N3LO QCD DIS Single-jet production and NNLO QCD e^+e^- event orientation with NNLOJET

Jan Niehues

August 28, 2018

Genuine Subtraction Methods

N³LO Single-Jet Production in NC DIS

NNLO QCD Event Orientations in e^+e^- annihilation

Genuine Subtraction Methods

Cross Sections at NNLO:

$$\sigma_{\rm LO} = \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{\rm B},$$

$$\sigma_{\rm NLO} = \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{\rm NLO}^{\rm real(R)} + \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{\rm NLO}^{\rm virtual(V)} + \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{\rm NLO}^{\rm MF},$$

$$\begin{aligned} \sigma_{\text{NNLO}} &= \int \limits_{d\Phi_{m+2}} \mathrm{d}\sigma_{\text{NNLO}}^{\text{RR}} + \int \mathrm{d}\sigma_{\text{NNLO}}^{\text{RV}} + \int \limits_{d\Phi_m} \mathrm{d}\sigma_{\text{NNLO}}^{\text{VV}} \\ &+ \int \limits_{d\Phi_m} \mathrm{d}\sigma_{\text{NNLO}}^{\text{MF},1} + \int \limits_{d\Phi_{m+1}} \mathrm{d}\sigma_{\text{NNLO}}^{\text{MF},2}. \end{aligned}$$

Genuine Subtraction Methods

Counter Terms

Counter terms allow pointwise cancellation of IR singularities.

The Zero

 Remaining terms in sum are massfactorization terms and result in PDF renormalization.

What Do Counter Terms Look Like?

Construction Principle

Construction of subtraction terms is based on

 The universal behaviour of QCD corrections in unresolved limits.

 \rightarrow allows construction of counter terms according to factorization, i.e. (singular kernel)×(correction at lower multiplicity).

 Factorization of phase space for suitable momentum mappings.

 \rightarrow allows integration over phase space of singular kernel only \rightarrow move subtraction terms across different phase space multiplicities.

NNLOJET

The method of antenna subtraction is implemented in the $\rm NNLOJET$ program, a semi-automated Monte Carlo for NNLO phenomenology.

Processes

Many processes are already included at NNLO:

- ▶ pp→H + 0,1 jets [arXiv:1408.5325],
- ▶ $pp \rightarrow Z(l^+l^-) + 0,1$ jets [arXiv:1607.01749],
- ▶ pp→W(l⁺l⁻) + 0,1 jets [arXiv:1712.07543],
- NC & CC DIS single/dijets [arXiv:1606.03991],
- NC DIS single jet (N³LO) [arXiv:1803:09973],
- ▶ pp→dijets [arXiv:1611.01460] (Joao tomorrow).
- $e^+e^- \rightarrow 3$ jets [arXiv:1709.01097],
- VBF at NNLO [arXiv:1802.02445]

Reds are focus of this talk.

$N^{3}LO$ Single-Jet Production in NC DIS

Jet Production in NC DIS

Lepton-proton scattering in NC DIS:

- ► Process (a) is single-jet production → calculated to N3LO [arxiv:1803.09973]
- ► Processes (b) and (c) give dijet production → calculated to NNLO [arxiv:1703.05977 & arxiv:1606.03991]
- Process (d) is trijet production (only available to NLO).

The Projection-to-Born (P2B) method

The P2B method [Cacciari et al., '15] is the simplest possible incarnation of an IR subtraction method. The requirements for the method's applicability are:

- 1. Existence of a unique mapping from higher multiplicities to Born kinematics.
- 2. Process has been calculated inclusively to the desired order.
- 3. Differential results for the (+1)-jet process are available to one order lower.
- ► The weight of the IR finite (+1)-jet contribution is then projected to Born kinematics to give the required subtraction term for the (+1)-jet to the (+0)-jet transition.

Situation for DIS Single-Jet Production

Born kinematics is completely fixed by values of q, the virtual vector boson's momentum, and Bjorken x. The momentum of the final-state jet is then given by (momentum conservation)

$$p_{1jet,B} = xP + q.$$

- Inclusive jet production in DIS is available to N³LO [Vermaseren et al., '05]
- DIS dijet production known to NNLO

 \rightarrow All ingredients at hand to apply P2B to obtain single-jet production in DIS to N^3LO.

N3LO Inclusive DIS Single-Jet Cross Section

At N³LO the fully inclusive cross section contains:

$$\frac{\mathrm{d}\sigma_{\chi}^{N^{3}\mathrm{LO,\,incl.}}}{\mathrm{d}\mathcal{O}_{\mathrm{B}}} = \int_{\Phi_{n+3}} \mathrm{d}\sigma_{\chi}^{RRR} J(\mathcal{O}_{\mathrm{B}}) + \int_{\Phi_{n+2}} \mathrm{d}\sigma_{\chi}^{RRV} J(\mathcal{O}_{\mathrm{B}}) + \int_{\Phi_{n+3}} \mathrm{d}\sigma_{\chi}^{RVV} J(\mathcal{O}_{\mathrm{B}}) + \int_{\Phi_{n}} \mathrm{d}\sigma_{\chi}^{VVV} J(\mathcal{O}_{\mathrm{B}}) ,$$

where $J(\mathcal{O}_{B})$ is the jet function operating on Born kinematics.

Application of the P2B-Method

At N³LO the fully inclusive cross section can be written as:

$$\begin{split} \frac{\mathrm{d}\sigma_X^{N^3\mathrm{LO}}}{\mathrm{d}\mathcal{O}} &= \int_{\Phi_{n+3}} \left(\mathrm{d}\sigma_X^{RRR} \big(J(\mathcal{O}_{n+3}) - J(\mathcal{O}_{n+3\to\mathrm{B}}) \big) \\ &- \mathrm{d}\sigma_{X+j}^{S,a} \big(J(\mathcal{O}_{n+2}) - J(\mathcal{O}_{n+2\to\mathrm{B}}) \big) - \mathrm{d}\sigma_{X+j}^{S,b} \big(J(\mathcal{O}_{n+1}) - J(\mathcal{O}_{n+1\to\mathrm{B}}) \big) \right) \\ &+ \int_{\Phi_{n+2}} \left(\mathrm{d}\sigma_X^{RRV} \big(J(\mathcal{O}_{n+2}) - J(\mathcal{O}_{n+2\to\mathrm{B}}) \big) \\ &- \mathrm{d}\sigma_{X+j}^{T,a} \big(J(\mathcal{O}_{n+2}) - J(\mathcal{O}_{n+2\to\mathrm{B}}) \big) - \mathrm{d}\sigma_{X+j}^{T,b} \big(J(\mathcal{O}_{n+1}) - J(\mathcal{O}_{n+1\to\mathrm{B}}) \big) \right) \\ &+ \int_{\Phi_{n+1}} \left(\mathrm{d}\sigma_X^{RVV} \big(J(\mathcal{O}_{n+1}) - J(\mathcal{O}_{n+1\to\mathrm{B}}) \big) - \mathrm{d}\sigma_{X+j}^{U} \big(J(\mathcal{O}_{n+1}) - J(\mathcal{O}_{n+1\to\mathrm{B}}) \big) \right) \\ &+ \frac{\mathrm{d}\sigma_X^{N^3\mathrm{LO,incl.}}}{\mathrm{d}\mathcal{O}_\mathrm{B}} \,. \end{split}$$

- The red terms are exactly the contributions to the inclusive cross section apart from the three-loop correction, but with opposite sign. Green(NLO-like) and blue(NNLO-like) contributions cancel separately among each other.
- Each partonic multiplicity is individually IR finite.

Validation at NNLO (P2B vs. Antenna)

We calculated single-jet distributions measured by ZEUS [arXiv:hep-ex/0502029].

N³LO results

Conclusions for Single-Jet Results

- N3LO PDFs not available.
- Experimental errors (jet energy uncertainty) still large.
- Calculation might gain importance in analysis of data from a future LHeC collider.
- Allows single-jet cross sections to be evaluated with fiducial cuts
 - \rightarrow no need to extrapolate experimental data
 - \rightarrow smaller errors.

NNLO QCD Event Orientations in $e^+e^$ annihilation

NNLO QCD Fixed-Order Predictions for $e^+e^- \rightarrow \gamma/Z \rightarrow 3$ Jets

Fixed-order predictions for canonical event shapes:

Antenna subtraction [S. Weinzierl (2009),

Gehrmann-DeRidder et.al (2007) EERAD3]

CoLoRFuINNLO [Del Duca et.al(2016)]

Is There Room for Improvement?

Previous calculations have been run for idealized lepton kinematics and for full 4π angular coverage:

 \rightarrow Lepton kinematics can be averaged out!

- Data has to be corrected for limited detector acceptance to match theoretical prediction
- SLD [hep-ex/9608016] found NLO effects to be small!

To be really precise, i.e. per-mille level, theoretical predictions should mirror experimental measurements:

- \rightarrow compare distributions in fiducial region
- \rightarrow use event orientations to get an indication for size of effects!

What Are Event Orientations?

For exclusive three-jet final states, event orientations are defined by:

► Θ, Θ_N, χ

Full lepton kinematic has to be considered in calculations!

Experimental Measurements

We compare orientation variables for exclusive three-jet final states measured by L3 experiment at the LEP collider with COM of M_Z . Jets are found using the JADE algorithm with parameter y_{cut} .

- L3 obtained two measurements:
 - 1. For $0.02 < y_{cut} < 0.05$
 - 2. For a fixed coarse jet resolution; $y_{cut} = 0.25$

All data:

- Corrections to 4π acceptance: only relevant in endpoint bins of event orientation distributions.
- normalised to the three-jet cross section
 - 1. distributions integrate to unity by construction.
 - 2. leading order is independent of α_s .

 $\rightarrow \text{Look}$ order-by-order for size of corrections.

Results for Θ_N : Coarse vs Fine Jet Resolution

Results for Θ : Coarse vs Fine Jet Resolution

Results for χ : Coarse vs Fine Jet Resolution

Conclusions

We find that event orientation variables

- ► are extremely robust under QCD corrections.
- and finer jet resolution has smaller corrections.

Our findings support the validity of applied acceptance corrections at LEP!

However, to obtain per-mille accuracy at a future linear collider comparison of data and theory in the fiducial region will be important.

Thank you for your attention!