DIFFERENTIAL EQUATIONS FOR FEYNMAN INTEGRALS

Ulrich Schubert

Argonne National Laboratory

In collaboration with S. Di Vita, S. Laporta, P. Mastrolia, M. Passera, A. Primo, and W. Torres Bobadilla based on arXiv: 1709.07435, 1806.08241

• A

Amplitude given by Feynman diagrams

 $A = \sum_i a_i I_i$

Amplitude given by Feynman diagrams

 $A = \sum_i a_i I_i$

Amplitude given by Feynman diagrams

$$A = \sum_{i} a_{i} I_{i}$$

Project onto basis

$$A = \sum_i c_i f_i$$

- Integration-by-parts identities

- Integrand Reduction
- General Unitarity

- Numerical Unitarity

Jentities Tkachov; Chetyrkin, Tkachov Ossola, Papadopoulos, Pittau; Ellis, Giele, Kunszt; Mastrolia, Zhang; Mastrolia, Mirabella, Ossola, Peraro Bern, Dixon, Dunbar, Kosower; Cachazo, Svrcek, Witte Britto, Cachazo, Feng Ita; Abreu, Febres Cordero, Ita, Jaquier, Page

A

 \mathbf{f}_2

Amplitude given by Feynman diagrams

$$A = \sum_i a_i I_i$$

Project onto basis

$$A = \sum_i c_i f_i$$

- Integration-by-parts identities

- Integrand Reduction
- General Unitarity
- Numerical Unitarity
- Calculation of master integrals
 - Feynman parameter
 - Mellin-Barnes
 - Differential equations
 - Difference equation

Dentities Tkachov; Chetyrkin, Tkachov Ossola, Papadopoulos, Pittau; Ellis, Giele, Kunszt; Mastrolia, Zhang; Mastrolia, Mirabella, Ossola, Peraro Bern, Dixon, Dunbar, Kosower; Cachazo, Svrcek, Witte Britto, Cachazo, Feng Ita; Abreu, Febres Cordero, Ita, Jaquier, Page

Smirnov; Tausk; Czakon; Smirnov, Smirnov

A

 \mathbf{f}_2

Kotikov; Remiddi; Gehrmann, Remiddi

Laporta; Lee, Smirnov, Smirnov

ONE-LOOP AMPLITUDES

- Techniques implemented in public codes
 - BlackHat
 Bern, Dixon, Febre-Cordero, Forde, Hoecke, Ita, Kosower Maitre Oze
 - FeynArts/FormCalc/LoopTools

Hahn et. al

- MadLoop
 Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau
- HelacNLO
 Bevilacqua, Czakon, van Hameren, Papadopoulos, Pittau, Worel
- Njets
 Badger, Biederman, Uwer, Yundin
- OpenLoops
 Cascioli, Maierhoefer, Pozorini
- Recola
 Actis, Denner, Hofer, Scharf, Uccirati
- Rocket
 Ellis, Giele, Kunszt, Melnikov, Zanderighi
 - Cullen, Greiner, Heinrich, Mastrolia, Ossola, Reiter,, Tramontano

GoSam

ONE-LOOP AMPLITUDES

- Techniques implemented in public codes
 - BlackHat :: On-shell recurrence+ Generalised Unitarity
 - FeynArts/FormCalc/LoopTools :: Feynman Diag. + Tensor Red./Integrand Red.
 - MadLoop :: tree-level recurrence+ Integrand Red.
 - HelacNLO :: tree-level recurrence+ Integrand Red.
 - Njets :: on-shell recurrence+ Generalised Unitarity
 - OpenLoops :: recursive tensors+ Tensor Red./Integrand Red.
 - Recola :: recursive tensors + Tensor Red.
 - Rocket :: tree-level recurrence + Generalised Unitarity
 - GoSam :: Feynman Diag. + Tensor Red./ Integrand Red.

ONE-LOOP VS TWO-LOOP

	One-Loop	Two-Loop
Graphs	only planar	planar and non-planar
Integral Basis	known for any process	determined case-by-case ?
Integrals	known for general mass configurations	only for certain cases
IR Poles	cancellation between one-loop and tree-level	cancellation between two- and one-loop and tree-level
Functions	logs and di-logs	logs, polylogs, elliptic functions and more ?

Differential

Equations

DIFFERENTIAL EQUATIONS

Derivative in space spanned by MI

 $\partial_x \vec{f} = A_x \vec{f}$

- $> A_x$ inhabits properties of IBP
 - Block triangular
 - Rational in x and $\varepsilon = (4-d)/2$

Bottom up Approach

- Solve each block separately
- Previously solved integrals appear as inhomogeneous part

Matrix Approach

Conjecture: There is a basis such that:

$$\partial_x \vec{g} = \epsilon \tilde{A}_x \vec{g}$$

Makes integration simple
But: Finding basis is difficult

CANONICAL DIFFERENTIAL EQUATIONS

Factorization of ε often coincides with dlog-form

$$d\vec{g}(x,\epsilon) = \epsilon \sum_{i} M_{i} dlog(\eta_{i}) \vec{g}(x,\epsilon)$$

- Kinematic Dependence encoded in η
- ηs form the alphabet

Solution given by

$$ec{g}(x,\epsilon) = \left[1 + \sum_{i=1}^\infty \int_\gamma dA \dots dA
ight] ec{g}(x_0,\epsilon)$$

Many strategies to find such forms

- Unit leading singularity
- Magnus Theorem
- Rational Ansatz for basis change
- Reduction to fuchsian form and Eigenvalue normalisation
- Expand basis change in ε
- Factorisation of Picard-Fuchs operator

Henn

Ageri, Di Vita, Mastrolia, Mirabella, Schlenk, Tancredi, US

Gehrmann, von Manteuffel, Tancredi, Weihs

Lee; Gituliar, Magerya

Meyer Adams, Chaubery, Weinzierl

BOUNDARY CONDITIONS

Solution given by

$$ec{g}(x,\epsilon) = \left[1 + \sum_{i=1}^{\infty} \int_{\gamma} dA \dots dA\right] ec{g}(x_0,\epsilon)$$

Two general ways to fix the boundary

- Taking the limit x to x_0
- Fix boundary constant by matching the solution to known function

Pseudo-thresholds

- Solution has unphysical divergences
- Demanding absence of unphysical divergences gives relations between boundary constant
- Leftover constants must be provided

Example 1: Muon-Electron scattering

MUON G-2

High precision test of Standard model

 $a_{\mu}^{E821} = 116592089(63) \times 10^{-11}$

Standard model prediction

 $a_{\mu}^{SM} = 116591802(49) \times 10^{-11}$

Bennett et al. [Muon g-2 Collaboration]

Davier, Hoecker, Malasecu, Zhang

\sim g-2 experiment at Fermilab could push difference to 5σ

> Biggest theory uncertainty from hadronic contribution

$$\begin{split} a^{SM}_{\mu} &= a^{QED}_{\mu} + a^{Weak}_{\mu} + a^{Hadr}_{\mu} \\ a^{QED}_{\mu} &= 116584718.95(8) \times 10^{-11} & \text{Aoyama, Hayakawa, Kinoshita, Nio} \\ a^{Weak}_{\mu} &= 153(2) \times 10^{-11} & \text{Gnendinger, Stoeckinger, Stoeckinger-Kim} \\ a^{Had,LO}_{\mu} &= 6949(58) \times 10^{-11} & \text{Hagiwara, Liao, Martin, Nomura, Teubner} \\ a^{Had,NLO}_{\mu} &= -98.4(4) \times 10^{-11} & \text{Davier, Hoecker, Malaescu, Zhang} \\ a^{HLbL}_{\mu} &= 105(26) \times 10^{-11} & \text{Prades, de Rafael, Vainshtein} \end{split}$$

$$g_{\mu} = 2(1+a_{\mu})$$

LEADING HADRONIC CONTRIBUTION

- Extract a_{μ}^{HLO} from experimental data Bouchiat; Michele; Durand,; Gourdin, de Rafael $a_{\mu}^{HLO} = \frac{1}{4\pi^3} \int_{4m^2}^{\infty} ds \int_{0}^{1} dx \frac{x^2(1-x)}{x^2 + (1-x)s/m^2} \sigma_{e^+e^- \to Had}(s)$
- Low energy region plagued by production thresholds
- > Alternatively compute from space-like data

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} dx (1-x) \Delta \alpha_{Had}[t(x)] \qquad t(x) = \frac{x^2 m_{\mu}^2}{x-1} < 0$$

> Extract $\Delta \alpha_{Had}[t(x)]$ from running of α in μe scattering

Proposed experiment MUonE: 150GeV µ-beam on atomic e

Carloni Calame, Passera et al; Abbiendi, Carloni Calame, Marconi et al

MUON ELECTRON SCATTERING AT NNLO

Four-point topologies at NNLO

Most planar integrals known analytically

- $t\bar{t}$ production in QCD
- Bhabha scattering in QED
- heavy-to-light quark decay in QCD

Gehrmann, Remiddi, Bonciani, Mastrolia, Remiddi

Bonciani, Ferroglia; Asatrian Greub, Pecjak

Bonciani, Ferroglia, Gehrmann

> Unknown integrals with more massive lines

PLANAR INTEGRALS

Mastrolia, Passera, Primo, U.S.

65 distinct master integrals identified with Reduze

PLANAR INTEGRALS

Variables

$$-\frac{s}{m^2} = x \qquad \qquad -\frac{t}{m^2} = \frac{(1-y)^2}{y}$$

MIs satisfy pre-canonical form

$$\partial_x \vec{f} = (A_{0,x} + \epsilon A_{1,x})\vec{f}$$
 $\partial_y \vec{f} = (A_{0,y} + \epsilon A_{1,y})\vec{f}$

Use Magnus exponential to obtain canonical form

$$\partial_x \vec{g} = \epsilon \tilde{A}_x \vec{g} \qquad \qquad \partial_y \vec{g} = \epsilon \tilde{A}_y \vec{g}$$

Combine to total differential

$$egin{aligned} dec{g} &= \epsilon dAec{g} \ & dA = M_1 dlog(x) + M_2 dlog(1+x) + M_3 dlog(1-x) \ & + M_4 dlog(y) + M_5 dlog(1+y) + M_6 dlog(1-y) \ & + M_7 dlog(x+y) + M_8 dlog(1+xy) \ & + M_9 dlog(1-y(1-x-y)) \end{aligned}$$

> Arguments of dlog form alphabet

BOUNDARY FIXING

Mastrolia, Passera, Primo, U.S.

All Integrals checked numerically with SecDec

Identify candidates via unitarity cuts

$$= \int d^4k_1 \frac{1}{(k_1^2 - m^2)(k_1 + p_1)^2(k_1 + p_1 + p_2)^2(k_1 + p_4)^2((k_1 + p_3)^2 + m^2)}$$

Pentagon-type integrals are not good choices Cancel propagators arising from cut

Variables

$$\frac{s}{m^2} = 1 + \frac{(1-w)^2}{w-z^2} \qquad \qquad -\frac{t}{m^2} = \frac{(1-w)^2}{w}$$

MIs satisfy pre-canonical form

 $\partial_z \vec{f} = (A_{0,z} + \epsilon A_{1,z})\vec{f}$ $\partial_w \vec{f} = (A_{0,w} + \epsilon A_{1,w})\vec{f}$

> Use Magnus exponential to obtain canonical form

$$\partial_w \vec{g} = \epsilon \tilde{A}_w \vec{g}$$
 $\partial_z \vec{g} = \epsilon \tilde{A}_z \vec{g}$

Combine to total differential

$$egin{aligned} dec{g} &= \epsilon dAec{g} & dA = M_1 dlog(w) + M_2 dlog(1+w) + M_3 dlog(1-w) \ &+ M_4 dlog(z) + M_5 dlog(1+z) + M_6 dlog(1-z) \ &+ M_7 dlog(w+z) + M_8 dlog(w-z) + M_9 dlog(w-z^2) \ &+ M_{10} dlog(1-w+w^2-z^2) + M_{11} dlog(1-3w+w^2+z^2) \ &+ M_{12} dlog(w^2-z^2+wz^2-w^2z^2) \end{aligned}$$

> All integrals checked against SecDec or in-house numerical code

Example 2: Non-Planar Vertex

> Variables

$$x = -\frac{s}{m^2}$$
 $y = -\frac{p_2^2}{m^2}$

- > DEQ is in pre-canonical form
 - $\partial_x \vec{f} = (A_{0,x} + \epsilon A_{1,x}) \vec{f}$ $\partial_y \vec{f} = (A_{0,y} + \epsilon A_{1,y}) \vec{f}$
- Magnus finds canonical basis for first 20 integrals
- But Magnus series does not converge for last two integrals

> Knowing ε^0 solution equivalent to finding canonical form

$$\partial_x B(x) = A_0 B(x)$$

Investigate DEQ

$$\partial_{x} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} = A_{0,x} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} + \epsilon A_{1,x} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} + C_{x} \vec{\mathbf{I}}_{sub}$$
$$\partial_{y} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} = A_{0,y} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} + \epsilon A_{1,y} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} + C_{y} \vec{\mathbf{I}}_{sub},$$

> Knowing ε^0 solution equivalent to finding canonical form

$$\partial_x B(x) = A_0 B(x)$$

> Unitarity cut is solution to homogenous DEQ

Lee, Smirnov; Primo, Tancredi

$$\partial_{x} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} = A_{0,x} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} + \epsilon A_{1,x} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} + C_{x} \vec{\mathbf{I}}_{sub}$$
$$\partial_{y} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} = A_{0,y} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} + \epsilon A_{1,y} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} + C_{y} \vec{\mathbf{I}}_{sub},$$

> Knowing ϵ^0 solution equivalent to finding canonical form

$$\partial_x B(x) = A_0 B(x)$$

> d=4 Unitarity cut is solution to ϵ^0 -part of homogenous DEQ

$$\partial_{x} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} = A_{0,x} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} + \epsilon A_{1,x} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} + C_{x} \vec{\mathbf{I}}_{sub}$$
$$\partial_{y} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} = A_{0,y} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} + \epsilon A_{1,y} \begin{pmatrix} \mathbf{F}_{21} \\ \mathbf{F}_{22} \end{pmatrix} + C_{y} \vec{\mathbf{I}}_{sub},$$

Lee, Smirnov; Primo, Tancredi

> Knowing ϵ^0 solution equivalent to finding canonical form

$$\partial_x B(x) = A_0 B(x)$$

> d=4 Unitarity cut is solution to ϵ^0 -part of homogenous DEQ

$$\partial_{x} \begin{pmatrix} F_{21} \\ F_{22} \end{pmatrix} = A_{0,x} \begin{pmatrix} F_{21} \\ F_{22} \end{pmatrix} + \epsilon A_{1,x} \begin{pmatrix} F_{21} \\ F_{22} \end{pmatrix} + C_{x} \vec{\mathbf{I}}_{sub}$$
$$\partial_{y} \begin{pmatrix} F_{21} \\ F_{22} \end{pmatrix} = A_{0,y} \begin{pmatrix} F_{21} \\ F_{22} \end{pmatrix} + \epsilon A_{1,y} \begin{pmatrix} F_{21} \\ F_{22} \end{pmatrix} + C_{y} \vec{\mathbf{I}}_{sub},$$

Lee, Smirnov; Primo, Tancredi

> Unitarity cut reveals elliptic nature of integral

Cut₁ (F₂₁) = F_{21,1} =
$$\omega K(\omega^2)$$
 $\omega = \frac{s - p_2^2}{\sqrt{s^2 - 2sp_2^2 + 16sm^2 + p_2^4}}$

2nd independent Solution found by properties of elliptic integrals

$$\mathbf{F}_{21,2} = wK\left(1 - \omega^2\right)$$

Find other solutions through DEQ

$$F_{22,1} = -\frac{\omega(s+p_2^2)(16m^2-s)}{16m^2s}E(\omega^2)$$

$$F_{22,2} = -\frac{\omega(s+p_2^2)(16m^2-s)}{16m^2s}(E(1-\omega^2)-K(1-\omega^2))$$

Build new basis from found solutions

$$\begin{split} \mathbf{I}_{21} &= -2\frac{(s-p_2^2)^2}{\omega} \left(E\left(1-\omega^2\right) - K\left(1-\omega^2\right) \right) \,\mathbf{F}_{21} + \frac{16m^2s(s-p_2^2)^2}{(s+p_2^2)\omega} K\left(1-\omega^2\right) \,\mathbf{F}_{22} \,, \\ \mathbf{I}_{22} &= -2\frac{(s-p_2^2)^2}{\omega} E\left(\omega^2\right) \,\mathbf{F}_{21} - \frac{16m^2s(s-p_2^2)^2}{(s+p_2^2)\omega} K\left(\omega^2\right) \,\mathbf{F}_{22} \,, \end{split}$$

- > ɛ-factorized DEQ depends on elliptic integrals
- Solution given by iterated integrals with elliptic functions in the integrand
- Checked against SecDec

Conclusions

CONCLUSIONS

- Canonical DEQ revived the field
- \sim Magnus Exponential can find canonical basis if the initial DEQ is linear in ϵ
 - QED vertex at two-loop, 2 to 2 massless box, Higgs+Jet at two-loop, Ladder topology for Higgs+Jet at three-loop, mixed QCD-EW corrections to Drell-Yan, leading QCD corrections for H to WW at two-loop, Muon-Electron scattering at NNLO
- Amplitudes for muon-electron scattering at NNLO are coming
 - Important cross-check for leading hadronic contribution to muon g-2
- Unitarity cuts are important tools to find ε-factorized DEQ
- Extensions to elliptic integrals are being explored
- Is there a "canonical" form for elliptic integrals?
- Do all DEQ have an ε-factorized form ?

Thank you for your attention

INTEGRATION-BY-PARTS IDENTITIES

Generated from Stokes Theorem

$$\int \prod_{i=1}^{L} d^{d}k_{i} \frac{\partial}{\partial k_{\mu,i}} \left(\frac{q_{j}^{\mu}}{D_{1}^{\alpha_{1}} \dots D_{N}^{\alpha_{N}}} \right) = 0 \qquad \quad \leftrightarrow \qquad A\vec{I} = 0$$

Rank of As null space gives number of master integrals

Limiting factors

- Algebra in Gaussian Elimination
 - Finite Field Method
- Solving unnecessary Equations
 - Generate IBPs without higher powers
 - IBPs on the cut

Implemented in Public Codes

- Reduze
 Studerus, von Manteuffel
- Fire Smirnov
- Air Anastasiou, Lazopolus
- Kira Maierhoefer, Usovitsch, Uwer

von Manteuffel, Schabinger; Maierhoefer, Usovitsch, Uwer; Peraro

- Larsen, Zhang
- Larsen, Zhang

D VERTEX

ł.

$$p_{12} = 0,$$

$$g_{12}^{(0)} = 0,$$

$$g_{12}^{(1)} = 0,$$

$$g_{12}^{(2)} = 0,$$

$$g_{12}^{(2)} = 0,$$

$$g_{12}^{(3)} = -H(0, 0, 0; x) - \zeta_2 H(0; x),$$

$$g_{12}^{(4)} = -2H(-1, 0, 0, 0; x) + 2H(0, -1, 0, 0; x) + 2H(0, 0, -1, 0; x)$$

$$-3H(0, 0, 0, 0; x) - 4H(0, 1, 0, 0; x) + \zeta_2(-2H(-1, 0; x))$$

$$+ 6H(0, -1; x) - H(0, 0; x)) + 2\zeta_3 H(0; x) + \frac{\zeta_4}{4},$$

ALL LCCT (DOAL)

$$\begin{split} p_1 \\ g_{13}^{(0)} &= 0, \\ g_{13}^{(1)} &= 0, \\ g_{13}^{(2)} &= H(0,0;x) + \frac{3\zeta_2}{2}, \\ g_{13}^{(3)} &= -2 \,H(-1,0,0;x) - 2 \,H(0,-1,0;x) + 4 \,H(0,0,0;x) + 4 \,H(1,0,0;x) \\ &+ \zeta_2(-6 \,H(-1;x) + 2 \,H(0;x) - 3 \log 2) - \frac{\zeta_3}{4}, \\ g_{13}^{(4)} &= 4 \,H(-1,-1,0,0;x) + 4 \,H(-1,0,-1,0;x) - 8 \,H(-1,0,0,0;x) \\ &- 8 \,H(-1,1,0,0;x) + 4 \,H(0,-1,-1,0;x) - 8 \,H(0,-1,0,0;x) \\ &- 8 \,H(0,0,-1,0;x) + 10 \,H(0,0,0,0;x) + 12 \,H(0,1,0,0;x) \\ &- 8 \,H(1,-1,0,0;x) + 3 \,H(1,0,-1,0;x) + 16 \,H(1,0,0,0;x) \\ &+ 16 \,H(1,1,0,0;x) + 12 \,Li_4 \frac{1}{2} + \frac{\log^4 2}{2} + 2 \,\zeta_2 \,(12 \log 2 \,H(-1;x) \\ &+ 12 \log 2 \,H(1;x) + 6 \,H(-1,-1;x) - 2 \,H(-1,0;x) - 8 \,H(0,-1;x) \\ &+ H(0,0;x) - 12 \,H(1,-1;x) + 4 \,H(1,0;x) + 3 \log^2 2) \\ &- 2 \,\zeta_3(5 \,H(-1;x) + 4 \,H(0;x) + 11 \,H(1;x)) - \frac{47 \,\zeta_4}{4}, \end{split}$$