpha^2}{3m_{\ell\ell}s}\sum_{q} P_q \left[f_q(x_1,Q^2) f_{\bar{q}}(x_2,Q^2) + (q\leftrightarrow\bar{q}) \right]$$

Contains EW coupling constants $\sim \sin^2 \theta_w$

Depends on $cos\theta^*$

→ Observable:

$$A_{\text{FB}} = \frac{\mathrm{d}^3 \sigma(\cos \theta^* > 0) - \mathrm{d}^3 \sigma(\cos \theta^* < 0)}{\mathrm{d}^3 \sigma(\cos \theta^* > 0) + \mathrm{d}^3 \sigma(\cos \theta^* < 0)}$$

Measurement of σ unfolded to Born level

- Sensitivity to quark PDFs via $m_{_{\parallel}}$ and $y_{_{\parallel}}$
- Sensitivity to quark vs gluon PDF through $\cos \theta^*$
- Sensitivity to $\sin^2\theta_w$ through forward-backward asymmetry
- Large PDF uncertainty in sin²θ_w measurement
 @ 7 TeV
 - \rightarrow now constrain PDFs in $\sin^2\theta_w$ measurement

$\overline{\mathrm{d}m_{\ell\ell}\,\mathrm{d}|y_{\ell\ell}|\,\mathrm{d}\cos\theta^*}$

Signal & Backgrounds Estimation

Simple high-purity selection of dilepton events

Three final states:

- Two central muons
- Two central electrons
- Central+forward electron

Signal simulation:

- NLO Powheg-Box + Pythia8 PS, CT10 PDF
- m_{II}-dependent K-factor from NNLO pQCD
- NLO EW corrections using $G_{_{u}}$ scheme
- Amplitude coefficient A_0 reweighted in bins of $y_{_{\parallel}}$ and $p_{_{\top}}(Z)$

Small $|y_{\parallel}|$ and m_{\parallel} near Z peak: higher purity, smaller asymmetry Large $|y_{\parallel}|$ and m_{\parallel} off Z peak: more background, stronger asymmetry

 $dm_{\ell\ell} d|y_{\ell\ell}| d\cos\theta^*$

Signal & Backgrounds Estimation

Simulated backgrounds:

- Top quarks
- Diboson
- $Z \rightarrow \tau \tau$
- $W \rightarrow V$

All very small below 10%, a bit higher in some regions

Data-driven estimates of fake lepton ~ multijets background:

- Fake muons, typically very small, up to ~5%
- Fake electrons, typically small, up to ~30-60% at high |η|

Central e and μ channel results consistent \rightarrow Combination of σ 's using χ^2 minimization technique

Results & Systematics

Integrated over y_{\shortparallel} and $cos\theta^*$

Impact of systematics on $\frac{\mathrm{d}^3\sigma}{\mathrm{d}m_{\ell\ell}\,\mathrm{d}|y_{\ell\ell}|\,\mathrm{d}\cos\theta^*}$ varies depending on m_{||}:

- Off-Z peak: Background uncertainties, lepton reco/ID/isolation efficiency, MC signal statistics
 - For central electrons & muons: total below
 - ~5% at low m_n and up to 10% at high m_n
 - Impacts from unc. larger by factor 2-3 for forward electrons
- On Z peak: lepton momentum scale
 - For electrons total impact ~2-3%
 - For muons total impact ~1%

Slight underestimation covered by lumi & PDF systematics

 $dm_{\ell\ell} d|y_{\ell\ell}| d\cos\theta^*$

Results

Data > Pred. [-1.0<cos *<-0.7]

- A_{FR} switches sign at low vs. high m_{II}
- $A_{FR} \sim 0$ at low y_{II} : Determination of incident quark difficult
- Better determination of quark direction at larger y_□ → stronger A_{FR} variation
- Limited detector acceptance at highest |y_{||}| → smaller A_{FR}
- All distributions well described by MC simulation
- · Bars: stat unc.
- Solid: total exp. unc. (w/o lumi)
- Cross-hatched: stat+PDF unc.

Pred./Data

Pred./Data

Pred./Data

Pred./Data

Alternative $\sin^2\theta^1_{eff}$ Measurement

ATLAS-CONF-2018-037

- $\sin^2\theta^l_{eff}$ measured from angular coefficients in DY \rightarrow II (see J. Crane's talk)
- Used sin²θ^I_{eff} = 0.23148 to evaluate modeling of A_{FB}
 → compatibility
- Possible sensitivity gain by combining A_{FB} and A₄ measurements

Tau polarization in $Z \rightarrow \tau\tau$ events

Tau polarization in $Z \rightarrow \tau \tau$ events

- Axialvector- and vector couplings cause asymmetry of average τ_{had} polarization P_{τ} in Z boson decays
- Affects $\tau \to \pi^{\pm} \pi^{0} \nu$ decay kinematics
- Observable: $\Upsilon = \frac{E_{\mathrm{T}}^{\pi^{\pm}} E_{\mathrm{T}}^{h^0}}{E_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}}} = 2 \frac{p_{\mathrm{T}}^{\mathrm{track}}}{E_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}}} 1$
- Most precise O(1%) measurements of P_x from LEP

This analysis:

- Can measure P_{τ} in range of Z peak incl. non-Z contributions
- Pioneer new experimental techniques (τ pol. in H → ττ, Higgs CP, background suppression using Ψ)

Selection & Backgrounds

- Typical requirements to select Z decays with identified I and τ_{had}
- Opposite sign (OS) & visible mass $40 < m(I,\tau) < 80 \text{ GeV}$
- Suppression of W+jets events: $\Sigma\Delta\phi(I,\tau,MET)$ < 3.5 and small m_{τ}
- Selection eff. ~0.1%

- $Z \rightarrow \tau\tau$ simulation Alpgen+Pythia6, τ decays from Tauola
- Sample splitting into left-/right-handed τ_{had} with TauSpinner

Selection & Backgrounds

W+jets estimate:

- Shape from data in control region (CR) \rightarrow inv. m_T and $\Sigma\Delta\phi$ cuts
- Small O(%) shape correction from MC for CR-to-SR transfer
- Normalization from simulation

Multijets estimate:

- Shape from same-sign (SS) events
- Normalization transfer SS to OS from events with inverted lepton isolation

Systematic Uncertainties

Dominant uncertainties on shape

Theory

- Difference between Alpgen, Pythia8 and Powheg
 - \rightarrow uncertainty in Ψ distr. and η acceptance
- TauSpinner sample splitting → vary QCD parameters, sin²θ_{eff}, ...

Experimental

- Mismodeling of τ ID input variables propagated to Ψ
- τ energy scale and resolution split into EM and hadr. contributions: measured in-situ

Source of uncertainty	$\sigma_{P_{\tau}}$ in mass-selected region
Modelling of signal process	±0.026
$ au_{ m had}$ identification	± 0.020
MC statistical	±0.016
Signal sample splitting	±0.015
TES and TER	±0.015
Multijet estimate	±0.013
PDF	±0.007
W+jets shape	±0.002
Other	±0.008
Total systematic uncertainty	±0.040
Statistical uncertainty	±0.015

Result

0.5

30.8.

- Binned fit in signal and SS regions
- Fractional contributions from left- and right-handed $Z \rightarrow \tau\tau$ templates $\rightarrow P_{\tau}$

Channel	P_{τ} in mass-selected region
$ au_e$ - $ au_{ m had}$ $ au_\mu$ - $ au_{ m had}$	$-0.20 \pm 0.02 \text{ (stat)} \pm 0.05 \text{ (syst)}$ $-0.13 \pm 0.02 \text{ (stat)} \pm 0.05 \text{ (syst)}$
Combination	$-0.14 \pm 0.02 \text{ (stat)} \pm 0.04 \text{ (syst)}$

- → Agreement with SM prediction: -0.1517 ± 0.0019
- Also measured: P_τ in fiducial region selected with truth information → less model dependent
- Result compatible

Motivation

- Sensitivity to inclusive σ of EW+QCD and of EW Zjj
- Sensitivity to triple gauge couplings
- Similar measurement of EW Zjj at sqrt(s) = 8 TeV
 - → first observation JHEP 04 (2014) 31

Motivation

- Sensitivity to inclusive σ of EW+QCD and of EW Zjj
- Sensitivity to triple gauge couplings
- Similar measurement of EW Zjj at sqrt(s) = 8 TeV
 - → first observation JHEP 04 (2014) 31

Measurement

Particle level fiducial σ :

$$\sigma_{\text{EW}}^f = \frac{N_{\text{obs}}^f - N_{\text{QCD-}Zjj}^f - N_{\text{bkg}}^f}{L \cdot C_{\text{EW}}^f}$$

with
$$C^f = \frac{N_{\text{det}}^f}{N_{\text{particle}}^f} \sim 0.6-0.8$$
 (Zjj MC)

Also published (not shown): Inclusive EW+QCD Zjj cross section

Motivation

- Sensitivity to inclusive σ of EW+QCD and of EW Zjj
- Sensitivity to triple gauge couplings
- Similar measurement of EW Zjj at sqrt(s) = 8 TeV
 - \rightarrow first observation JHEP 04 (2014) 31

Measurement

Particle level fiducial σ :

$$\sigma_{\text{EW}}^f = \frac{N_{\text{obs}}^f - N_{\text{QCD-Z}jj}^f - N_{\text{bkg}}^f}{L \cdot C_{\text{FW}}^f}$$

with
$$C^f = \frac{N_{\text{det}}^f}{N_{\text{particle}}^f} \sim 0.6-0.8$$
 (Zjj MC)

Also published (not shown): Inclusive EW+QCD Zjj cross section

Selection & Categorization

- Select dilepton evts in Z peak + 2 jets → mostly QCD Zjj
- 2 categories in phase space near EW Zjj:
 - High $m_{jj} > 1 \text{ TeV}$
 - Large jet p_⊤
- 3 categories with varying EW/QCD fraction:
 - EW enriched: 0 jet with η between jets
 - EW enriched and $m_{_{||}} > 1 \text{ TeV}$
 - QCD enriched: ≥1 jet with η between jets

Signal & Backgrounds

Signal EW Zjj simulation

NLO Powheg-Box + Pythia8 PS, CT10 PDF (same as previous analysis)

Backgrounds

- QCD Zjj: Alpgen, MG5_aMC@NLO, Sherpa 2.2.1
- Other simulated: Dibosons, Top → both <5%
- Multijets & W+jets est'd data-driven:
 - Templates vs. m_" from inverted lepton ID/isolation
 - Normalization from fit to m_{II}
 - Both contribute < 0.3%

Correction of m

- Extract correction factors vs. m_{ij} in QCD-enriched region and apply to EW-enriched region
- Modeling of additional jet within η-interval of selected jets → largest uncertainty on measurement

Result

Measurement

- Fit both QCD Zjj and EW Zjj normalization in EW-enriched region
- Repeat measurement for each QCD Zjj MC, take average

Uncertainties

- Jet modeling in QCD region
- EW Zjj signal modeling (scale, PDF)
- Jet energy scale

Result

- Results compatible with predictions
- Most constraining power of fit at m_{jj}
 - ~ 900-1000 GeV

Measurement

- Fit both QCD Zjj and EW Zjj normalization in EW-enriched region
- Repeat measurement for each QCD Zjj MC, take average

Uncertainties

- Jet modeling in QCD region
- EW Zjj signal modeling (scale, PDF)
- Jet energy scale

Summary

Various precision measurements in Z+jets

- Triple-differential cross section in Z → II
 - Asymmetry behavior as predicted by SM, compatible with $\sin^2 \theta^{lep}_{eff}$ measurement
 - All distributions well modeled by Powheg+Pythia8 within PDF uncertainties
- Measurement of τ polarization in $Z \rightarrow \tau \tau$ events
 - Sensitive to New Physics contributions outside Z peak
 - Led to development of novel techniques useful for other analyses
 - Result compatible with SM prediction, ~10% precision
- EW Zjj cross section
 - Sensitive to triple gauge couplings
 - Mismodeling of m_{ii} corrected
 - Result compatible with SM prediction, ~20% precision

Collins Soper Frame

$$\cos \theta^* = \frac{p_{z,\ell\ell}}{m_{\ell\ell}|p_{z,\ell\ell}|} \frac{p_1^+ p_2^- - p_1^- p_2^+}{\sqrt{m_{\ell\ell}^2 + p_{T,\ell\ell}^2}}$$

Binning and some plots

Three analyses with diff. binning in $(m_{\parallel}, y_{\parallel}, \cos\theta^*)$:

- Two central muons: Total 504
- Two central electrons: Total 504
- Central+forward electron: Total 150
- 12 bins within $|y_{\parallel}| < 2.4$ (muons) or $|y_{\parallel}| < 3.6$ (electrons)
- 7 bins within $46 < m_{\parallel} < 200 \text{ GeV}$
- 6 bins within $-1 < \cos \theta^* < 1$
- → Central and forward leptons

Backgrounds

Data-driven estimates of fake lepton ~ multijets background:

- Fake muons (typically very small, up to ~5%):
 - Shape vs. $cos\theta^*$ and $|y_{uu}|$ from inverted μ isolation
- Fake electrons (typically small, up to ~30-60% at high |η|):
 - Multijet fraction from template fits to energy isolation, shape template from inverted identification
 - In some regions: Template fits to $\mathbf{E}_{\scriptscriptstyle T}$ of forward electron

$dm_{\ell\ell} d|y_{\ell\ell}| d\cos\theta^*$

31

Results & Systematics

Integrated over $\cos\theta^*$

Impact of systematics varies depending on m_{||}:

- Below and above Z peak: Background uncertainties, lepton reco/ID/isolation efficiency, MC signal statistics
 - For central electrons total below ~5% at low m_{\parallel} and up to 10% at high m_{\parallel}
 - Similar values for muons, MC stats dominant
 - By factor 2-3 larger uncertainties for forward electrons
- On Z peak: lepton momentum scale
 - For electrons total unc ~2-3%
 - For muons total unc ~1%

Central e and μ channel results consistent \rightarrow Combination of σ 's using χ^2 minimization technique

- As expected y_n distribution narrower at higher m_n
- Simulation slightly high in some high $y_{_{\parallel}}$ bins

Distributions

 $dm_{\ell\ell} d|y_{\ell\ell}| d\cos\theta^*$

Signal & Backgrounds Estimation

Simple high-purity selection of dilepton events

Three final states:

- Two central muons
- Two central electrons
- Central+forward electron

Signal simulation:

- NLO Powheg-Box + Pythia8 PS, CT10 PDF
- m_"-dependent K-factor from NNLO pQCD
- NLO EW corrections using $G_{_{u}}$ scheme
- Amplitude coefficient A_0 reweighted in bins of $y_{_{\parallel}}$ and $p_{_{\top}}(Z)$

Small $|y_{\parallel}|$ and m_{\parallel} near Z peak: higher purity, smaller asymmetry Large $|y_{\parallel}|$ and m_{\parallel} off Z peak: more background, stronger asymmetry

 $dm_{\ell\ell} d|y_{\ell\ell}| d\cos\theta^*$

Signal & Backgrounds Estimation

Simulated backgrounds:

- Top quarks
- Diboson
- $Z \rightarrow \tau \tau$
- $W \rightarrow V$

All very small below 10%, a bit higher in some regions

Data-driven estimates of fake lepton ~ multijets background:

- Fake muons (typically very small, up to ~5%):
 - Shape vs. $cos\theta^*$ and $|\textbf{y}_{_{\!444}}|$ from inverted μ isolation
- Fake electrons (typically small, up to \sim 30-60% at high $|\eta|$):
 - Multijet fraction from template fits to energy isolation, shape template from inverted identification
 - In some regions: Template fits to $\mathbf{E}_{\scriptscriptstyle T}$ of forward electron

EW Zjj – Event Categories

$$p_{\mathrm{T}}^{\mathrm{balance}} = \frac{\left| \vec{p}_{\mathrm{T}}^{\,\ell_{1}} + \vec{p}_{\mathrm{T}}^{\,\ell_{2}} + \vec{p}_{\mathrm{T}}^{\,j_{1}} + \vec{p}_{\mathrm{T}}^{\,j_{2}} \right|}{\left| \vec{p}_{\mathrm{T}}^{\,\ell_{1}} \right| + \left| \vec{p}_{\mathrm{T}}^{\,\ell_{2}} \right| + \left| \vec{p}_{\mathrm{T}}^{\,j_{1}} \right| + \left| \vec{p}_{\mathrm{T}}^{\,j_{2}} \right|},$$

	<u> </u>						
	Fiducial region						
Object	Baseline	High-mass	High- $p_{ m T}$	EW-enriched	EW-enriched, $m_{jj} > 1 \text{ TeV}$	QCD-enriched	
Leptons	$ \eta < 2.47, p_{\rm T} > 25 \text{ GeV}, \Delta R_{j,\ell} > 0.4$						
Dilepton pair	$81 < m_{\ell\ell} < 101 \text{ GeV}$						
	_			$p_{\mathrm{T}}^{\ell\ell} > 20~\mathrm{GeV}$			
	y < 4.4						
Jets	$p_{\rm T}^{j_1} > 55~{ m GeV}$ $p_{\rm T}^{j_1} > 85~{ m GeV}$		$p_{\mathrm{T}}^{j_1} > 55 \; \mathrm{GeV}$				
	$p_{\rm T}^{j_2} > 45 \; {\rm GeV}$ $p_{\rm T}^{j_2} > 75 \; {\rm GeV}$			$p_{\mathrm{T}}^{j_2} > 45~\mathrm{GeV}$			
Dijet system	_	$m_{jj} > 1 \text{ TeV}$	_	$m_{jj} > 250 \text{ GeV}$	$m_{jj} > 1 \text{ TeV}$	$m_{jj} > 250 \text{ GeV}$	
Interval jets	_		$N_{\text{jet }(p_{\text{T}}>25 \text{ GeV})}^{\text{interval}} = 0$		$N_{\text{jet }(p_T > 25 \text{ GeV})}^{\text{interval}} \ge 1$		
Zjj system	_			$p_{\mathrm{T}}^{\mathrm{balance}} < 0.15$		$p_{\mathrm{T}}^{\mathrm{balance,3}} < 0.15$	

Table 1: Summary of the particle-level selection criteria defining the six fiducial regions (see text for details).

Inclusive Zjj fiducial σ measurement

Systematics on C_f and background estimates:

- Jet energy scale & resolution ~4-12%
- m_{jj} distribution modelling < 5%
- Luminosity: 2%

Result:

- Generally larger uncertainties on theory
- Mostly agreement
- Some disagreement in EW-enriched regions due to mismodeling of QCD Zjj

Fiducial region	Inclusive Zjj cross-sections [pb]					
riduciai region	Measured	Prediction				
	value ± stat. ± syst. ± lumi.	Sherpa (QCD-Zjj) +Powheg (EW-Zjj)	MG5_aMC (QCD-Zjj) +Powнес (EW-Zjj)	Alpgen (QCD-Zjj) +Powheg (EW-Zjj)		
Baseline	$13.9 \pm 0.1 \pm 1.1 \pm 0.3$	13.5 ± 1.9	15.2 ± 2.2	11.7 ± 1.7		
$High ext{-}p_{\mathrm{T}}$	$4.77 \pm 0.05 \pm 0.27 \pm 0.10$	4.7 ± 0.8	5.5 ± 0.9	4.2 ± 0.7		
EW-enriched	$2.77 \pm 0.04 \pm 0.13 \pm 0.06$	2.7 ± 0.2	3.6 ± 0.3	2.4 ± 0.2		
QCD-enriched	$1.34 \pm 0.02 \pm 0.17 \pm 0.03$	1.5 ± 0.4	1.4 ± 0.3	1.1 ± 0.3		
High-mass	$0.30 \pm 0.01 \pm 0.03 \pm 0.01$	0.46 ± 0.11	0.40 ± 0.09	0.27 ± 0.06		
EW-enriched $(m_{jj} > 1 \text{ TeV})$	$0.118 \pm 0.008 \pm 0.006 \pm 0.002$	0.156 ± 0.019	0.185 ± 0.023	0.120 ± 0.015		

Uncertainty from additional jets

Results from other MCs

Other systematics on EW Zjj measurement

	D-1-4'	
	Relative system	natic uncertainty [%]
Source	$\sigma_{\rm EW}^{m_{jj}>250~{ m GeV}}$	$\sigma_{ ext{EW}}^{m_{jj}>1 ext{ TeV}}$
EW-Zjj signal modelling (QCD scales, PDF and UEPS)	± 7.4	± 1.7
EW-Zjj template statistical uncertainty	± 0.5	± 0.04
EW-Zjj contamination in QCD-enriched region	-0.1	-0.2
QCD- Zjj modelling (m_{jj} shape constraint / third-jet veto)	± 11	± 11
Stat. uncertainty in QCD control region constraint	± 6.2	± 6.4
QCD-Zjj signal modelling (QCD scales, PDF and UEPS)	± 4.5	± 6.5
QCD-Zjj template statistical uncertainty	± 2.5	± 3.5
QCD-EW interference	± 1.3	± 1.5
<i>īt</i> and single-top background modelling	± 1.0	± 1.2
Diboson background modelling	± 0.1	± 0.1
Jet energy resolution	± 2.3	± 1.1
Jet energy scale	+5.3/-4.1	+3.5/-4.2
Lepton identification, momentum scale, trigger, pile-up	+1.3/-2.5	+3.2/-1.5
Luminosity	± 2.1	± 2.1
Total	± 17	± 16

EW Zjj result

Fiducial region	EW-Zjj cross-sections [fb]			
radicial region	Measured	Powheg+Pythia		
EW-enriched, $m_{jj} > 250 \text{ GeV}$	$119 \pm 16 \pm 20 \pm 2$	125.2 ± 3.4		
EW-enriched, $m_{jj} > 1 \text{ TeV}$	$34.2 \pm 5.8 \pm 5.5 \pm 0.7$	38.5 ± 1.5		

$\sin^2\theta^{lep}_{eff}$ from $\mathbb{Z}/\gamma^* \rightarrow 11$

- Access to axialvector- and vector couplings via decay kinem.
- Consistency test with lepton collider results and global EW fits: precision \sim O(10 $^{-3}$)
- Large PDF uncertainty in $\sin^2\theta_w$ measurement @ 7 TeV

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{\ell\ell}\,\,\mathrm{d}y^{\ell\ell}\,\,\mathrm{d}m^{\ell\ell}\,\,\mathrm{d}\cos\theta\,\,\mathrm{d}\phi} = \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{\ell\ell}\,\,\mathrm{d}y^{\ell\ell}\,\,\mathrm{d}m^{\ell\ell}} \left\{ (1+\cos^2\theta) + \ldots + A_4(p_T^{ll},y^{ll},m^{ll})\cos\theta + \ldots \right\}$$

 m^{\parallel} , y^{\parallel} , $p_{_{T}}^{\parallel}$: Dilepton mass, rapidity, $p_{_{T}}$ ϕ , θ : Decay angles $(p_{_{T}}^{\parallel}$ is reweighted to data and integrated out)

Decomposition at LO EW theory into harmonic polynomials: A₄ sensitive to sin²θ^{lep}_{eff} → measurement binned in cosθ

$\sin^2\theta^{lep}_{eff}$ from $\mathbb{Z}/\gamma^* \rightarrow ll$

- Access to axialvector- and vector couplings via decay kinem.
- Consistency test with lepton collider results and global EW fits: precision \sim O(10 $^{-3}$)
- Large PDF uncertainty in $\sin^2\theta_w$ measurement @ 7 TeV

Decomposition at LO EW theory into harmonic polynomials: A₄ sensitive to sin²θ^{lep}_{eff} → measurement binned in cosθ

 $\{(1 + \cos^2 \theta) + ... + A_4(p_T^{ll}, y^{ll}, m^{ll}) \cos \theta + ... \}$

- Sensitivity to quark PDFs via m_n and y_n
- → Constrain PDFs in-situ $\sin^2\theta^{lep}_{eff}$ measurement

$\sin^2\theta^{lep}_{eff}$ from $\mathbb{Z}/\gamma^* \rightarrow ll$

- Consistency test with lepton collider results and global EW fits: precision $\sim O(10^{-3})$
- Large PDF uncertainty in $\sin^2\theta_w$ measurement @ 7 TeV

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{\ell\ell}\;\mathrm{d}y^{\ell\ell}\;\mathrm{d}m^{\ell\ell}\;\mathrm{d}\cos\theta\;\mathrm{d}\phi} = \frac{3}{16\pi}\frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{\ell\ell}\;\mathrm{d}y^{\ell\ell}\;\mathrm{d}m^{\ell\ell}} \left\{ (1+\cos^2\theta) + \ldots + A_4(p_T^{ll},y^{ll},m^{ll})\cos\theta + \ldots \right\}$$

Measurement of σ unfolded to Born level EW corrections are important

→ Improved Born Approximation

- Decomposition at LO EW theory into harmonic polynomials: A_4 sensitive to $\sin^2\!\theta^{lep}_{eff}$ \rightarrow measurement binned in $\cos\theta$
- Sensitivity to quark PDFs via m_n and y_n
- → Constrain PDFs in-situ $sin^2\theta^{lep}_{eff}$ measurement

43

m[#] [GeV] PW, QCD@LHC

$\sin^2\theta^{lep}_{eff}$ from $\mathbb{Z}/\gamma^* \rightarrow ll$

- Access to axialvector- and vector couplings via decay kinem.
- Consistency test with lepton collider results and global EW fits: precision \sim O(10 $^{-3}$)
- Large PDF uncertainty in $\sin^2\theta_w$ measurement @ 7 TeV

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{\ell\ell}\;\mathrm{d}y^{\ell\ell}\;\mathrm{d}m^{\ell\ell}\;\mathrm{d}\cos\theta\;\mathrm{d}\phi} = \frac{3}{16\pi}\frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{\ell\ell}\;\mathrm{d}y^{\ell\ell}\;\mathrm{d}m^{\ell\ell}} \left\{ (1+\cos^2\theta) + \ldots + A_4(p_T^{ll},y^{ll},m^{ll})\cos\theta + \ldots \right\}$$

Constributions from Z, Z/γ^* interference and γ^* :

- Decomposition at LO EW theory into harmonic polynomials: A₄ sensitive to sin²θ^{lep}_{eff} → measurement binned in cosθ
- Sensitivity to quark PDFs via m_n and y_n
- → Constrain PDFs in-situ $\sin^2\theta^{lep}_{eff}$ measurement

Signal & Backgrounds Estimation

Simple high-purity selection of dilepton events

Three final states:

- Two central muons
- Two central electrons
- Central+forward electron

Signal simulation:

- NLO Powheg-Box + Pythia8 PS, CT10 PDF
- m_{II}-dependent K-factor from NNLO pQCD
- NLO EW corrections using $G_{_{\it u}}$ scheme
- Amplitude coefficient A_0 reweighted in bins of $y_{_{\parallel}}$ and $p_{_{\top}}{}^{_{\parallel}}$

Small $|y_{\parallel}|$ and m_{\parallel} near Z peak: higher purity, smaller asymmetry Large $|y_{\parallel}|$ and m_{\parallel} off Z peak: more background, stronger asymmetry

Signal & Backgrounds Estimation

Simulated backgrounds:

- Top quarks
- Diboson
- $Z \rightarrow \tau \tau$
- W → |v

All very small below 10%, a bit higher in some regions

Data-driven estimates of fake lepton ~ multijets background:

- Fake muons, typically very small, up to ~5%
- Fake electrons, typically small, up to ~30-60% at high $|\eta|$

Central e and μ channel results consistent \rightarrow Combination of $\sigma \mbox{'s}$ using χ^2 minimization technique

Systematics

	Channel	eecc	$\mu\mu_{CC}$	ee_{CF}	$ee_{CC} + \mu\mu_{CC}$	$ee_{CC} + \mu\mu_{CC} + ee_{CF}$	
	entral value	0.23148	0.23123	0.23166	0.23119	0.23140	
Central value							
		Uncertainties					
Total		68	59	43	49	36	
	Stat.	48	40	29	31	21	
	Syst.	48	44	32	38	29	
		Uncertainties in measurements					
PI	OF (meas.)	8	9	7	6	4	
p_{T}^{Z}	modelling	0	0	7	0	5	
Lepton scale		4	4	4	4	3	
Lepton resolution		6	1	2	2	1	
Lepton efficiency		11	3	3	2	4	
Electron charge misidentification		2	0	1	1	< 1	
Muon sagitta bias		0	5	0	1	2	
В	ackground	1	2	1	1	2	
1	MC. stat.	25	22	18	16	12	
		Uncertainties in predictions					
PDF (predictions)		37	35	22	33	24	
QCD scales		6	8	9	5	6	
EW corrections		3	3	3	3	3	

 CF final state competitive with combined CC final states

Dominant uncertainties:

- On A₄ measurement:
 Data & MC stat.
- On interpretation $A_4 \rightarrow \sin^2 \theta^{lep}_{eff}$: PDF

48

Results

 \bullet Results for $\mathsf{A}_{\scriptscriptstyle{\mathsf{FB}}}$

Tau pol. in Ztautau

MC datasets

Sample	Event generator	PDF	UE tune
$(Z/\gamma^* \to \tau\tau)$ + jets	Alpgen 2.14 [3] + Pythia6.427 [4]	CTEQ6L1 [10]	Perugia2011C [11]
$(Z/\gamma^* \to \tau\tau)$ + jets	Pythia 8.160 [19]	CTEQ6L1	AU2 [20]
$(Z/\gamma^* \to \tau\tau)$ + jets	Powheg r1556 [21–23] + Pythia 8.160	CT10 [24]	AUET2 [28]
$(Z/\gamma^* \to \tau\tau)$ + jets	Alpgen 2.14 + Herwig 6.5/Jimmy 4.3 [25, 26]	CTEQ6L1	Perugia2011C
Top pairs + jets	Powheg r2129 + Рутніа 6.426	CT10	AUET2
$(W \rightarrow ev)$ + jets	Alpgen 2.14 + Pythia 6.427	CTEQ6L1	Perugia2011C
$(W \rightarrow \mu v)$ + jets	Alpgen 2.14 + Pythia 6.427	CTEQ6L1	Perugia2011C
$(W \rightarrow \tau v)$ + jets	Alpgen 2.14 + Pythia 6.427	CTEQ6L1	Perugia2011C
$(Z/\gamma^* \to ee) + \text{jets}$	Alpgen 2.14 + Pythia 6.427	CTEQ6L1	Perugia2011C
$(Z/\gamma^* \to \mu\mu) + \text{jets}$	Alpgen 2.14 + Pythia 6.427	CTEQ6L1	Perugia2011C

Results

- Single measurements generally compatible between final states
- One $\mu\mu_{cc}$ bin slightly off compared to most sensitive ee_{ce} bin

Result: $\sin^2\theta^{lep}_{eff} = 0.23140 \pm 0.00021 \text{ (stat.)} \pm 0.00024 \text{ (PDF)} \pm 0.00016 \text{ (syst.)}$

- Consistency with previous measurements
- Does not confirm the ~3 σ deviation from A_{ER}

30.8.2018 PW $\sin^2 \theta_{eff}^l$ 50