

Resummation of Non-global Logarithms in Effective Field Theory

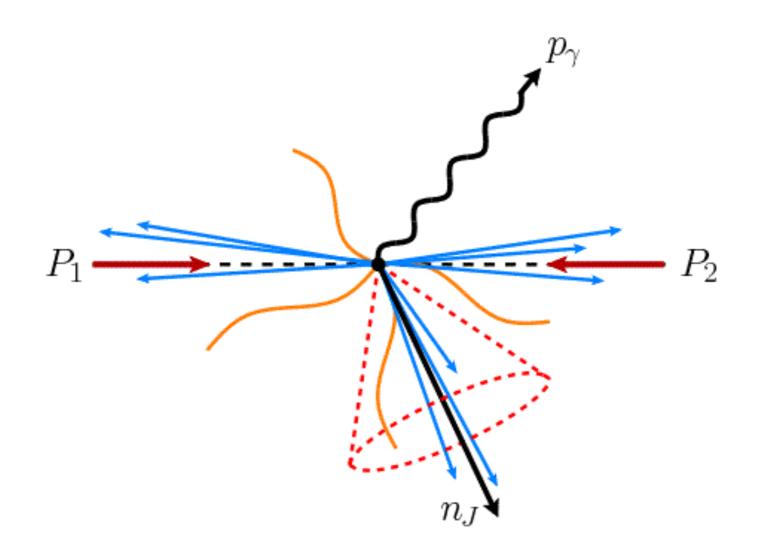
Ding-Yu Shao CERN

QCD@LHC 2018

Dresden 30.08.2018

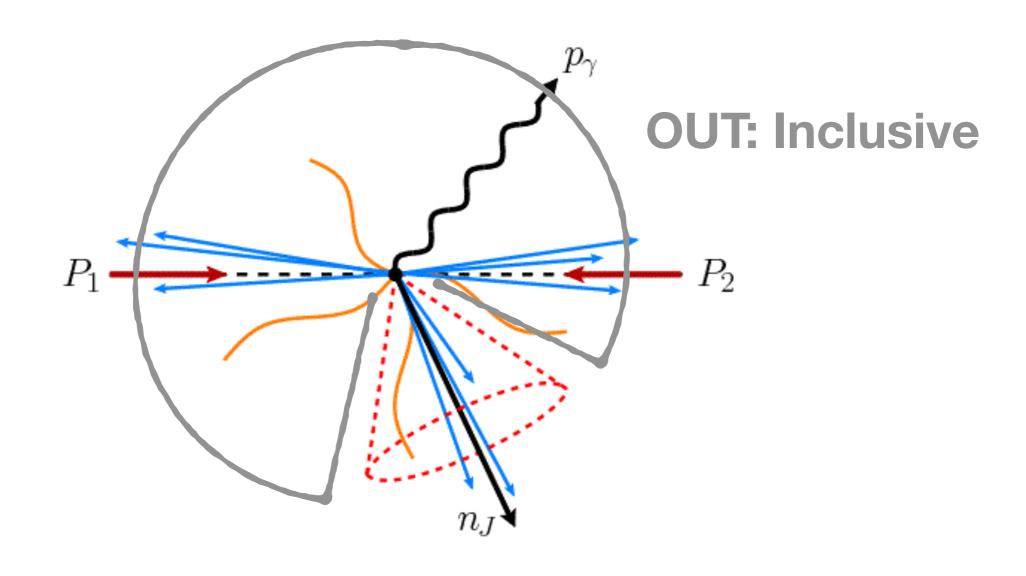
A brief review

Non-global observable: Observables which are insensitive to emissions into certain regions of phase space



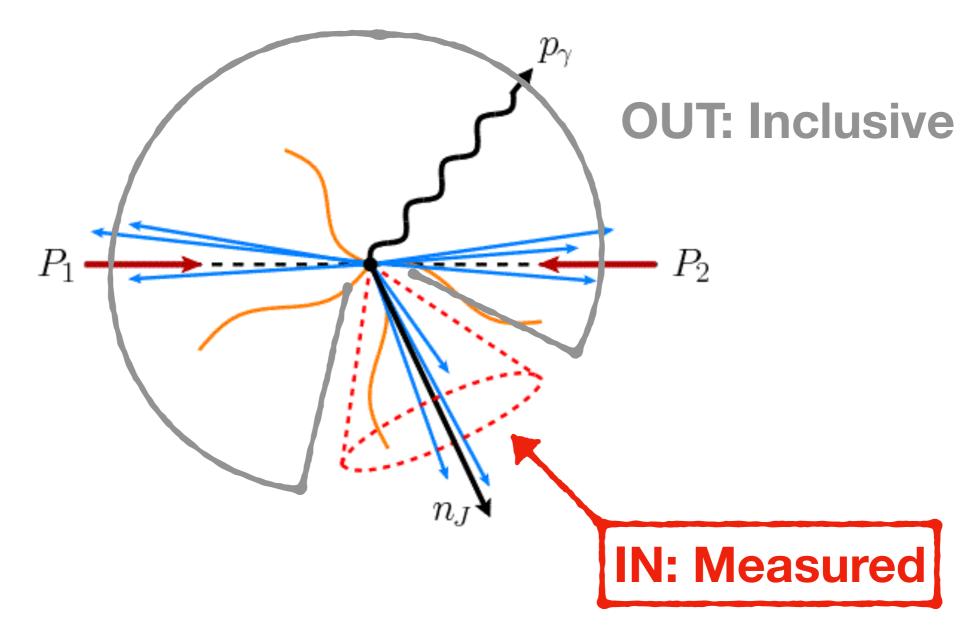
A brief review

Non-global observable: Observables which are insensitive to emissions into certain regions of phase space



A brief review

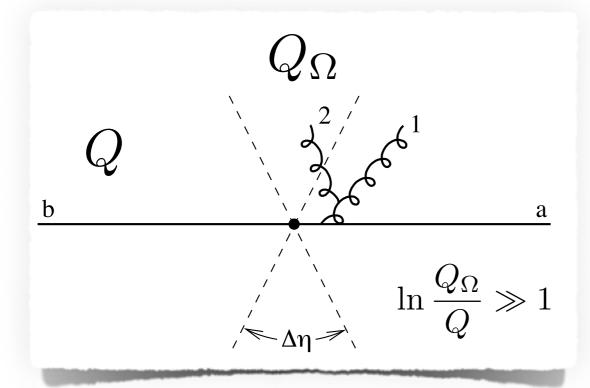
Non-global observable: Observables which are insensitive to emissions into certain regions of phase space



Non-Global Logs

- Non-global observables involve additional NGLs not captured by the usual resummation formula
- Exponentiating soft anomalous dimension only resum part of logs

$$\exp\left[-4C_F\Delta\eta \int_{\alpha(Q_\Omega)}^{\alpha(Q)} \frac{d\alpha}{\beta(\alpha)} \frac{\alpha}{2\pi}\right] = 1 + 4\frac{\alpha_s}{2\pi} C_F\Delta\eta \ln\frac{Q_\Omega}{Q} + \left(\frac{\alpha_s}{2\pi}\right)^2 \left(8C_F^2\Delta\eta^2 - \frac{22}{3}C_FC_A\Delta\eta + \frac{8}{3}C_FT_Fn_f\Delta\eta\right) \ln^2\frac{Q_\Omega}{Q}$$



Non-global logs:

$$\left(\frac{\alpha_s}{2\pi}\right)^2 C_F C_A \left[-\frac{2\pi^2}{3} + 4\operatorname{Li}_2\left(e^{-2\Delta\eta}\right) \right] \ln^2 \frac{Q_\Omega}{Q}$$

(Dasgupta & Salam 2002)

LL resummation for non-global observables

 The leading logarithms arise from configuration in which the emitted gluons are strongly ordered

$$E_1 \gg E_2 \gg \cdots \gg E_m$$

In the large-Nc limit, multi-gluon emission amplitudes become simple:

$$N_C^m g_s^{2m} \sum_{(1,\dots,m)} \frac{p_a \cdot p_b}{(p_a \cdot p_1)(p_1 \cdot p_2) \cdots (p_m \cdot p_b)}$$

Dasgupta-Salam shower

$$S(\alpha_s L) \simeq \exp\left(-C_F C_A \frac{\pi^2}{3} \left(\frac{1 + (at)^2}{1 + (bt)^c}\right) t^2\right)$$
 $a = 0.85 C_A, b = 0.86 C_A$

Banfi-Marchesini-Smye eqation

$$\partial_{\hat{L}} G_{kl}(\hat{L}) = \int \frac{d\Omega(n_j)}{4\pi} W_{kl}^j \left[\Theta_{\text{in}}^{n\bar{n}}(j) G_{kj}(\hat{L}) G_{jl}(\hat{L}) - G_{kl}(\hat{L}) \right]$$

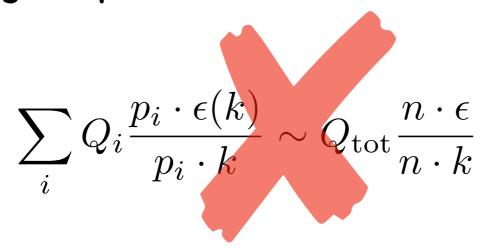
(Banfi, Marchesini & Smye 2002)

Some recent progress

- Dressed gluon expansion Larkoski, Moult & Neill '15 '16
- Color density matrix Caron-Huot '15
- Multi-Wilson-line theory in SCET Becher, Neubert, Rothen & DYS '15 '16
- Finite Nc results for hemisphere mass and inter-jet energy flow Hatta, Ueda '13, + Hagiwara '15
- Soft (Glauber) gluon evolution at amplitude level, finite Nc Martínez,
 Angelis, Forshaw, Plätzer & Seymour '18 See Angelis's Talk
- Reduced density matrix Neill & Vaidya '18

Soft radiations inside Non-global observables

 Non-global observables: soft radiation resolves the colors and directions of individual energetic partons.



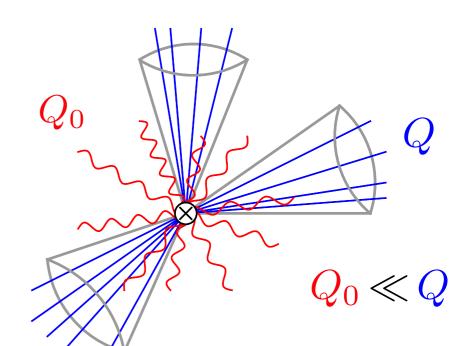
- For a wide-angle jet, the energetic particles are not collinear.
- For a narrow-angle jets, we find that small-angle soft radiation plays an important role. Resolves directions of individual energetic partons!

Becher, Neubert, Rothen & DYS '15; Chien, Hornig & Lee '15

Factorization for jet cross section

For k jets process at lepton collider

$$d\sigma(Q, Q_0) = \sum_{m=k}^{\infty} \langle \mathcal{H}_m(\{\underline{n}\}, Q, \mu) \otimes \mathcal{S}_m(\{\underline{n}\}, Q_0, \mu) \rangle$$



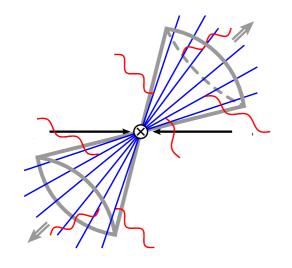
 Hard function: integrating over the energies of the hard particles, while keeping their direction fixed

$$\mathcal{H}_{m}(\{\underline{n}\}, Q, \mu) = \frac{1}{2Q^{2}} \sum_{\text{spins}} \prod_{i=1}^{m} \int \frac{dE_{i} E_{i}^{d-3}}{(2\pi)^{d-2}} |\mathcal{M}_{m}(\{\underline{p}\})\rangle \langle \mathcal{M}_{m}(\{\underline{p}\})| (2\pi)^{d} \delta\left(Q - \sum_{i=1}^{m} E_{i}\right) \delta^{(d-1)}(\vec{p}_{\text{tot}}) \Theta_{\text{in}}(\{\underline{p}\})$$

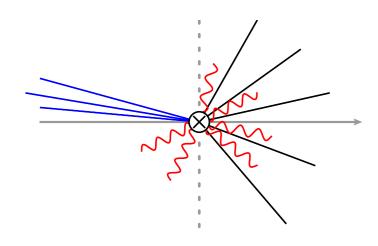
Soft function

$$\boldsymbol{\mathcal{S}}_{m}(\{\underline{n}\},Q_{0},\mu) = \sum_{X_{s}}^{\dagger} \langle 0 | \boldsymbol{S}_{1}^{\dagger}(n_{1}) \dots \boldsymbol{S}_{m}^{\dagger}(n_{m}) | X_{s} \rangle \langle X_{s} | \boldsymbol{S}_{1}(n_{1}) \dots \boldsymbol{S}_{m}(n_{m}) | 0 \rangle \theta(Q_{0} - E_{\text{out}})$$

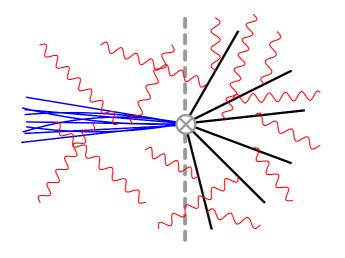
• \otimes indicates integration over the direction of the energetic partons



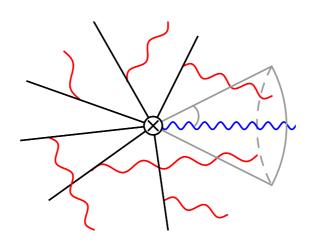
Jet cross section & Gap fraction



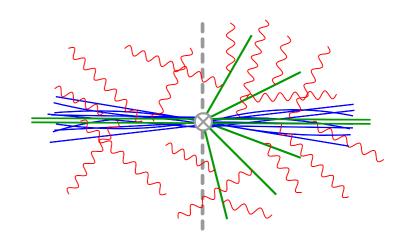
Narrow broadening



Light-jet mass



Photon isolation



Hemisphere soft function

Becher, Neubert, Rothen, DYS '15 '16

Becher, Pecjak, DYS '16

Becher, Rahn, DYS '17

Balsiger, Becher, DYS, '18

RG evolution & Resummation

Then resummation cross section can be written as

$$d\sigma(Q,Q_0) = \sum_{l=k,\,m\geq l}^{\infty} \left\langle \mathcal{H}_l(\{\underline{n}\},Q,\mu_h) \otimes U_{lm}(\{\underline{n}\},\mu_s,\mu_h) \,\hat{\otimes}\, \mathcal{S}_m(\{\underline{n}\},Q_0,\mu_s) \right\rangle$$

Wilson coefficients fulfill Renormalization Group equation

$$\frac{d}{d \ln \mu} \mathcal{H}_m(\{\underline{n}\}, Q, \mu) = -\sum_{l=k}^m \mathcal{H}_l(\{\underline{n}\}, Q, \mu) \Gamma_{lm}^H(\{\underline{n}\}, Q, \mu)$$

- 1. Compute \mathcal{H}_m at characteristic high scale $\mu_h \sim Q$
- 2. Evolve ${\cal H}_m$ to the scale of low energy physics $\mu_s \sim Q_0$
- 3. Compute ${\cal S}_m$ at $\mu_s \sim Q_0$

Resum large logarithms
$$\alpha_s^n \ln^m \frac{Q}{Q_0}$$

LL resummation

LL resummation formula

$$d\sigma_{\mathrm{LL}}(Q,Q_0) = \sum_{m=k}^{\infty} \left\langle \mathcal{H}_k(\{\underline{n}\},Q,\mu_h) \otimes \mathbf{U}_{km}(\{\underline{n}\},\mu_s,\mu_h) \, \hat{\otimes} \, \mathbf{1} \right\rangle$$

One-loop anomalous dimension

$$\mathbf{\Gamma}^{(1)} = \begin{pmatrix}
\mathbf{V}_{k} & \mathbf{R}_{k} & 0 & 0 & \dots \\
0 & \mathbf{V}_{k+1} & \mathbf{R}_{k+1} & 0 & \dots \\
0 & 0 & \mathbf{V}_{k+2} & \mathbf{R}_{k+2} & \dots \\
0 & 0 & 0 & \mathbf{V}_{k+3} & \dots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

$$\mathbf{V}_{m} = 2 \sum_{(ij)} (\mathbf{T}_{i,L} \cdot \mathbf{T}_{j,L} + \mathbf{T}_{i,R} \cdot \mathbf{T}_{j,R}) \int \frac{d\Omega(n_{l})}{4\pi} W_{ij}^{l}$$

$$-2 i\pi \sum_{(ij)} (\mathbf{T}_{i,L} \cdot \mathbf{T}_{j,L} - \mathbf{T}_{i,R} \cdot \mathbf{T}_{j,R}) \Pi_{ij},$$

$$\vdots & \vdots & \vdots & \ddots$$

$$\mathbf{R}_{m} = -4 \sum_{(ij)} \mathbf{T}_{i,L} \cdot \mathbf{T}_{j,R} W_{ij}^{m+1} \Theta_{\text{in}}(n_{m+1}).$$

RG evolution = Parton Shower

$$d\sigma_{\rm LL}(Q,Q_0) = \langle \mathcal{H}_k(t) + \int \frac{d\Omega_1}{4\pi} \mathcal{H}_{k+1}(t) + \int \frac{d\Omega_1}{4\pi} \int \frac{d\Omega_2}{4\pi} \mathcal{H}_{k+2}(t) + \dots \rangle$$

$$\mathcal{H}_{k}(t) = \mathcal{H}_{k}(0) e^{t\mathbf{V}_{k}}$$

$$\mathcal{H}_{k+1}(t) = \int_{0}^{t} dt' \, \mathcal{H}_{k}(t') \, \mathbf{R}_{k} e^{(t-t')\mathbf{V}_{k+1}}$$

$$\mathcal{H}_{k+2}(t) = \int_{0}^{t} dt' \, \mathcal{H}_{k+1}(t') \, \mathbf{R}_{k+1} e^{(t-t')\mathbf{V}_{k+2}}$$

$$t = \int_{\alpha(\mu)}^{\alpha(Q)} \frac{d\alpha}{\beta(\alpha)} \, \frac{\alpha}{4\pi}$$

$$\mathcal{H}_{k+3}(t) = \dots$$

We re-derive Dasgupta-Salam angular dipole shower!!!

RG evolution = Parton Shower

$$\mathcal{H}_m(t) = \mathcal{H}_m(t_0) e^{(t-t_0)V_m} + \int_{t_0}^t dt' \, \mathcal{H}_{m-1}(t') \, R_{m-1} e^{(t-t')V_m}$$

What is a shower?

A parton shower consists of three main features:

- 1. An ordering variable which defines the sequence according to which emissions are generated (such as k_t , angle, virtuality).
- 2. A branching probability $P(S_n.v)$ of finding a state S_n with n partons at scale v, which evolves as

$$\frac{dP(S_n,v)}{d\ln 1/v} = -f(S_n,v)P(S_n,v).$$

3. A kinematic mapping \mathcal{M} from state \mathcal{S}_n to \mathcal{S}_{n+1}

$$S_{n+1} = \mathcal{M}(S_n, v; i, j, \underline{z, \phi}).$$

with an associated "splitting" weight function $d\mathcal{P}(\mathcal{S}_n, v; i, j, z, \phi)$, governing relative probabilities of new states.

Dreyer' talk on Tuesday

Renormalization Scale or Observable

 V_m

 R_m

Frédéric Dreyer

3/12

Automated resummation for Non-global observables

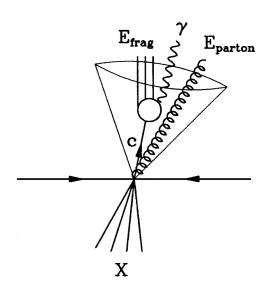
(Balsiger, Becher, DYS, '18)

$$d\sigma_{\mathrm{LL}}(Q,Q_0) = \sum_{m=k}^{\infty} \left\langle \mathcal{H}_k(\{\underline{n}\},Q,\mu_h) \otimes \mathbf{U}_{km}(\{\underline{n}\},\mu_s,\mu_h) \hat{\otimes} \mathbf{1} \right\rangle$$

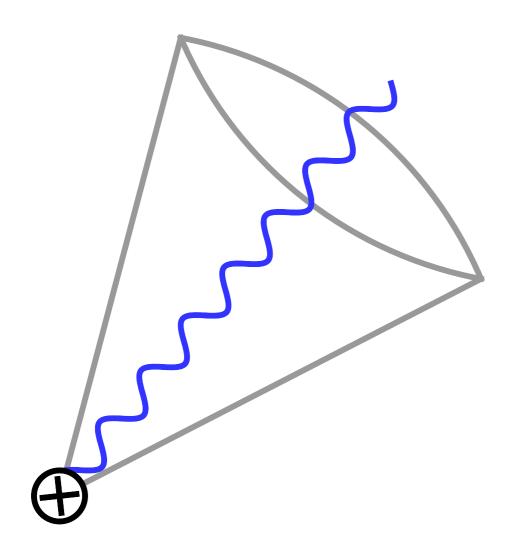
- Use Madgraph5_aMC@NLO generator
 - ullet event file with directions and large- N_c color connections of hard partons
 - provides lowest multiplicity hard function for given process
- Run our shower on each event to generate additional partons and write result back into event file
- Analyze events, according to cuts on hard partons, obtain resummed cross section with hard cuts and veto scale

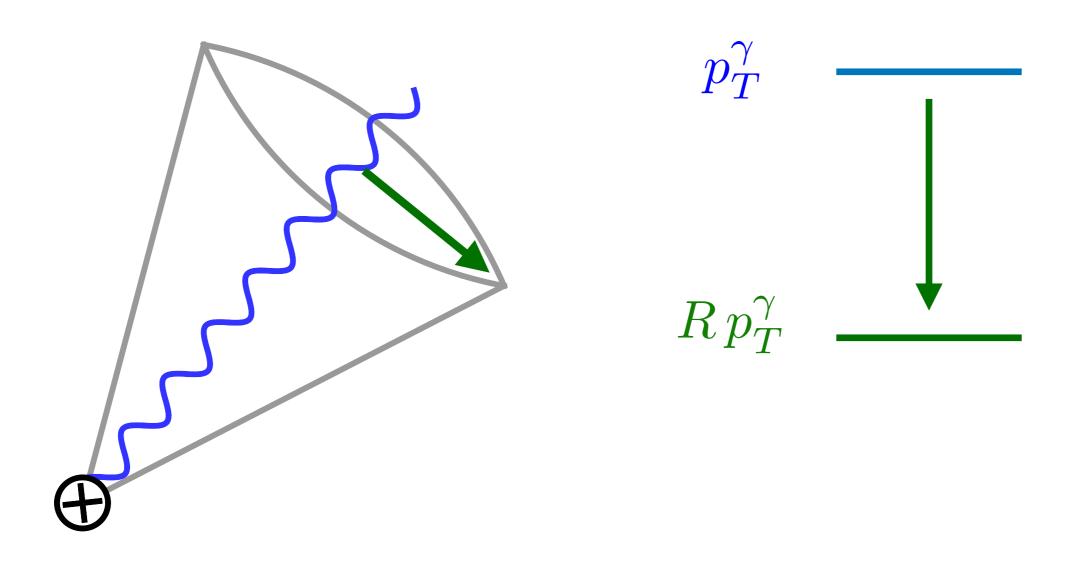
Resummation in isolation cross section

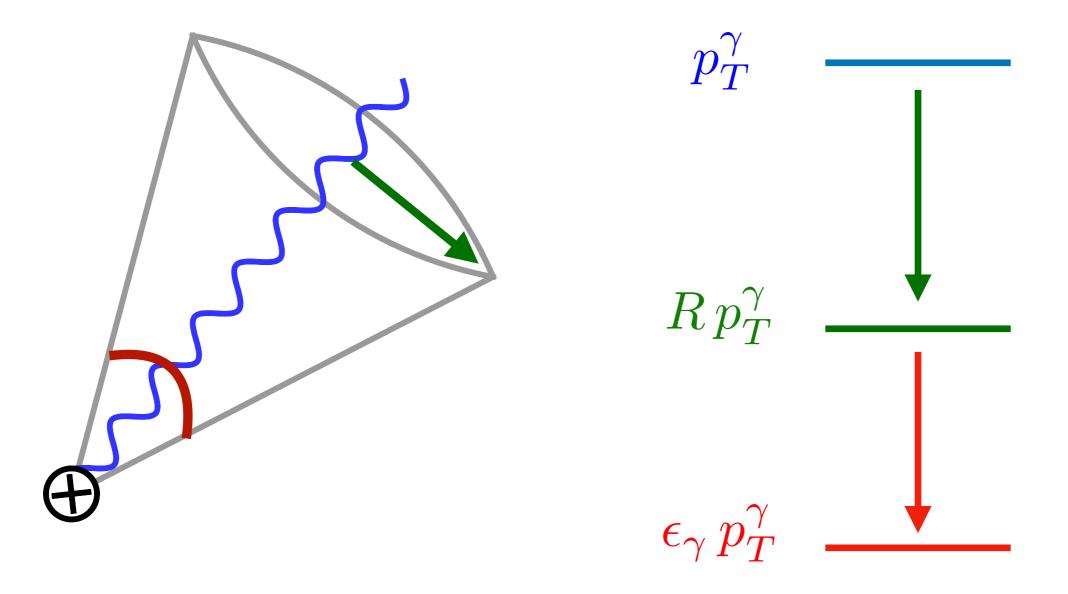
- Experiments use isolation to reduce photon from hard scattering from photons due to hadron decays.
- Experimentalists choose $\sum_{\mathrm{had} \in \mathcal{C}(R)} E_T^{\mathrm{had}} \leq \epsilon_\gamma E_\gamma^T$

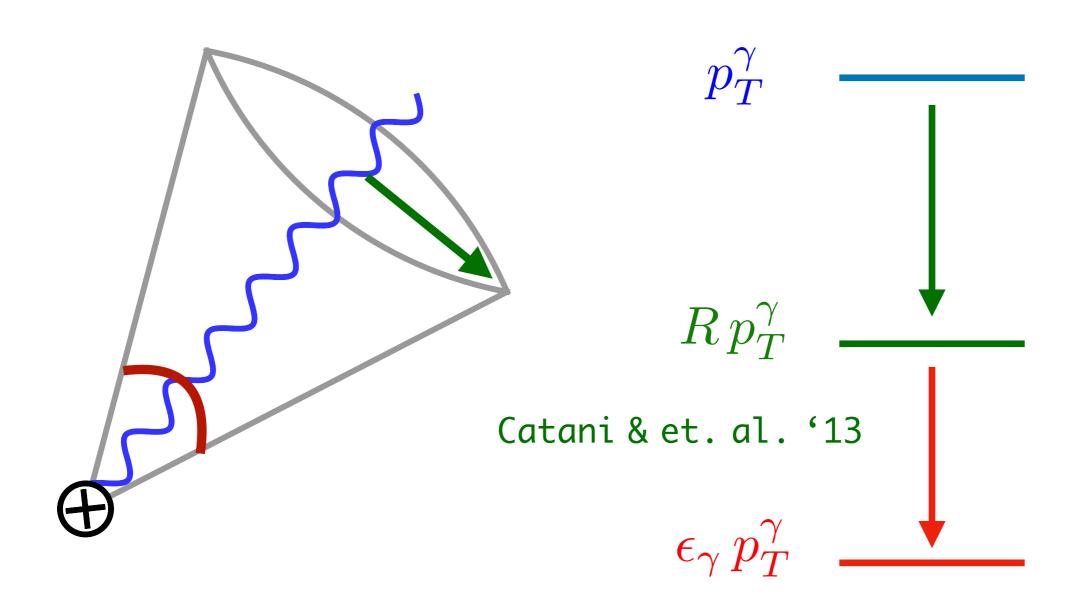


- E.g. ATLAS '16 imposes $E_{\rm iso}^T=4.8\,{\rm GeV}+0.0042\,E_{\gamma}^T$ on hadronic energy inside cone.
- Smooth isolation Frixione '98 $E_{\rm iso}(r) = \epsilon_{\gamma} E_{\gamma} \left(\frac{1-\cos r}{1-\cos R} \right)^n$ $\lim_{r \to 0} E_{\rm iso}(r) \to 0$
 - collinear safe; no fragmentation process
 - not applied in experiments now
- Soft-drop isolation Hall & Thaler '18
 - democratic criteria; equivalent to smooth isolation at LO









Resummation effects in isolation

- Tight isolation cut $\epsilon_{\gamma} \ll 1$
- ullet Large logs $\ln \epsilon_{\gamma}$ from soft gluon radiation inside cone
- Fragmentation process are power suppressed
- ullet At the NLO log term is $lpha_s R^2 \ln \epsilon_\gamma$ Gordon & Vogelsang '94
- NLO results show no significant infrared sensitivity. Catani & et. al. '02

destabilize the numerical convergence of the perturbative expansion. Nonetheless, owing to the presence of higher powers of $\ln \varepsilon_h$ at higher perturbative orders, the actual sensitivity of the cross section to very low values of ε_h is probably underestimated in the present NLO calculation.

Non-global observables: more complicated logarithmic terms will appear beyond NLO

$$R^2 \times \alpha_s^n \ln^n \epsilon_\gamma \ln^{n-1} R$$

(Hatta, Iancu, Mueller, Triantafyllopoulos '17)

Resummation effects in isolation

- Tight isolation cut $\epsilon_{\gamma} \ll 1$
- ullet Large logs $\ln \epsilon_{\gamma}$ from soft gluon radiation inside cone
- Fragmentation process are power suppressed
- ullet At the NLO log term is $lpha_s R^2 \ln \epsilon_\gamma$ Gordon & Vogelsang '94
- NLO results show no significant infrared sensitivity. Catani & et. al. '02

destabilize the numerical convergence of the perturbative expansion. Nonetheless, owing to the presence of higher powers of $\ln \varepsilon_h$ at higher perturbative orders, the actual sensitivity of the cross section to very low values of ε_h is probably underestimated in the present NLO calculation.

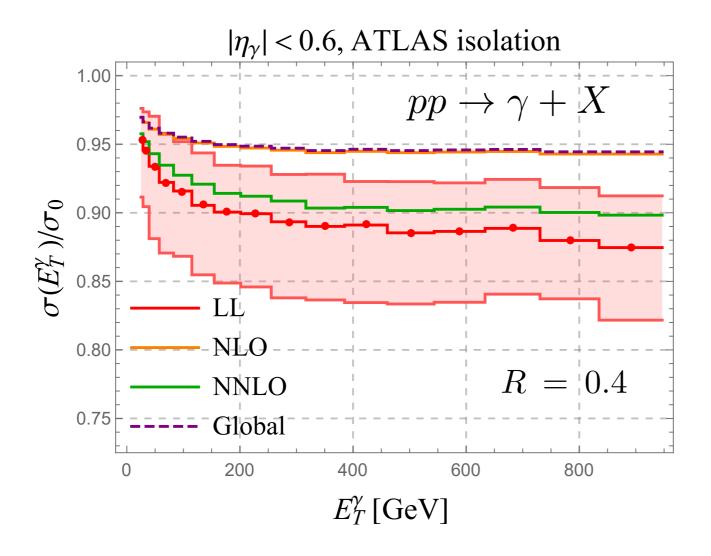
definitely

Non-global observables: more complicated logarithmic terms will appear beyond NLO

$$R^2 \times \alpha_s^n \ln^n \epsilon_\gamma \ln^{n-1} R$$

(Hatta, Iancu, Mueller, Triantafyllopoulos '17)

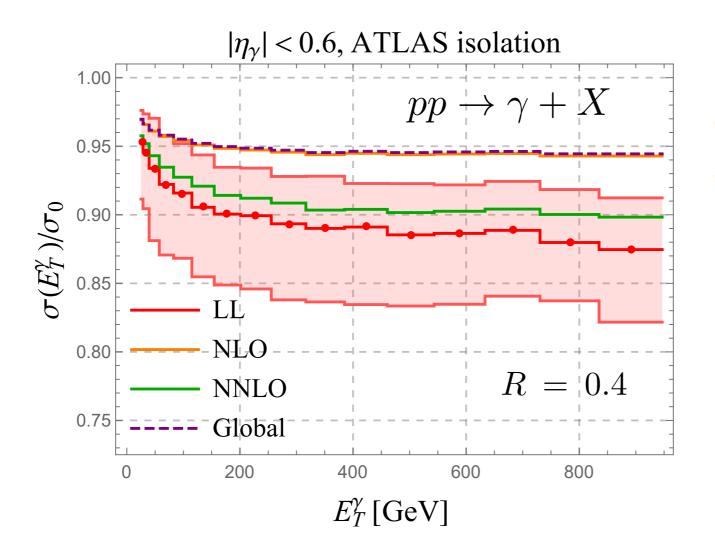
Resummation effects in & isolation at the LHC



$$1 + \#\alpha_s R^2 \ln \epsilon_{\gamma}$$
$$+ \#\alpha_s^2 R^2 \ln R \ln^2 \epsilon_{\gamma}$$

- NLO: ~5% reduction, NNLO ~10%, resummed ~ 12%
- NGL dominates over global contribution: naive exponentiation (dashed)
- LL result suffers from large scale uncertainties

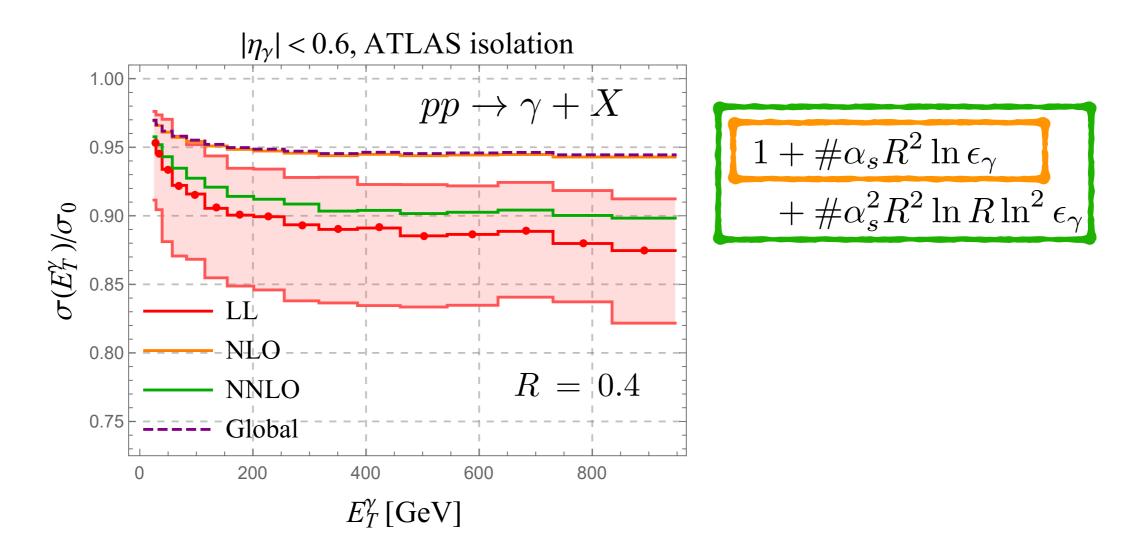
Resummation effects in γ isolation at the LHC



$$1 + \#\alpha_s R^2 \ln \epsilon_{\gamma} + \#\alpha_s^2 R^2 \ln R \ln^2 \epsilon_{\gamma}$$

- NLO: ~5% reduction, NNLO ~10%, resummed ~ 12%
- NGL dominates over global contribution: naive exponentiation (dashed)
- LL result suffers from large scale uncertainties

Resummation effects in γ isolation at the LHC



- NLO: ~5% reduction, NNLO ~10%, resummed ~ 12%
- NGL dominates over global contribution: naive exponentiation (dashed)
- LL result suffers from large scale uncertainties

From LL to NLL: Sub-leading NGLs

- In order to resum sub-leading NGLs, one needs
 - ullet One-loop soft function ${\cal S}_m^{(1)}$
 - ullet One-loop hard function ${\cal H}_k^{(1)}$ and tree level hard function

• Two-loop anomalous dimensions:
$$\Gamma^{(2)}=egin{pmatrix} v_2 & r_2 & d_2 & 0 & \dots \\ 0 & v_3 & r_3 & d_2 & \dots \\ 0 & 0 & v_4 & r_4 & \dots \\ 0 & 0 & 0 & v_5 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Monte-Carlo implementation of all ingredients

From LL to NLL: Sub-leading NGLs

In order to resum sub-leading NGLs, one needs

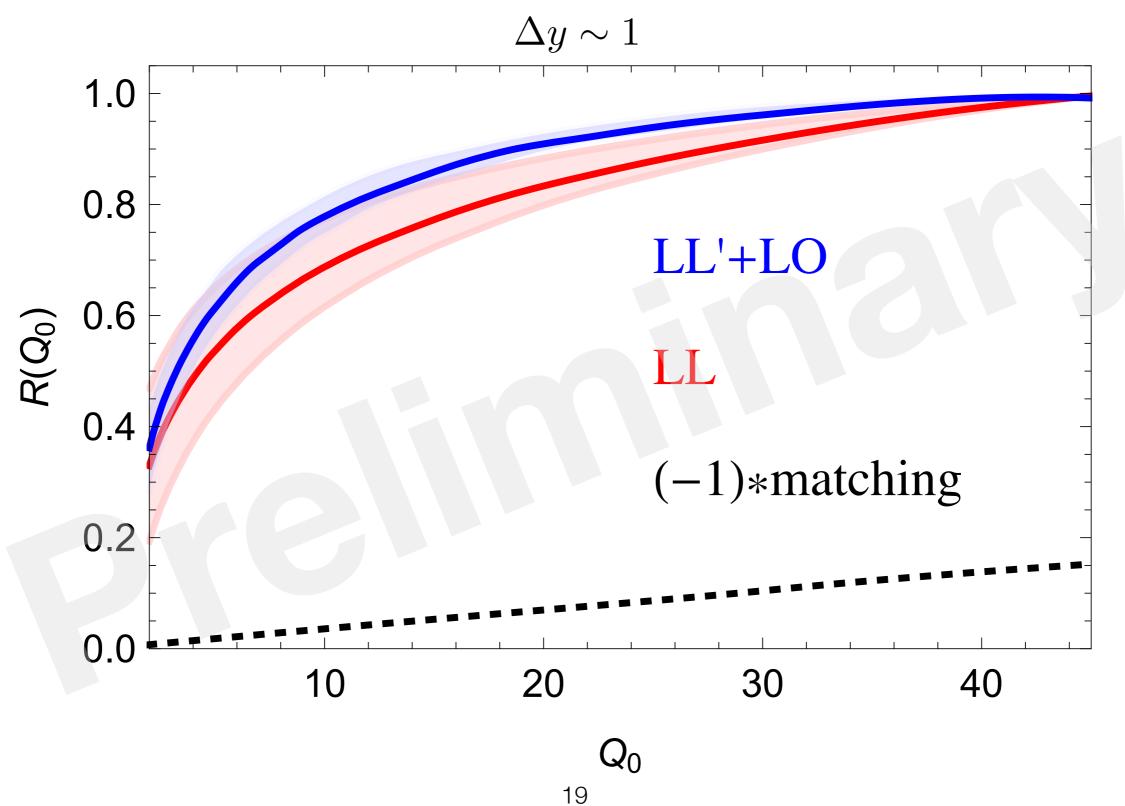
- One-loop soft function $\mathcal{S}_m^{(1)}$
- One-loop hard function $\mathcal{H}_k^{(1)}$ and tree level hard function

$$\mathcal{H}_{k+1}^{(1)}$$
 Two-loop anomalous dimensions: $\Gamma^{(2)}=egin{pmatrix} v_2 & r_2 & d_2 & 0 & \dots \\ 0 & v_3 & r_3 & d_2 & \dots \\ 0 & 0 & v_4 & r_4 & \dots \\ 0 & 0 & 0 & v_5 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$ See Caron-Huot '15 + Herranen '16

Monte-Carlo implementation of all ingredients

Inter-jet energy flow at e+e- collider

(Balsiger, Becher & DYS, work on progress)



Summary

We extend factorization and resummation in SCET to non-global observables

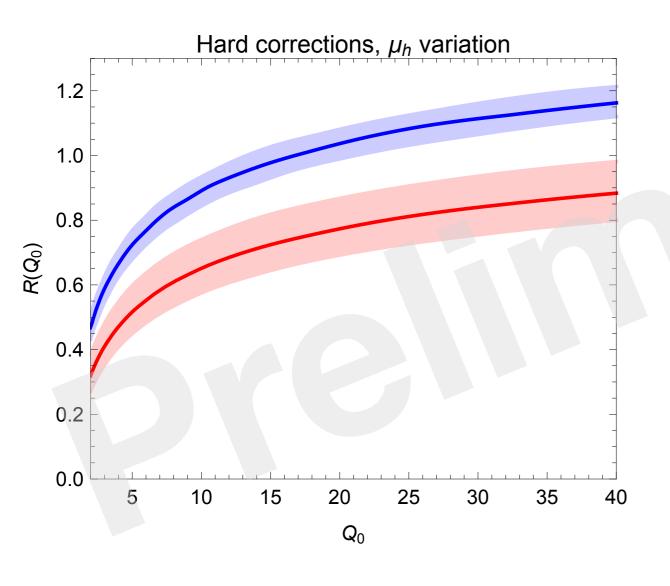
- have analyzed a variety of such observables
- multi-Wilson line operators are key ingredient

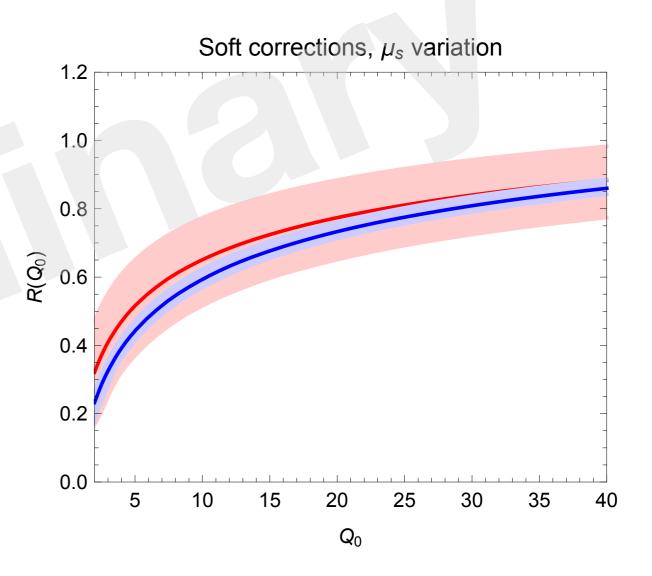
We obtain a parton shower from effective field theory

- not restricted to leading logarithms or large Nc
- not a General Purpose Parton Shower, but helpful to understand how to extend showers to higher accuracy
- flexible implementation of LL shower using LHE event files
- include one-loop matching coefficients: first important step in subleading NGLs resummation

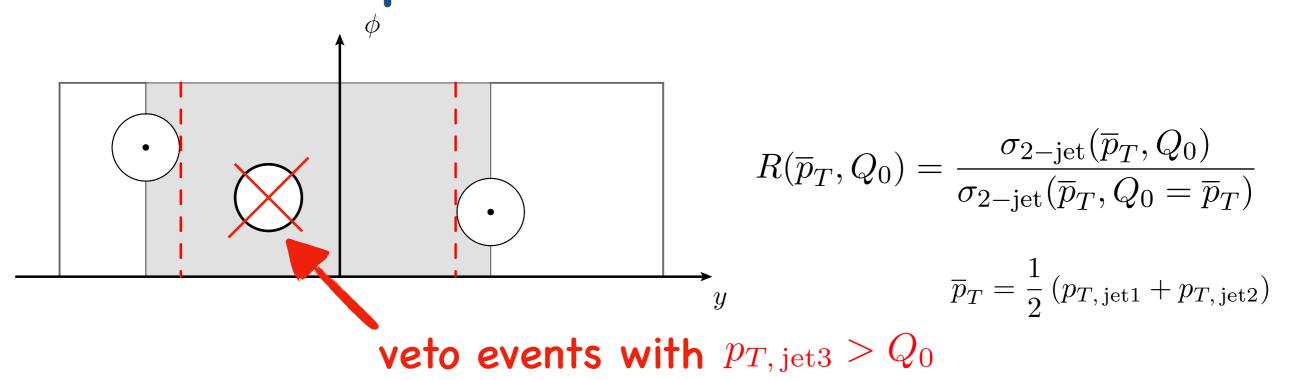
Thank you

Numerical results





Gap fraction at the LHC



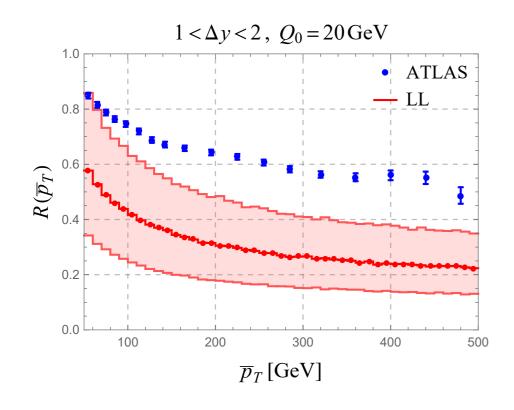
- Moderate non-perturbative corrections
- Need soft gluon resummation at small Qo
- ATLAS '11 '14 observe MC predictions are not always consistent with data
- GL with full color, NGLs estimated by a K-factor
- Numerical solution of BMS equation but with approximated veto region

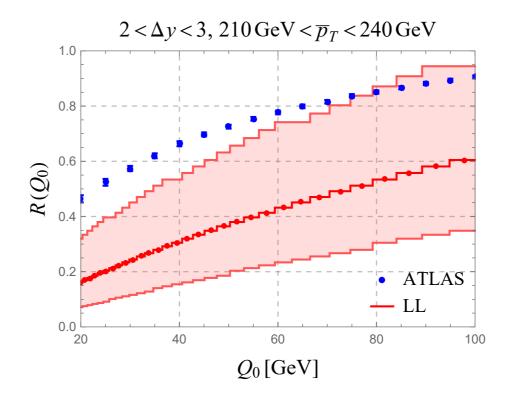
Resummation

- Factorization formula to all order is unknown due to glauber gluons
- We work in LL and large Nc limit

$$\frac{d\sigma(Q_0)}{d\Delta y \, d\,\overline{p}_T} = \sum_{a,b=q,\overline{q},g} \int dx_1 dx_2 f_a(x_1,\mu_f) f_b(x_2,\mu_f) H_2^{ab}(\hat{s},\Delta y,\overline{p}_T,\mu_h) \langle U_{2m}(\mu_s,\mu_h) \hat{\otimes} 1 \rangle$$

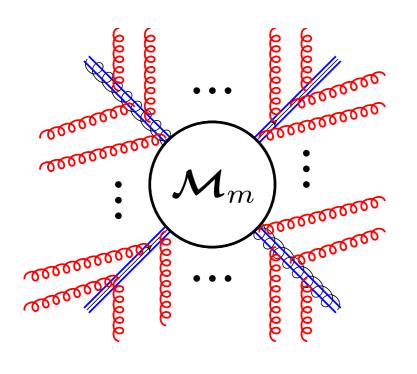
- scale setting $\mu_f = \mu_h = \overline{p}_T$ and $\mu_s = Q_0$
- focus on central jets, no collinear logs





Factorization

 The operator for the emission from an amplitude with m hard partons



hard scattering amplitude with m particles (vector in color space)

$$S_1(n_1) S_2(n_2) \ldots S_m(n_m) |\mathcal{M}_m(\{\underline{p}\})\rangle$$

soft Wilson lines along the directions of the energetic particles (color matrices)

$$S_i(n_i) = \mathbf{P} \exp\left(ig_s \int_0^\infty ds \, n_i \cdot A_s^a(sn_i) \, T_i^a\right)$$

Resummation effects in isolation

• Small cone radius $R \ll 1$

Catani & et. al. '02

Isolation radius	Direct contribution		Fragmentation contribution		Total
R	Born	NLO	Born	NLO	NLO
1.0	1764.6	3318.4	265.0	446.7	3765.1
0.7	1764.6	3603.0	265.0	495.0	4098.0
0.4	1764.6	3968.9	265.0	555.6	4524.5
0.1	1764.6	4758.2	265.0	678.9	5431.1
Without isolation	1764.6	3341.1	1724.3	1876.8	5217.9

- Log(R) spoils perturbative convergence
- This log comes from mismatching between inside and outside radiation
- LL resummation has been studied by Catani & et. al. '13
 - ullet Higher-order effects are moderate for $R\sim 0.4$

Resummation effects in isolation

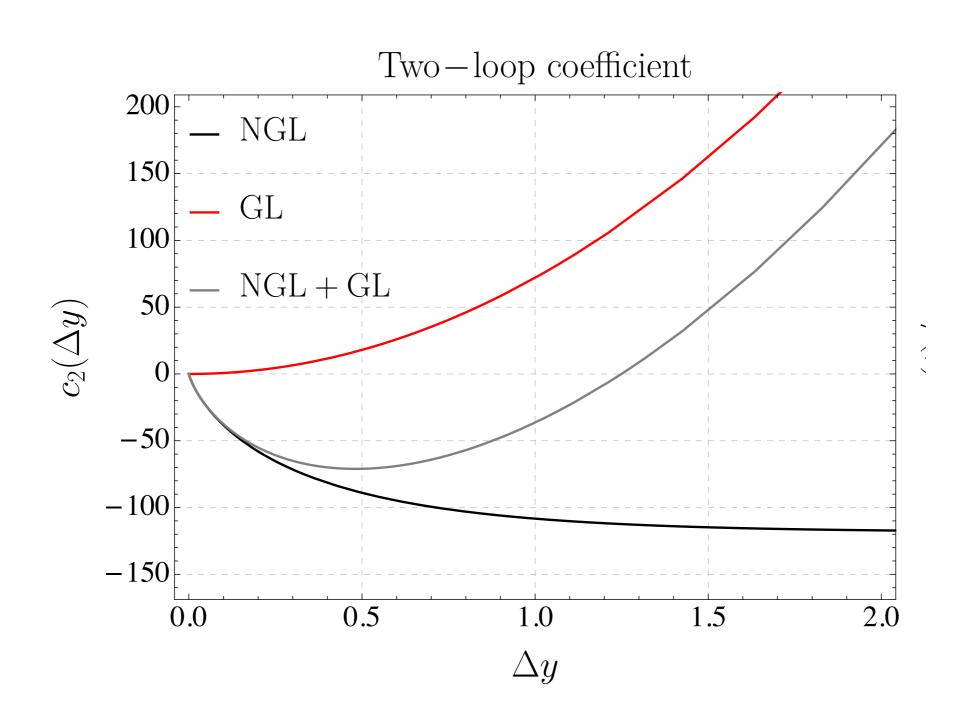
• Small cone radius $R \ll 1$

Catani & et. al. '02

Isolation radius	Direct contribution		Fragmentation contribution		Total	
R	Born	NLO	Born	NLO	NLO	
1.0	1764.6	3318.4	265.0	446.7	3765.1	
0.7	1764.6	3603.0	265.0	495.0	4098.0	
0.4	1764 6	3968 9	265.0	555 6	4524.5	
0.1	1764.6	4758.2	265.0	678.9	5431.1	
Without isolation	1764.6	3341.1	1724.3	1876.8	5217.9	

- Log(R) spoils perturbative convergence
- This log comes from mismatching between inside and outside radiation
- LL resummation has been studied by Catani & et. al. '13
 - ullet Higher-order effects are moderate for $R\sim 0.4$

Global vs Non-global Logs



Collinear limit and NGLs

(Hatta, Iancu, Mueller, Triantafyllopoulos '17)

- E.g. Inter-jet energy flow @ e+e- colliders
 - Soft radiations from two Wilson lines (global)

$$\frac{\sigma_{\rm GL}^{\rm LL}}{\sigma_0} = \exp\left[-8\,C_F \Delta y\,t\right]$$

$$t = \int_{\alpha(Q_0)}^{\alpha(Q)} \frac{d\alpha}{\beta(\alpha)} \frac{\alpha}{4\pi}$$

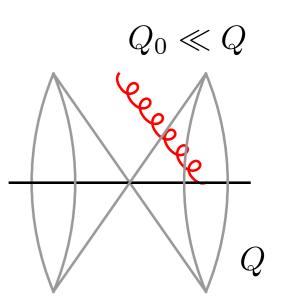
Leading NGLs at two-loops

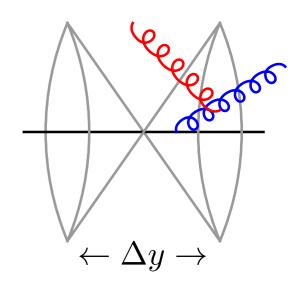
$$\frac{\sigma_{\text{NGL}}^{\text{LL}}}{\sigma_0} = 4 C_F C_A \left[-\frac{2\pi^2}{3} + 4 \operatorname{Li}_2 \left(e^{-2\Delta y} \right) \right] t^2$$

• Narrow gap limit: $\Delta y \to 0$

$$\frac{\sigma_{\text{NGL}}^{\text{LL}}}{\sigma_0} = 4 C_F C_A \left[8 \Delta y \left(\ln(2\Delta y) - 1 \right) - 4 \Delta y^2 + \dots \right] t^2$$

Collinear enhancement from boundary region





One-loop hard function

$$\mathcal{H}_2^{(1)} = \frac{N_c}{2} \left[-8 \ln^2 \frac{\mu_h}{Q} - 12 \ln \frac{\mu_h}{Q} - 16 + \frac{7}{3} \pi^2 \right]$$

$$\mathcal{H}_{3,\mathrm{I}}^{(1)} = \frac{N_c}{2} \left\{ \left[4 \ln^2 \frac{\mu_h}{Q} - 4 \ln \frac{\mu_h}{Q} \ln \left(\frac{\delta^2}{1 + \delta^2} \right) - \frac{\pi^2}{6} + \ln^2 \left(\frac{\delta^2}{1 + \delta^2} \right) \right] \delta(u) \delta(v) + \left[-\ln \frac{\mu}{Q} F(0, v) + \frac{F(0, v)}{2} \ln \left(\frac{\delta^2}{1 + \delta^2} \right) \right] \delta(u) \left(\frac{1}{v} \right)_+ + \frac{F(0, v)}{2} \delta(u) \left(\frac{\ln v}{v} \right)_+ + \left[-2 \ln \frac{\mu}{Q} F(u, 0) + \frac{2u^2}{(1 + u)^3} + F(u, 0) \ln \left(\frac{\delta^2}{1 + \delta^2} \right) - 2F(u, 0) \ln(1 + u) \right] \delta(v) \left(\frac{1}{u} \right)_+ + 2F(u, 0) \delta(v) \left(\frac{\ln u}{u} \right)_+ + F(u, v) \left(\frac{1}{u} \right)_+ \left(\frac{1}{v} \right)_+ \right\}$$

MC implementation:

- Phase space slicing method: large log cancellation
- Numerical extrapolation method: point-by-point shower
- Two independent methods consistent
- Subtraction method? Can hard function be provided by MG5_aMC@NLO?

One-loop hard function

$$\mathcal{H}_2^{(1)} = \frac{N_c}{2} \left[-8 \ln^2 \frac{\mu_h}{Q} - 12 \ln \frac{\mu_h}{Q} - 16 + \frac{7}{3} \pi^2 \right]$$

$$\sin^2 \frac{\theta_2}{2} = \frac{\delta^2 u^2 v}{1 + \delta^2}, \qquad \sin^2 \frac{\theta_3}{2} = \frac{\delta^2 v}{1 + \delta^2}.$$

$$\frac{g(p_3)}{\bar{q}(p_2)}$$

$$\mathcal{H}_{3,\mathrm{I}}^{(1)} = \frac{N_c}{2} \left\{ \left[4 \ln^2 \frac{\mu_h}{Q} - 4 \ln \frac{\mu_h}{Q} \ln \left(\frac{\delta^2}{1 + \delta^2} \right) - \frac{\pi^2}{6} + \ln^2 \left(\frac{\delta^2}{1 + \delta^2} \right) \right] \delta(u) \delta(v) + \left[-\ln \frac{\mu}{Q} F(0, v) + \frac{F(0, v)}{2} \ln \left(\frac{\delta^2}{1 + \delta^2} \right) \right] \delta(u) \left(\frac{1}{v} \right)_+ + \frac{F(0, v)}{2} \delta(u) \left(\frac{\ln v}{v} \right)_+ + \left[-2 \ln \frac{\mu}{Q} F(u, 0) + \frac{2u^2}{(1 + u)^3} + F(u, 0) \ln \left(\frac{\delta^2}{1 + \delta^2} \right) - 2F(u, 0) \ln(1 + u) \right] \delta(v) \left(\frac{1}{u} \right)_+ + 2F(u, 0) \delta(v) \left(\frac{\ln u}{u} \right)_+ + F(u, v) \left(\frac{1}{u} \right)_+ \left(\frac{1}{v} \right)_+ \right\}$$

MC implementation:

- Phase space slicing method: large log cancellation
- Numerical extrapolation method: point-by-point shower
- Two independent methods consistent
- Subtraction method? Can hard function be provided by MG5_aMC@NLO?

Ingredients at LL' level

$$d\sigma^{\mathrm{LL'}}(Q,Q_{0}) = \sum_{m=2}^{\infty} \left\langle \mathcal{H}_{2}^{(0)}(\{\underline{n}\},Q,\mu_{h}) \otimes \mathbf{U}_{2m}(\{\underline{n}\},\mu_{s},\mu_{h}) \hat{\otimes} \mathbf{1} \right\rangle$$

$$+ \alpha_{s}(\mu_{h}) \sum_{m=2}^{\infty} \left\langle (\mathcal{H}_{2}^{(1)}(\{\underline{n}\},Q,\mu_{h})) \otimes \mathbf{U}_{2m}(\{\underline{n}\},\mu_{s},\mu_{h}) \hat{\otimes} \mathbf{1} \right\rangle$$

$$+ \alpha_{s}(\mu_{h}) \sum_{m=3}^{\infty} \left\langle (\mathcal{H}_{3}^{(1)}(\{\underline{n}\},Q,\mu_{h})) \otimes \mathbf{U}_{3m}(\{\underline{n}\},\mu_{s},\mu_{h}) \hat{\otimes} \mathbf{1} \right\rangle$$

$$+ \alpha_{s}(\mu_{s}) \sum_{m=2}^{\infty} \left\langle (\mathcal{H}_{2}^{(0)}(\{\underline{n}\},Q,\mu_{h})) \otimes \mathbf{U}_{2m}(\{\underline{n}\},\mu_{s},\mu_{h}) \hat{\otimes} \mathbf{S}_{m}^{(1)}(\{\underline{n}\},Q_{0},\mu_{s})) \right\rangle$$

 One-loop soft function can be implemented by re-weighting the events when they radiate outside jet cone (inside gap)

$$S_m^{(1)} = \frac{N_c}{2} \sum_{i,j+1} \int dy \, \frac{d\phi}{2\pi} \left[-4 \ln \frac{\mu_s}{Q_0} + 4 \ln \frac{2 |\sin \phi|}{f(\phi, y)} \right] \Theta_{\text{out}}(y, \phi)$$