DIFFERENTIAL EQUATIONS FOR FEYNMAN INTEGRALS

Ulrich Schubert

Argonne National Laboratory

In collaboration with S. Di Vita, S. Laporta, P. Mastrolia, M. Passera, A. Primo, and W. Torres Bobadilla based on arXiv: 1709.07435, 1806.08241

LOOP AMPLITUDE

> Amplitude given by Feynman diagrams

$$
A=\sum_{i} a_{i} I_{i}
$$

- A

LOOP AMPLITUDE

> Amplitude given by Feynman diagrams

$$
A=\sum_{i} a_{i} I_{i}
$$

LOOP AMPLITUDE

> Amplitude given by Feynman diagrams

$$
A=\sum_{i} a_{i} I_{i}
$$

> Project onto basis

$$
A=\sum_{i} c_{i} f_{i}
$$

- Integration-by-parts identities Tkachov; Chetyrkin, Tkachov
- Integrand Reduction Ossola, Papadopoulos, Pittau; Ellis, Giele, Kunszt; Mastrolia, Zhang; Mastrolia, Mirabella, Ossola, Peraro
- General Unitarity
- Numerical Unitarity

LOOP AMPLITUDE

> Amplitude given by Feynman diagrams

$$
A=\sum_{i} a_{i} I_{i}
$$

> Project onto basis

$$
A=\sum_{i} c_{i} f_{i}
$$

- Integration-by-parts identities Tkachov; Chetyrkin, Tkachov
- Integrand Reduction Ossola, Papadopoulos, Pittau; Ellis, Giele, Kunszt; Mastronalian Zhang; Mastrolia, Mirabella, Ossola, Peraro
- General Unitarity
- Numerical Unitarity
> Calculation of master integrals
- Feynman parameter
- Mellin-Barnes
- Differential equations
- Difference equation

Smirnov; Tausk; Czakon; Smirnov, Smirnov
Kotikov; Remiddi; Gehrmann, Remiddi
Laporta; Lee, Smirnov, Smirnov

ONE-LOOP AMPLITUDES

> Techniques implemented in public codes

- BlackHat

Bern, Dixon, Febre-Cordero, Forde, Hoecke, Ita, Kosower Maitre Oz

- FeynArts/FormCalc/LoopTools Hahn et. al
- MadLoop

Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau

- HelacNLO

Bevilacqua, Czakon, van Hameren, Papadopoulos, Pittau, Worek

- Njets
- OpenLoops
- Recola
- Rocket

> Badger, Biederman, Uwer, Yundin

Cascioli, Maierhoefer, Pozorini

Actis, Denner, Hofer, Scharf, Uccirati

Ellis, Giele, Kunszt, Melnikov, Zanderighi

- GoSam

Cullen, Greiner, Heinrich, Mastrolia, Ossola, Reiter,, Tramontanc

ONE-LOOP AMPLITUDES

> Techniques implemented in public codes

- BlackHat :: On-shell recurrence+ Generalised Unitarity
- FeynArts/FormCalc/LoopTools :: Feynman Diag. + Tensor Red./Integrand Red.
- MadLoop :: tree-level recurrence+ Integrand Red.
- HelacNLO :: tree-level recurrence+ Integrand Red.
- Njets :: on-shell recurrence+ Generalised Unitarity
- OpenLoops :: recursive tensors+ Tensor Red./Integrand Red.
- Recola :: recursive tensors + Tensor Red.
- Rocket :: tree-level recurrence + Generalised Unitarity
- GoSam :: Feynman Diag. + Tensor Red./ Integrand Red.

ONE-LOOP VS TWO-LOOP

	One-Loop	Two-Loop
Graphs	only planar	planar and non-planar
Integral Basis	known for any process	determined case-by-case
Integrals	known for general mass configurations	only for certain cases
IR Poles	cancellation between one-loop and tree-level	cancellation between two- and one-loop and tree-level
Functions	logs and di-logs	logs, polylogs, elliptic functions and more?

Differential

Equations

DIFFERENTIAL EQUATIONS

> Derivative in space spanned by MI

$$
\partial_{x} \vec{f}=A_{x} \vec{f}
$$

$>A_{x}$ inhabits properties of IBP

- Block triangular
- Rational in x and $\varepsilon=(4-\mathrm{d}) / 2$

Bottom up Approach

- Solve each block separately
- Previously solved integrals appear as inhomogeneous part

Matrix Approach

- Conjecture: There is a basis such that:

Henn

$$
\partial_{x} \vec{g}=\epsilon \tilde{A}_{x} \vec{g}
$$

- Makes integration simple
- But: Finding basis is difficult

CANONICAL DIFFERENTIAL EQUATIONS

- Factorization of ε often coincides with dlog-form

$$
d \vec{g}(x, \epsilon)=\epsilon \sum_{i} M_{i} d \log \left(\eta_{i}\right) \vec{g}(x, \epsilon)
$$

- Kinematic Dependence encoded in η
- η s form the alphabet
- Solution given by

$$
\vec{g}(x, \epsilon)=\left[1+\sum_{i=1}^{\infty} \int_{\gamma} d A \ldots d A\right] \vec{g}\left(x_{0}, \epsilon\right)
$$

> Many strategies to find such forms

- Unit leading singularity

Henn

- Magnus Theorem

Ageri, Di Vita, Mastrolia, Mirabella, Schlenk, Tancredi, US

- Rational Ansatz for basis change

Gehrmann, von Manteuffel, Tancredi, Weihs

- Reduction to fuchsian form and Eigenvalue normalisation
- Expand basis change in ε
- Factorisation of Picard-Fuchs operator

BOUNDARY CONDITIONS

> Solution given by

$$
\vec{g}(x, \epsilon)=\left[1+\sum_{i=1}^{\infty} \int_{\gamma} d A \ldots d A\right] \vec{g}\left(x_{0}, \epsilon\right)
$$

$>$ Two general ways to fix the boundary

Known limits

Pseudo-thresholds

- Solution has unphysical divergences
- Demanding absence of unphysical divergences gives relations between boundary constant
- Leftover constants must be provided

Example 1:

 Muon-Electron scattering
MUON G-2

> High precision test of Standard model

$$
g_{\mu}=2\left(1+a_{\mu}\right)
$$

- E821 experiment at BNL measured

$$
a_{\mu}^{E 821}=116592089(63) \times 10^{-11} \quad \text { Bennett et al. [Muon g-2 Collaboration] }
$$

- Standard model prediction

$$
a_{\mu}^{S M}=116591802(49) \times 10^{-11} \quad \text { Davier, Hoecker, Malasecu, Zhang }
$$

, g-2 experiment at Fermilab could push difference to $\mathbf{5} \boldsymbol{\sigma}$

- Biggest theory uncertainty from hadronic contribution

$$
\begin{array}{cc}
a_{\mu}^{S M}=a_{\mu}^{Q E D}+a_{\mu}^{W e a k} & +a_{\mu}^{H a d r} \\
a_{\mu}^{\mathrm{QED}}=116584718.95(8) \times 10^{-11} & \text { Aoyama, Hayakawa, Kinoshita, Nio } \\
a_{\mu}^{\mathrm{Weak}}=153(2) \times 10^{-11} & \text { Gnendinger, Stoeckinger, Stoeckinger-Kim } \\
a_{\mu}^{\mathrm{Had}, \mathrm{LO}}=6949(58) \times 10^{-11} & \text { Hagiwara, Liao, Martin, Nomura, Teubner } \\
a_{\mu}^{\mathrm{Had}, \mathrm{NLO}}=-98.4(4) \times 10^{-11} & \text { Davier, Hoecker, Malaescu, Zhang } \\
a_{\mu}^{\mathrm{HLbL}}=105(26) \times 10^{-11} & \text { Prades, de Rafael, Vainshtein }
\end{array}
$$

LEADING HADRONIC CONTRIBUTION

- Extract $a_{\mu}^{H L O}$ from experimental data

$$
a_{\mu}^{H L O}=\frac{1}{4 \pi^{3}} \int_{4 m_{\pi}^{2}}^{\infty} d s \int_{0}^{1} d x \frac{x^{2}(1-x)}{x^{2}+(1-x) s / m^{2}} \sigma_{e^{+} e^{-} \rightarrow H a d}(s)
$$

> Low energy region plagued by production thresholds

- Alternatively compute from space-like data

$$
a_{\mu}^{H L O}=\frac{\alpha}{\pi} \int_{0}^{1} d x(1-x) \Delta \alpha_{H a d}[t(x)] \quad t(x)=\frac{x^{2} m_{\mu}^{2}}{x-1}<0
$$

$>$ Extract $\Delta \alpha_{H a d}[t(x)]$ from running of $\boldsymbol{\alpha}$ in $\boldsymbol{\mu}$ e scattering

> Proposed experiment MUonE: 150GeV μ-beam on atomic e

(a)

MUON ELECTRON SCATTERING AT NNLO

, Four-point topologies at NNLO

> Most planar integrals known analytically

- $t \bar{t}$ production in QCD

Gehrmann, Remiddi, Bonciani, Mastrolia, Remiddi

- Bhabha scattering in QED
- heavy-to-light quark decay in QCD
- Unknown integrals with more massive lines

PLANAR INTEGRALS

65 distinct master integrals identified with Reduze

 S

PLANAR INTEGRALS

, Variables

$$
-\frac{s}{m^{2}}=x
$$

$$
-\frac{t}{m^{2}}=\frac{(1-y)^{2}}{y}
$$

- MIs satisfy pre-canonical form

$$
\partial_{x} \vec{f}=\left(A_{0, x}+\epsilon A_{1, x}\right) \vec{f} \quad \partial_{y} \vec{f}=\left(A_{0, y}+\epsilon A_{1, y}\right) \vec{f}
$$

- Use Magnus exponential to obtain canonical form

$$
\partial_{x} \vec{g}=\epsilon \tilde{A}_{x} \vec{g} \quad \partial_{y} \vec{g}=\epsilon \tilde{A}_{y} \vec{g}
$$

- Combine to total differential

$$
\begin{array}{r}
d \vec{g}=\epsilon d A \vec{g} \quad \begin{array}{r}
d A= \\
+ \\
+M_{4} d \log (x)
\end{array}+M_{2} d \log (1)+M_{5} d \log (1+y)+M_{3} d \log (1-x) \\
+M_{7} d \log (x+y)+M_{8} d \log (1-y) \\
+M_{9} d \log (1-y(1-x-y))
\end{array}
$$

- Arguments of dlog form alphabet

BOUNDARY FIXING

> All Integrals checked numerically with SecDec

NON-PLANAR INTEGRALS

44 distinct master integrals identified with Reduze

NON-PLANAR INTEGRALS

r Identify candidates via unitarity cuts
Henn

$$
=\frac{1}{t\left(s-m^{2}\right)}
$$

$$
=\int d^{4} k_{1} \frac{1}{\left(k_{1}^{2}-m^{2}\right)\left(k_{1}+p_{1}\right)^{2}\left(k_{1}+p_{1}+p_{2}\right)^{2}\left(k_{1}+p_{4}\right)^{2}\left(\left(k_{1}+p_{3}\right)^{2}+m^{2}\right)}
$$

- Pentagon-type integrals are not good choices
\longrightarrow Cancel propagators arising from cut

\mathcal{T}_{42}

\mathcal{T}_{43}

, Variables

$$
\frac{s}{m^{2}}=1+\frac{(1-w)^{2}}{w-z^{2}}
$$

$$
-\frac{t}{m^{2}}=\frac{(1-w)^{2}}{w}
$$

- MIs satisfy pre-canonical form

$$
\partial_{z} \vec{f}=\left(A_{0, z}+\epsilon A_{1, z}\right) \vec{f} \quad \partial_{w} \vec{f}=\left(A_{0, w}+\epsilon A_{1, w}\right) \vec{f}
$$

> Use Magnus exponential to obtain canonical form

$$
\partial_{w} \vec{g}=\epsilon \tilde{A}_{w} \vec{g} \quad \partial_{z} \vec{g}=\epsilon \tilde{A}_{z} \vec{g}
$$

> Combine to total differential

$$
d \vec{g}=\epsilon d A \vec{g} \quad \begin{array}{r}
d A=M_{1} d \log (w)+M_{2} d \log (1+w)+M_{3} d \log (1-w) \\
+M_{4} d \log (z)+M_{5} d \log (1+z)+M_{6} d \log (1-z) \\
+M_{7} d \log (w+z)+M_{8} d \log (w-z)+M_{9} d \log \left(w-z^{2}\right) \\
+M_{10} d \log \left(1-w+w^{2}-z^{2}\right)+M_{11} d \log \left(1-3 w+w^{2}+z^{2}\right) \\
+M_{12} d \log \left(w^{2}-z^{2}+w z^{2}-w^{2} z^{2}\right)
\end{array}
$$

NON-PLANAR INTEGRALS

- Input
u $\rightarrow 0$
- t $\rightarrow 0$
$z \rightarrow 0$

- All integrals checked against SecDec or in-house numerical code

Example 2: Non-Planar Vertex

VERTEX WITH TWO OFF-SHELL LEGS

- Variables

$$
x=-\frac{s}{m^{2}} \quad y=-\frac{p_{2}^{2}}{m^{2}}
$$

- DEQ is in pre-canonical form

$$
\begin{aligned}
& \partial_{x} \vec{f}=\left(A_{0, x}+\epsilon A_{1, x}\right) \vec{f} \\
& \partial_{y} \vec{f}=\left(A_{0, y}+\epsilon A_{1, y}\right) \vec{f}
\end{aligned}
$$

- Magnus finds canonical basis for first 20 integrals
-But Magnus series does not converge for last two integrals

\mathcal{T}_{1}

τ_{9}

τ_{10}

\mathcal{T}_{11}

\mathcal{T}_{12}

\mathcal{T}_{13}

τ_{14}

\mathcal{T}_{15}

\mathcal{T}_{16}

\mathcal{T}_{17}

τ_{18}

\mathcal{T}_{19}

\mathcal{T}_{20}

\mathcal{T}_{21}

\mathcal{T}_{22}

VERTEX WITH TWO OFF-SHELL LEGS

$>$ Knowing $\varepsilon^{\wedge} 0$ solution equivalent to finding canonical form

$$
\partial_{x} B(x)=A_{0} B(x)
$$

~Investigate DEQ

$$
\begin{aligned}
& \partial_{x}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}=A_{0, x}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}+\epsilon A_{1, x}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}+C_{x} \overrightarrow{\mathrm{I}}_{\text {sub }} \\
& \partial_{y}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}=A_{0, y}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}+\epsilon A_{1, y}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}+C_{y} \overrightarrow{\mathrm{I}}_{\text {sub }}
\end{aligned}
$$

VERTEX WITH TWO OFF-SHELL LEGS

$>$ Knowing $\varepsilon^{\wedge} 0$ solution equivalent to finding canonical form

$$
\partial_{x} B(x)=A_{0} B(x)
$$

- Unitarity cut is solution to homogenous DEQ

$$
\begin{aligned}
& \left.\partial_{x}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}=A_{0, x}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}+\epsilon A_{1, x}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}+\right\rangle_{x} \overrightarrow{\mathrm{~F}}_{\text {ank }} \\
& \partial_{y}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}=A_{0, y}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}+\epsilon A_{1, y}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}+\overrightarrow{C y}_{\mathrm{I}_{\text {sub }}}
\end{aligned}
$$

VERTEX WITH TWO OFF-SHELL LEGS

$>$ Knowing $\varepsilon^{\wedge} 0$ solution equivalent to finding canonical form

$$
\partial_{x} B(x)=A_{0} B(x)
$$

> $\mathbf{d}=4$ Unitarity cut is solution to $\boldsymbol{\varepsilon}^{\wedge} \mathbf{0}$-part of homogenous DEQ

$$
\begin{aligned}
& \partial_{x}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}=A_{0, x}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}+\epsilon A_{1, x}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}+\partial_{x} \vec{x}_{2,2} \\
& \partial_{y}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}=A_{0, y}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}+\epsilon A_{1, y}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}+\vec{C}_{\mathrm{C}_{\text {sub }}}
\end{aligned}
$$

VERTEX WITH TWO OFF-SHELL LEGS

$>$ Knowing $\varepsilon^{\wedge} 0$ solution equivalent to finding canonical form

$$
\partial_{x} B(x)=A_{0} B(x)
$$

- $\mathbf{d}=4$ Unitarity cut is solution to $\boldsymbol{\varepsilon}^{\wedge} \mathbf{0}$-part of homogenous DEQ

$$
\begin{aligned}
& \partial_{x}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}=A_{0, x}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}+\epsilon A_{1, x}\binom{\mathrm{~F}_{21}}{\mathrm{~F}_{22}}+\lambda_{x} \overrightarrow{\mathrm{~F}}_{\text {onk }}
\end{aligned}
$$

- Unitarity cut reveals elliptic nature of integral

$$
\operatorname{Cut}_{1}\left(\mathrm{~F}_{21}\right)=\mathrm{F}_{21,1}=\omega K\left(\omega^{2}\right)
$$

$$
\omega=\frac{s-p_{2}^{2}}{\sqrt{s^{2}-2 s p_{2}^{2}+16 s m^{2}+p_{2}^{4}}}
$$

- $2^{\text {nd }}$ independent Solution found by properties of elliptic integrals

$$
\mathrm{F}_{21,2}=w K\left(1-\omega^{2}\right)
$$

> Find other solutions through DEQ

$$
\begin{aligned}
& \mathrm{F}_{22,1}=-\frac{\omega\left(s+p_{2}^{2}\right)\left(16 m^{2}-s\right)}{16 m^{2} s} E\left(\omega^{2}\right) \\
& \mathrm{F}_{22,2}=-\frac{\omega\left(s+p_{2}^{2}\right)\left(16 m^{2}-s\right)}{16 m^{2} s}\left(E\left(1-\omega^{2}\right)-K\left(1-\omega^{2}\right)\right)
\end{aligned}
$$

VERTEX WITH TWO OFF-SHELL LEGS

- Build new basis from found solutions

$$
\begin{aligned}
& \mathrm{I}_{21}=-2 \frac{\left(s-p_{2}^{2}\right)^{2}}{\omega}\left(E\left(1-\omega^{2}\right)-K\left(1-\omega^{2}\right)\right) \mathrm{F}_{21}+\frac{16 m^{2} s\left(s-p_{2}^{2}\right)^{2}}{\left(s+p_{2}^{2}\right) \omega} K\left(1-\omega^{2}\right) \mathrm{F}_{22} \\
& \mathrm{I}_{22}=-2 \frac{\left(s-p_{2}^{2}\right)^{2}}{\omega} E\left(\omega^{2}\right) \mathrm{F}_{21}-\frac{16 m^{2} s\left(s-p_{2}^{2}\right)^{2}}{\left(s+p_{2}^{2}\right) \omega} K\left(\omega^{2}\right) \mathrm{F}_{22}
\end{aligned}
$$

> ε-factorized DEQ depends on elliptic integrals

- Solution given by iterated integrals with elliptic functions in the integrand
- Checked against SecDec

Conclusions

CONCLUSIONS

- Canonical DEQ revived the field
- Magnus Exponential can find canonical basis if the initial DEQ is linear in ε
- QED vertex at two-loop, 2 to 2 massless box, Higgs+Jet at two-loop, Ladder topology for Higgs+Jet at three-loop, mixed QCD-EW corrections to Drell-Yan, leading QCD corrections for H to WW at two-loop, MuonElectron scattering at NNLO
- Amplitudes for muon-electron scattering at NNLO are coming
- Important cross-check for leading hadronic contribution to muon g-2
- Unitarity cuts are important tools to find ε-factorized DEQ
- Extensions to elliptic integrals are being explored
" Is there a "canonical" form for elliptic integrals?
- Do all DEQ have an ε-factorized form ?

Thank you for your attention

INTEGRATION-BY-PARTS IDENTITIES

> Generated from Stokes Theorem

$$
\int \prod_{i=1}^{L} d^{d} k_{i} \frac{\partial}{\partial k_{\mu, i}}\left(\frac{q_{j}^{\mu}}{D_{1}^{\alpha_{1}} \ldots D_{N}^{\alpha_{N}^{N}}}\right)=0 \quad \leftrightarrow \quad A \vec{I}=0
$$

> Rank of As null space gives number of master integrals
> Limiting factors

- Algebra in Gaussian Elimination
- Finite Field Method
- Solving unnecessary Equations
- Generate IBPs without higher powers Larsen, zhang
- IBPs on the cut

Larsen, Zhang
> Implemented in Public Codes

- Reduze

Studerus, von Manteuffel

- Fire
- Air
- Kira

Anastasiou, Lazopolus

QED VERTEX

Bonciani, Remiddi, P.M.

(2013)

$g_{12}^{(0)}=0$,
$g_{12}^{(1)}=0$,
$g_{12}^{(2)}=0$,
$g_{12}^{(3)}=-\mathrm{H}(0,0,0 ; x)-\zeta_{2} \mathrm{H}(0 ; x)$,
$g_{12}^{(4)}=-2 \mathrm{H}(-1,0,0,0 ; x)+2 \mathrm{H}(0,-1,0,0 ; x)+2 \mathrm{H}(0,0,-1,0 ; x)$
$-3 \mathrm{H}(0,0,0,0 ; x)-4 \mathrm{H}(0,1,0,0 ; x)+\zeta_{2}(-2 \mathrm{H}(-1,0 ; x)$
$+6 \mathrm{H}(0,-1 ; x)-\mathrm{H}(0,0 ; x))+2 \zeta_{3} \mathrm{H}(0 ; x)+\frac{\zeta_{4}}{4}$,

$$
\begin{aligned}
& g_{13}^{(0)}=0, \\
& g_{13}^{(1)}=0,
\end{aligned}
$$

$g_{13}^{(2)}=\mathrm{H}(0,0 ; x)+\frac{3 \zeta_{2}}{2}$,
$g_{13}^{(3)}=-2 \mathrm{H}(-1,0,0 ; x)-2 \mathrm{H}(0,-1,0 ; x)+4 \mathrm{H}(0,0,0 ; x)+4 \mathrm{H}(1,0,0 ; x)$
$+\zeta_{2}(-6 \mathrm{H}(-1 ; x)+2 \mathrm{H}(0 ; x)-3 \log 2)-\frac{\zeta_{3}}{4}$,
$g_{13}^{(4)}=4 \mathrm{H}(-1,-1,0,0 ; x)+4 \mathrm{H}(-1,0,-1,0 ; x)-8 \mathrm{H}(-1,0,0,0 ; x)$
$-8 \mathrm{H}(-1,1,0,0 ; x)+4 \mathrm{H}(0,-1,-1,0 ; x)-8 \mathrm{H}(0,-1,0,0 ; x)$
$-8 \mathrm{H}(0,0,-1,0 ; x)+10 \mathrm{H}(0,0,0,0 ; x)+12 \mathrm{H}(0,1,0,0 ; x)$
$-8 \mathrm{H}(1,-1,0,0 ; x)-8 \mathrm{H}(1,0,-1,0 ; x)+16 \mathrm{H}(1,0,0,0 ; x)$
$+16 \mathrm{H}(1,1,0,0 ; x)+12 \mathrm{Li}_{4} \frac{1}{2}+\frac{\log ^{4} 2}{2}+2 \zeta_{2}(12 \log 2 \mathrm{H}(-1 ; x)$
$+12 \log 2 \mathrm{H}(1 ; x)+6 \mathrm{H}(-1,-1 ; x)-2 \mathrm{H}(-1,0 ; x)-8 \mathrm{H}(0,-1 ; x)$
$\left.+\mathrm{H}(0,0 ; x)-12 \mathrm{H}(1,-1 ; x)+4 \mathrm{H}(1,0 ; x)+3 \log ^{2} 2\right)$
$-2 \zeta_{3}(5 \mathrm{H}(-1 ; x)+4 \mathrm{H}(0 ; x)+11 \mathrm{H}(1 ; x))-\frac{47 \zeta_{4}}{4}$,

