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Genuine Subtraction Methods



Cross Sections at NNLO:
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Genuine Subtraction Methods

Counter Terms
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» Counter terms allow pointwise cancellation of IR singularities.



The Zero
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» Remaining terms in sum are massfactorization terms and
result in PDF renormalization.



What Do Counter Terms Look Like?

Construction Principle
Construction of subtraction terms is based on

> The universal behaviour of QCD corrections in unresolved
limits.
— allows construction of counter terms according to
factorization, i.e. (singular kernel)x(correction at lower
multiplicity).

» Factorization of phase space for suitable momentum
mappings.
— allows integration over phase space of singular kernel only
— move subtraction terms across different phase space
multiplicities.



NNLOJET

The method of antenna subtraction is implemented in the
NNLOJET program, a semi-automated Monte Carlo for NNLO
phenomenology.

Processes

Many processes are already included at NNLO:
» pp—H + 0,1 jets [arXiv:1408.5325],
» pp—Z(/T17) + 0,1 jets [arXiv:1607.01749],
» pp—W(/T/7) + 0,1 jets [arXiv:1712.07543],
» NC & CC DIS single/dijets [arXiv:1606.03991],
» NC DIS single jet (N3LO) [arXiv:1803:099731,
» pp—dijets [arXiv:1611.01460] (Joao tomorrow).
» ete” — 3 jets [arXiv:1709.01097],
» VBF at NNLO [arxiv:1802.02445]

Reds are focus of this talk.



N3LO Single-Jet Production in NC DIS



Jet Production in NC DIS
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Lepton-proton scattering in NC DIS:

» Process (a) is single-jet production
— calculated to N3LO [arxiv:1803.09973]

» Processes (b) and (c) give dijet production
— calculated to NNLO [arxiv:1703.05977 & arxiv:1606.03991]

» Process (d) is trijet production (only available to NLO).



The Projection-to-Born (P2B) method

The P2B method [Cacciari et al., '15] is the simplest possible
incarnation of an IR subtraction method. The requirements for the
method's applicability are:
1. Existence of a unique mapping from higher multiplicities to
Born kinematics.
2. Process has been calculated inclusively to the desired order.

3. Differential results for the (4+1)-jet process are available to
one order lower.

» The weight of the IR finite (41)-jet contribution is then
projected to Born kinematics to give the required subtraction
term for the (41)-jet to the (40)-jet transition.



Situation for DIS Single-Jet Production

» Born kinematics is completely fixed by values of g, the virtual
vector boson’s momentum, and Bjorken x. The momentum of
the final-state jet is then given by (momentum conservation)

Pijet,8 = xP +q.

» Inclusive jet production in DIS is available to N3LO

[Vermaseren et al.,’05]

» DIS dijet production known to NNLO

— All ingredients at hand to apply P2B to obtain single-jet
production in DIS to N3LO.



N3LO Inclusive DIS Single-Jet Cross Section

At N3LO the fully inclusive cross section contains:
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where J(Og) is the jet function operating on Born kinematics.



Application of the P2B-Method

At N3LO the fully inclusive cross section can be written as:
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» The red terms are exactly the contributions to the inclusive
cross section apart from the three-loop correction, but with
opposite sign. (NLO-like) and blue(NNLO-like)
contributions cancel separately among each other.

» Each partonic multiplicity is individually IR finite.



Validation at NNLO (P2B vs. Antenna)

do/dn®* [pb]

P28 / Antenna

We calculated single-jet distributions measured by ZEUS

[arXiv:hep-ex/0502029].
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N3LO results
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Conclusions for Single-Jet Results

» N3LO PDFs not available.

» Experimental errors (jet energy uncertainty) still large.

» Calculation might gain importance in analysis of data from a
future LHeC collider.

» Allows single-jet cross sections to be evaluated with fiducial
cuts

— no need to extrapolate experimental data
— smaller errors.



NNLO QCD Event Orientations in eTe™
annihilation



NNLO QCD Fixed-Order Predictions for ete™ — v/Z —3
Jets

Fixed-order predictions for canonical event shapes:
» Antenna subtraction [S. Weinzier| (2009),
Gehrmann-DeRidder et.al (2007) EERAD3]
» CoLoRFuINNLO [Del Duca et.al(2016)]
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Is There Room for Improvement?

Previous calculations have been run for idealized lepton kinematics
and for full 47 angular coverage:

— Lepton kinematics can be averaged out!

» Data has to be corrected for limited detector acceptance to
match theoretical prediction

» SLD [hep-ex/9608016] found NLO effects to be small!

To be really precise, i.e. per-mille level, theoretical predictions
should mirror experimental measurements:

— compare distributions in fiducial region

— use event orientations to get an indication for size of effects!



What Are Event Orientations?
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For exclusive three-jet final states, event orientations are defined
by:

» ©, On, X
Full lepton kinematic has to be considered in calculations!



Experimental Measurements

We compare orientation variables for exclusive three-jet final states
measured by L3 experiment at the LEP collider with COM of M.
Jets are found using the JADE algorithm with parameter y.:.
» L3 obtained two measurements:
1. For 0.02 < yeue < 0.05
2. For a fixed coarse jet resolution; y.,; = 0.25

All data:

» Corrections to 47 acceptance: only relevant in endpoint bins
of event orientation distributions.

» normalised to the three-jet cross section

1. distributions integrate to unity by construction.
2. leading order is independent of as.

—Look order-by-order for size of corrections.



Results for ©p: Coarse vs Fine Jet Resolution
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Results for ©: Coarse vs Fine Jet Resolution
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Results for x: Coarse

vs Fine Jet Resolution
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Conclusions

We find that event orientation variables
» are extremely robust under QCD corrections.

» and finer jet resolution has smaller corrections.

Our findings support the validity of applied acceptance corrections
at LEP!

However, to obtain per-mille accuracy at a future linear collider
comparison of data and theory in the fiducial region will be
important.



Thank you for your attention!
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