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• Non-global observables involve additional NGLs not captured by the 
usual resummation formula

• Exponentiating soft anomalous dimension only resum part of logs

JHEP03(2002)017

The subscript P on ΣΩ,P serves as a reminder that we have only taken into account primary
emissions and t is defined to be the following integral of αs,

t(QΩ, Q) =
1
2π

∫ Q/2

QΩ

dkt

kt
αs(kt) =

1
4πβ0

ln
αs(Q/2)
αs(QΩ)

, (2.6)

where the second equality holds at the one-loop level and β0 = (11CA − 2nf )/(12π).

3. Leading order calculation of non-global effects

As well as dealing with primary emissions, it is necessary to account also for contributions
from (secondary) emissions coherently radiated into Ω from large-angle soft-gluon ensem-
bles outside of Ω. We will denote the contribution from such non-global terms by the
function S(t), such that to SL accuracy

ΣΩ(t(QΩ, Q)) ≡ S(t)ΣΩ,P(t) . (3.1)

To start with, we calculate the leading order contribution to S, i.e. S2, where we define the
following series expansion for S:

b a

2 1

∆η

Figure 2: The kind of diagram to be con-
sidered for the calculation of S2 in the
case of a rapidity slice of width ∆η.

S(t) =
∑

n=2

Sntn . (3.2)

Since this kind of contribution only starts with sec-
ondary emissions, there is no S1 term. In the cal-
culation of S2, we shall be entitled to equate t with
αs
2π ln Q

2QΩ
.

The exact value of S2 depends on the geometry
of the patch Ω. Here we calculate it analytically
for the case where Ω is a slice in rapidity of width
∆η. The kind of diagram to be considered is shown in figure 2, where a and b are quarks
(they may be outgoing or incoming depending on whether for example we are dealing with
e+e− or DIS in the Breit frame) and 1 and 2 are gluons. We introduce the following
four-momenta

ka =
Q

2
(1, 0, 0, 1) , (3.3a)

kb =
Q

2
(1, 0, 0,−1) , (3.3b)

k1 = x1
Q

2
(1, 0, sin θ1, cos θ1) , (3.3c)

k2 = x2
Q

2
(1, sin θ2 sin φ, sin θ2 cos φ, cos θ2) , (3.3d)

where we have defined energy fractions x1,2 ≪ 1 for the two gluons. To our accuracy, we
can neglect the recoil of the hard particles against the soft gluons.
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LL resummation for non-global observables

• The leading logarithms arise from configuration in which the emitted 
gluons are strongly ordered

Nm
C g2ms

X

(1,··· ,m)

pa · pb
(pa · p1)(p1 · p2) · · · (pm · pb)

E1 � E2 � · · · � Em

• In the large-Nc limit, multi-gluon emission amplitudes become simple:

•  Banfi-Marchesini-Smye eqation

• Dasgupta-Salam shower
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Figure 14. The action of the operator Vm on an amplitude in the large-Nc limit.

suppressed at large Nc. At large Nc, emissions arise only between nearest-neighbour legs,

since all other attachments would lead to non-planar contributions which are suppressed.

Based on the above simplification, the effect of Rm in the large-Nc limit is shown diagram-

matically in Figure 13. The action of Vm simplifies analogously, as shown in Figure 14.

The large-Nc color factor from squaring the amplitudes is simply a factor of Nc for each

color loop, and the number of additional color loops is equal to the number of powers of

αs, so that the color factor is obtained by switching to the ’t Hooft coupling λ = Nc αs.

We now plug the explicit results (5.11) for the anomalous-dimension coefficients Vm

and Rm into the expressions (5.17). For the coefficients of the expansion in t, we then

obtain

S
(1)
2 = −4Nc

∫

Ω
3OutW

3
12 ,

S
(2)
2 =

(4Nc)
2

2!

∫

Ω

[
− 3In 4Out

(
P 34
12 −W 3

12 W
4
12

)
+ 3Out 4OutW

3
12 W

4
12

]
,

S
(3)
2 =

(4Nc)
3

3!

∫

Ω

[
3In 4Out 5Out

[
P 34
12

(
W 5

13 +W 5
32 +W 5

12

)
− 2W 3

12 W
4
12 W

5
12

]

− 3In 4In 5OutW
3
12

[(
P 45
13 −W 4

13 W
5
13

)
+

(
P 45
32 −W 4

32 W
5
32

)
−

(
P 45
12 −W 4

12 W
5
12

)]

− 3Out 4Out 5OutW
3
12 W

4
12 W

5
12

]
, (5.20)

where
∫
Ω 3Out =

∫ dΩ(n3)
4π Θnn̄

out(n3), and we have used the abbreviation

P kl
ij = W k

ij

(
W l

ik +W l
kj

)
. (5.21)

The above expressions include all leading logarithms, i.e. the global and non-global loga-

rithmic terms appear together.

Let us now relate the above expressions to the leading logarithmic resummation of

NGLs at large Nc, which can be obtained by solving the BMS equation [26]

∂L̂Gkl(L̂) =

∫
dΩ(nj)

4π
W j

kl

[
Θnn̄

in (j)Gkj(L̂)Gjl(L̂)−Gkl(L̂)
]
, (5.22)

with boundary condition Gkl(0) = 1. The function Gkl(L̂) depends on two light-like refer-

ence vectors nk and nl. After solving the equation, the resummed soft function is obtained

as S({n}, Qβ, µ) = G12(L̂) with L̂ = 4Nc t. While the non-linear integral equation (5.22)
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(Dasgupta & Salam 2001)

(Banfi, Marchesini & Smye 2002)
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Fig. 2. Left: the kind of diagram which must be considered in the calculation of S . Right: the same diagram represented in the large-NC limit,
with gluons shown as pairs of colour lines and quarks as single colour lines.

have a large relative error, which would translate to a
large absolute error on S because of the division by
the small quantity

√
∆ab(L).

Instead a more efficient procedure involves moving
the division by

√
∆ab(L) directly into the calculation

of the PC . This can be achieved using a modified
radiation intensity, F̃C (for both the emissions and the
virtual corrections),

(16)F̃C(θ,φ) = FC(θ,φ) −Fab(θ,φ)Θ(θ),

where one subtracts out the radiation intensity Fab

which would have been produced by the original qq̄

pair (in the large-NC limit). One calculates quantities
P̃C using analogs of Eqs. (12) and (13) with FC
replaced by F̃C and then S is simply given by

(17)S(αsL) =
∑

C|HR empty

P̃C(L).

It should be kept in mind that since F̃C is negative in
certain regions of phase space one loses a strict proba-
bilistic interpretation for the P̃C . Nevertheless the sum
over configurations is well-defined and meaningful.
The exact details of the Monte Carlo algorithm are

given in Appendix A. Here we restrict ourselves to
giving a parameterisation for S obtained by fitting to
the Monte Carlo results:

(18)S(αsL) ≃ exp
(

−CF CA
π2

3

(
1+ (at)2

1+ (bt)c

)
t2

)
,

with

t (αsL) = 1
2π

1∫

e−L

dx

x
αs (xQ)

(19)= 1
4πβ0

ln
1

1−2β0αsL
,

where β0 = (11CA −2nf )/(12π) and

(20)a = 0.85CA, b = 0.86CA, c = 1.33.

The parameterisation should be accurate to the order
of a few percent (better in most of the region) for
t < 0.7, corresponding to 1−2αsβ0L ! 0.005. 3
Actually, for the purposes of the fit one replaces

CF CA in (18) with C2A/2 since the Monte Carlo works
in the large-NC limit. But for use in phenomenology
one wishes to have the exact colour structure at least
at O(α2s ), hence the use of CF CA in (18).

4. Checks and conclusions

It is useful to check our results against fixed order
results from the next-to-leading order Monte Carlo
program Event2 [10]. First it is necessary to determine
the constant terms C

(q)
1 and C

(g)
1 , which are obtained

by requiring consistency between (4) and a full O(αs )
calculation. It is straightforward to show that they are
given by

(21)C
(q)
1 = 1

2
(
Cτ
1 − r3

)
, C

(g)
1 = r3

2
,

3 The accessible range of t is limited by two issues: firstly
only a small fraction of events are generated at large t , requiring
considerable statistics in order to investigate that region; and
secondly because an accurate determination of S at large t requires
a very small angular cutoff, which leads to there being many dipoles
in an event, and a consequent slowing down of the evolution.
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Some recent progress

• Dressed gluon expansion Larkoski, Moult & Neill ’15 ’16

• Color density matrix Caron-Huot ’15

• Multi-Wilson-line theory in SCET Becher, Neubert, Rothen & DYS ’15 ’16

• Finite Nc results for hemisphere mass and inter-jet energy flow 
Hatta, Ueda ’13, + Hagiwara ’15

• Soft (Glauber) gluon evolution at amplitude level, finite Nc Martínez, 

Angelis, Forshaw, Plätzer & Seymour ’18  See Angelis’s Talk

• Reduced density matrix Neill & Vaidya ‘18
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Soft radiations inside Non-global observables

• Non-global observables: soft radiation resolves the colors and directions 
of individual energetic partons. 

• For a wide-angle jet, the energetic particles are not collinear.

• For a narrow-angle jets, we find that small-angle soft radiation plays 
an important role. Resolves directions of individual energetic partons!
Becher, Neubert, Rothen & DYS ’15; Chien, Hornig & Lee ‘15

X

i

Qi
pi · ✏(k)
pi · k

⇠ Qtot
n · ✏
n · k
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Factorization for jet cross section

(see [7] for a review). Our starting point is the factorization theorem which separates the

hard radiation inside the jets (or outside the isolation cone) from the soft radiation. The

soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation which can be solved using a parton shower Monte-

Carlo (MC) program, which at leading-log accuracy and large-Nc is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes and

running the parton shower to generate the logarithmically enhanced terms. Using a tree-

level event generator, this resummation can be automated. We have written a dedicated

parton shower code to perform the resummation and use the MadGraph5_aMC@NLO

framework [12] to generate the necessary tree-level amplitudes. We then study exclusive

jet and isolation-cone cross sections. In particular, we give numerical results for dijet

production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
1X

m=k

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates

an integral over these directions and h. . . i denotes the color trace, which is taken after
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• For k jets process at lepton collider Q0 Q

• Hard function: integrating over the energies of the hard particles, while 
keeping their direction fixed

• Soft function

• ⊗ indicates integration over the direction of the energetic partons 

from these Wilson lines

Sm({n}, Q0, µ) =

Z

Xs

X
h0|S†

1
(n1) . . . S

†
m(nm) |XsihXs|S1(n1) . . . Sm(nm) |0i ✓(Q0 � E out) ,

(2.3)

where the state Xs contains an arbitrary number of soft partons. The soft functions depend

on the energy Q0 of the radiation and implicitly also on the shape of the region ⌦out in

which the energy is measured. TheWilson-line matrix elements have ultraviolet divergences

which can be renormalized away and this induces a dependence on the renormalization scale

µ.

The hard function is given by the square of the hard-scattering amplitudes, together

with the phase-space constraints ⇥in

��
p
 �

which restrict the hard partons to the inside of

the jets,

Hm({n}, Q, µ) =
1

2Q2

X

spins

mY

i=1

Z
dEiE

d�3

i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �
⇣
Q�

mX

i=1

Ei

⌘
�
(d�1)(~ptot)⇥in

��
p
 �

. (2.4)

For cone jets the phase-space constraint ⇥in

��
p
 �

is given by cones around the hard par-

tons. For recombination algorithms, on the other hand, the jet clustering constraints can

be quite complicated in general and can spoil factorization. However, they simplify in our

setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [28] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = �

mX

l=k

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, µ)

�
. (2.6)

and the resummed cross section is then

d�(Q,Q0) =
1X

l=k,m�l

⌦
Hl({n}, Q, µh)⌦Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)

↵
. (2.7)

The condition m � l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⌦̂ indicates that one has to integrate over the angles of

the (m � l) additional unresolved emissions. For the choice µh ⇠ Q and µs ⇠ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective
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hard and soft functions are free of large logarithms and can be expanded in the respective
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from these Wilson lines

Sm({n}, Q0, µ) =

∫

Xs

∑
⟨0|S†

1(n1) . . . S
†
m(nm) |Xs⟩⟨Xs|S1(n1) . . . Sm(nm) |0⟩ θ(Q0 − E out) ,

(2.3)

where the states Xs contain an arbitrary number of soft partons. The soft functions depend

on the energyQ0 of the radiation and implicitly also on the shape of the region Ωout in which

the energy is measured. TheWilson-line matrix elements have ultraviolet divergences which

can be renormalized away and this induces a dependence on the renormalization scale µ.

The hard functions are given by the square of the hard-scattering amplitudes, together

with the phase-space constraints Θin
({

p
})

which restrict the m hard partons to the inside

of the jets,

Hm({n}, Q, µ) =
1

2Q2

∑

spins

m∏

i=1

∫
dEiE

d−3
i

(2π)d−2
|Mm({p})⟩⟨Mm({p})|

× (2π)d δ
(
Q−

m∑

i=1

Ei

)
δ(d−1)(p⃗tot)Θin

({
p
})

. (2.4)

For cone jets the phase-space constraint Θin
({

p
})

is defined by cones around the hard

partons. For recombination algorithms, on the other hand, the jet clustering constraints

can be quite complicated in general and can spoil factorization. However, they simplify in

our setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [31] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = −

m∑

l=k

Hl({n}, Q, µ)ΓH
lm({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

[ ∫ µh

µs

dµ

µ
ΓH({n}, µ)

]
, (2.6)

and the resummed cross section is then

dσ(Q,Q0) =
∞∑

l=k,m≥l

〈
Hl({n}, Q, µh)⊗Ulm({n}, µs, µh) ⊗̂Sm({n}, Q0, µs)

〉
. (2.7)

The condition m ≥ l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⊗̂ indicates that one has to integrate over the angles of

the (m − l) additional unresolved emissions. For the choice µh ∼ Q and µs ∼ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective

coupling constants αs(µh) and αs(µs). At leading logarithmic accuracy, we only need these

– 4 –
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Figure 1. Pictorial representation of the factorization theorems for the differential cross sections
with respect to the hemisphere jet masses in the limit ML ≪ MR ≪ Q (left), and to the left-jet mass
when ML ≪ MR ∼ Q (right). Blue lines correspond to collinear partons inside the jet functions,
the red lines represent soft emissions. The green lines in the left picture correspond to the hard
part of the hemisphere soft function, while the black lines in the right picture correspond to hard
emission into the right hemisphere.

2 Factorization

The derivation of the factorization formula follows the same steps in both cases and is

similar to the one relevant for wide-angle cone-jet cross sections presented in [20]. We will

first sketch the derivations of the theorems and specify the ingredients. We then relate the

soft functions to the ones which arise in the case of the narrow-cone jet cross sections. Due

to this relation, we can use the results [20] for these and only the hard functions need to

be computed.

2.1 Hemisphere soft function

The hemisphere soft function describes radiation originating from a quark and an anti-

quark along the directions n and n̄ of the two jets. Their soft radiation is described by

Wilson lines. The one generated by the outgoing quark along the n direction is

S(n) = P exp

(
igs

∫ ∞

0
ds n ·Aa(sn)ta

)
, (2.1)

and the soft function is defined as

S(ωL,ωR) =
1

Nc

∑

X

Tr⟨0|S(n̄)S†(n)|X⟩⟨X|S(n)S†(n̄)|0⟩δ(ωR − n · PR) δ(ωL − n̄ · PL) ,

(2.2)

where the trace is over color indices. We call the hemisphere which contains the thrust

vector the right hemisphere. The right-moving particles therefore have n̄ · p > n · p and

PR(L) is the total momentum in the right (left) hemisphere. Usually, the function S(ωL,ωR)

is defined in terms of the soft gluon field in SCET. However, the soft SCET Lagrangian

is equivalent to the full QCD one so for our discussion we will consider (2.2) as a matrix

element in QCD. In the asymmetric case ωL ≪ ωR the function S(ωL,ωR) develops large,

non-global logarithms (NGLs) in the ratio κ ≡ ωL/ωR ≪ 1. It is these logarithms which

we seek to resum using effective-field-theory methods.
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Figure 3. Momentum modes and associated scales for wide-angle (left) and narrow-angle (right)
jet production.

of logarithmically-enhanced contributions to all orders in perturbation theory. This re-

summation is achieved by evolving the Wilson coefficients of these operators from the high

scale µ ∼ Q down to the scale where the low-energy physics takes place. Let us first

discuss the wide-angle cross section for which the factorization theorem has been given

in (2.15). In our effective theory, the hard functions Hm are the Wilson coefficients of the

Wilson-line matrix elements Sm and we regularize both quantities in d = 4−2ϵ dimensions.

The effective field theory matrix elements contain UV divergences since the short-distance

structure of the full theory is not resolved. The corresponding 1/ϵ poles can be removed

by renormalizing the hard Wilson coefficients according to

Hm({n}, Q, δ, ϵ) =
m∑

l=2

Hl({n}, Q, δ, µ)ZH
lm({n}, Q, δ, ϵ, µ) . (2.35)

In practice, it is easiest to obtain the bare Wilson coefficients from on-shell matching

calculations, where the poles arise from IR divergences. However, these IR poles are in

one-to-one correspondence to UV divergences since the effective-theory loop-integrals in

such matching computations are scaleless, see e.g. [13] for a detailed explanation of this

point within SCET. We have discussed this correspondence after (2.15). It implies that

we can understand the UV divergences of Hm from the structure of the IR divergences

in the real and virtual diagrams which contribute to these quantities. Given that the

coefficients Hm are fixed-multiplicity QCD amplitudes squared, integrated over energy, it

is clear that the matrix ZH
lm({n}, Q, δ, ϵ, µ) cannot be diagonal: lower-multiplicity virtual

diagrams are needed to cancel the divergences of real-emission diagrams. In order to achieve

this cancellation, the renormalization matrix must have the form

Z
H({n}, Q, δ, ϵ, µ) ∼

⎛

⎜⎜⎜⎜⎜⎜⎝

1 αs α2
s α3

s . . .

0 1 αs α2
s . . .

0 0 1 αs . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
, (2.36)

where we indicate the perturbative order of each element. At each higher order in per-

turbation theory, more off-diagonal contributions fill in. We have anticipated the upper

– 15 –

Becher, Neubert, Rothen, 

DYS ’15 ’16 

Becher, Pecjak, DYS ’16 

Becher, Rahn, DYS ’17 

Balsiger, Becher, DYS, ‘18



9

RG evolution & Resummation

Wilson coefficients fulfill Renormalization Group equation

1. Compute      at characteristic high scale

2. Evolve      to the scale of low energy physics

3. Compute      at 

Resum large logarithms

Hm

Hm

µh ⇠ Q

Sm

Then resummation cross section can be written as

from these Wilson lines

Sm({n}, Q0, µ) =

Z

Xs

X
h0|S†

1
(n1) . . . S

†
m(nm) |XsihXs|S1(n1) . . . Sm(nm) |0i ✓(Q0 � E out) ,

(2.3)

where the state Xs contains an arbitrary number of soft partons. The soft functions depend

on the energy Q0 of the radiation and implicitly also on the shape of the region ⌦out in

which the energy is measured. TheWilson-line matrix elements have ultraviolet divergences

which can be renormalized away and this induces a dependence on the renormalization scale

µ.

The hard function is given by the square of the hard-scattering amplitudes, together

with the phase-space constraints ⇥in

��
p
 �

which restrict the hard partons to the inside of

the jets,

Hm({n}, Q, µ) =
1

2Q2

X

spins

mY

i=1

Z
dEiE

d�3

i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �
⇣
Q�

mX

i=1

Ei

⌘
�
(d�1)(~ptot)⇥in

��
p
 �

. (2.4)

For cone jets the phase-space constraint ⇥in

��
p
 �

is given by cones around the hard par-

tons. For recombination algorithms, on the other hand, the jet clustering constraints can

be quite complicated in general and can spoil factorization. However, they simplify in our

setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [28] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = �

mX

l=k

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, µ)

�
. (2.6)

and the resummed cross section is then

d�(Q,Q0) =
1X

l=k,m�l

⌦
Hl({n}, Q, µh)⌦Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)

↵
. (2.7)

The condition m � l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⌦̂ indicates that one has to integrate over the angles of

the (m � l) additional unresolved emissions. For the choice µh ⇠ Q and µs ⇠ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective
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from these Wilson lines

Sm({n}, Q0, µ) =

∫

Xs

∑
⟨0|S†

1(n1) . . . S
†
m(nm) |Xs⟩⟨Xs|S1(n1) . . . Sm(nm) |0⟩ θ(Q0 − E out) ,

(2.3)

where the states Xs contain an arbitrary number of soft partons. The soft functions depend

on the energyQ0 of the radiation and implicitly also on the shape of the region Ωout in which

the energy is measured. TheWilson-line matrix elements have ultraviolet divergences which

can be renormalized away and this induces a dependence on the renormalization scale µ.

The hard functions are given by the square of the hard-scattering amplitudes, together

with the phase-space constraints Θin
({

p
})

which restrict the m hard partons to the inside

of the jets,

Hm({n}, Q, µ) =
1

2Q2

∑

spins

m∏

i=1

∫
dEiE

d−3
i

(2π)d−2
|Mm({p})⟩⟨Mm({p})|

× (2π)d δ
(
Q−

m∑

i=1

Ei

)
δ(d−1)(p⃗tot)Θin

({
p
})

. (2.4)

For cone jets the phase-space constraint Θin
({

p
})

is defined by cones around the hard

partons. For recombination algorithms, on the other hand, the jet clustering constraints

can be quite complicated in general and can spoil factorization. However, they simplify in

our setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [31] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = −

m∑

l=k

Hl({n}, Q, µ)ΓH
lm({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

[ ∫ µh

µs

dµ

µ
ΓH({n}, µ)

]
, (2.6)

and the resummed cross section is then

dσ(Q,Q0) =
∞∑

l=k,m≥l

〈
Hl({n}, Q, µh)⊗Ulm({n}, µs, µh) ⊗̂Sm({n}, Q0, µs)

〉
. (2.7)

The condition m ≥ l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⊗̂ indicates that one has to integrate over the angles of

the (m − l) additional unresolved emissions. For the choice µh ∼ Q and µs ∼ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective

coupling constants αs(µh) and αs(µs). At leading logarithmic accuracy, we only need these

– 4 –
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LL resummationis the evolution time. We start the evolution at t = 0 and then evolve to larger times,

which correspond to lower scales. Since we will sometimes plot quantities as a function of

the shower time t, we show the relation between t and the ratio of the low scale µs to the

high scale µh for di↵erent hard-scattering scales µh in Figure 1. The plot makes it clear

that the relevant region for perturbative calculations is t . 0.1, even after resummation.

3 RG evolution as a parton shower

To obtain a MC implementation of the leading-logarithmic evolution we make use of the

explicit form of the one-loop anomalous dimension [2], which for k-jet production has the

form

�
(1) =

0

BBBBBB@

Vk Rk 0 0 . . .

0 Vk+1 Rk+1 0 . . .

0 0 Vk+2 Rk+2 . . .

0 0 0 Vk+3 . . .

...
...

...
...

. . .

1

CCCCCCA
. (3.1)

The one-loop anomalous dimensions are given by

Vm = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nl)

4⇡
W

l

ij

� 2 i⇡
X

(ij)

(Ti,L · Tj,L � Ti,R · Tj,R)⇧ij , (3.2)

Rm = �4
X

(ij)

Ti,L · Tj,R W
m+1

ij
⇥in(nm+1) .

In [2], they were derived by considering soft limits of the amplitudes. The relevant product

of soft currents leads to a dipole structure for the angular dependence given by the factor

W
l

ij =
ni · nj

ni · nl nj · nl

(3.3)

Before discussing the evolution, let us explain how the anomalous dimension acts on the

functions Hm defined in (2.4). These functions contain both amplitudes |Mm({p})i and

their conjugate. The color matrices Ti,L acts on the i-th parton in the amplitude while

Tj,R multiplies the conjugate, for example

(T1,L · T2,L + T3,R · T4,R)Hm = T1 · T2Hm + Hm T3 · T4 . (3.4)

and Ti,L · Tj,L =
P

a
T a

i,L
· T a

j,L
. This is the usual color-space notation [34, 35]. While we

do not indicate this notationally, the color matrices in the real-emission operator Rm are

di↵erent. They take an amplitude with m partons and associated color indices and map it

into an amplitude with m+ 1 partons. Explicitly, we have

Ti,L · Tj,R Hm = T a

i Hm T a

j . (3.5)
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which correspond to lower scales. Since we will sometimes plot quantities as a function of

the shower time t, we show the relation between t and the ratio of the low scale µs to the

high scale µh for di↵erent hard-scattering scales µh in Figure 1. The plot makes it clear

that the relevant region for perturbative calculations is t . 0.1, even after resummation.

3 RG evolution as a parton shower

To obtain a MC implementation of the leading-logarithmic evolution we make use of the

explicit form of the one-loop anomalous dimension [2], which for k-jet production has the
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Vm = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nl)

4⇡
W

l

ij

� 2 i⇡
X

(ij)

(Ti,L · Tj,L � Ti,R · Tj,R)⇧ij , (3.2)

Rm = �4
X

(ij)

Ti,L · Tj,R W
m+1

ij
⇥in(nm+1) .

In [2], they were derived by considering soft limits of the amplitudes. The relevant product

of soft currents leads to a dipole structure for the angular dependence given by the factor

W
l

ij =
ni · nj

ni · nl nj · nl

(3.3)

Before discussing the evolution, let us explain how the anomalous dimension acts on the

functions Hm defined in (2.4). These functions contain both amplitudes |Mm({p})i and

their conjugate. The color matrices Ti,L acts on the i-th parton in the amplitude while

Tj,R multiplies the conjugate, for example

(T1,L · T2,L + T3,R · T4,R)Hm = T1 · T2Hm + Hm T3 · T4 . (3.4)

and Ti,L · Tj,L =
P

a
T a

i,L
· T a

j,L
. This is the usual color-space notation [34, 35]. While we

do not indicate this notationally, the color matrices in the real-emission operator Rm are

di↵erent. They take an amplitude with m partons and associated color indices and map it

into an amplitude with m+ 1 partons. Explicitly, we have

Ti,L · Tj,R Hm = T a

i Hm T a

j . (3.5)
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One-loop anomalous dimension

Figure 1. The relation between shower time t, hard scale µh and soft scale µs. We stop the lines
in the plot when µs reaches 1GeV.

coupling constants ↵s(µh) and ↵s(µs). At leading logarithmic accuracy, we only need these

functions at leading power in ↵s. The soft functions then become trivial Sm = 1 and all

higher hard functions are suppressed, Hm ⇠ ↵
m�k
s Hk. The cross section thus simplifies

to

d�LL(Q,Q0) =
1X

m=k

⌦
Hk({n }, Q, µh) ⌦ Ukm({n}, µs, µh) ⌦̂1

↵
, (2.8)

where the evolution factor can be evaluated with the leading-order expression for the

anomalous dimension �
H . We note that the Born-level cross section is given by

d�0(Q,Q0) =
⌦
Hk({n}, Q, µh)

↵
. (2.9)

This demonstrates, what we have indicated earlier, that the starting point of the evolu-

tion is the tree-level cross section. The additional piece of information needed is the color

structure since the evolution changes the colors. The paper [29] has modified the Mad-

Graph5_aMC@NLO code in such a way that it provides the full color information. We will

focus on the large-Nc limit below and we can thus simply use the color information which

MadGraph5_aMC@NLO provides for showering its tree-level events. We will come back

to this point later.

It is convenient to rewrite the exponent of the evolution matrix (2.6) at leading order

in RG-improved perturbation theory in the form

Z
µh

µs

dµ

µ
�
H

nm =

Z
↵(µh)

↵(µs)

d↵

�(↵)

↵

4⇡
�
(1)

nm =
1

2�0
ln

↵(µs)

↵(µh)
�
(1)

nm . (2.10)

Using the one-loop anomalous dimension �
(1)

nm” yields leading logarithmic accuracy in the

evolution. The prefactor

t =
1

2�0
ln

↵(µs)

↵(µh)
=

↵s

4⇡
ln

µh

µs

+O(↵2

s) (2.11)
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RG evolution = Parton Shower

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z
t

0
dt

0Hn�1(t
0)Rn�1(t

0)e�(t0�t)Vn (13)

�LL =
1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H

lm
(Q,µ) (16)

H2(µ = Q) = �0 (17)

Hm(µ = Q) = 0 for m > 2 (18)

Sm(µ = �Q) = 1 (19)

t =

Z
↵(Q)

↵(µ)

d↵

�(↵)

↵

4⇡
(20)

d

dt
Hm(t) = Hm(t)Vm +Hm�1(t)Rm�1 . (21)

Hm(t) = Hm(t1)e
(t�t1)Vn +

Z
t

t1

dt
0
Hm�1(t

0)Rm�1e
(t�t

0)Vn (22)

2

We re-derive Dasgupta-Salam angular dipole shower!!!

Rm

" #
= + + · · · +

1

m

2
3
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1

m

2
3
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...
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...

Figure 2. The action of the operator Rm on an amplitude with m legs in the large-Nc limit. The
double and single lines represent gluons and quarks, respectively.

To get the resummed result, one evolves to the appropriate value of t, which is set by the

scales µh and µs in (2.11). The leading-logarithmic cross section is obtained from the sum

d�LL(Q,Q0) =
1X

m=k

⌦
Hm(t) ⌦̂1

↵
(3.10)

=
⌦
Hk(t) +

Z
d⌦1

4⇡
Hk+1(t) +

Z
d⌦1

4⇡

Z
d⌦2

4⇡
Hk+2(t) + . . .

↵
, (3.11)

where we have explicitly written out the angular integrations over the additional emissions

generated by the shower.

To perform the integrations over the intermediate times and the angles of the emissions,

one has to resort to MC methods. However, implementing the above equations is di�cult

because the hard functions and anomalous dimension are matrices in the color space of

the involved partons and the dimension of this space rapidly grows for higher particle

multiplicities. The color structure becomes trivial in the large Nc limit. Using the trace

basis for the color structure, emissions only arise between neighbouring legs in this limit

Ti · Tj ! �Nc

2
�i,j±1 1 (3.12)

and each loop or real emission simply leads to an additional factor of Nc. We have discussed

this point in detail in [2] and reproduce an illustration from this paper in Figure 2 which

shows how the real-emission operatorRm acts on an amplitude withm legs. The amplitude

in the large Nc can be viewed as a set of color dipoles and the real emission operator adds

a new leg, splitting an existing dipole into two new ones. Similarly, the virtual correction

operator (3.2) reduces to a sum of integrals for each dipole involving neighbouring legs

Vm = �4Nc 1

X

i

Z
d⌦(nl)

4⇡
W

l

i,i+1 (3.13)

in the large Nc limit. The treatment of color is of course completely standard and exactly

what is implemented in standard, all-purpose parton shower programs. In our practical

implementation, we work with Les Houches Event (LHE) event files obtained by computing

the tree-level amplitudes with MadGraph5_aMC@NLO. The event files provide the direc-

tions of the hard partons in Hk(t) as well as their color connections. We can thus read out

all the necessary information to start the shower and to generate Hm(t) for m > k.
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To get the resummed result, one evolves to the appropriate value of t, which is set by the

scales µh and µs in (2.11). The leading-logarithmic cross section is obtained from the sum

d�LL(Q,Q0) =
1X

m=k

⌦
Hm(t) ⌦̂1

↵

=
⌦
Hk(t) +

Z
d⌦1

4⇡
Hk+1(t) +

Z
d⌦1

4⇡

Z
d⌦2

4⇡
Hk+2(t) + . . .

↵
, (3.10)

where we have explicitly written out the angular integrations over the additional emissions

generated by the shower.

To perform the integrations over the intermediate times and the angles of the emissions,

one has to resort to MC methods. Implementing the above equations is di�cult because

the hard functions and anomalous dimension are matrices in the color space of the involved

partons and the dimension of this space rapidly grows for higher particle multiplicities. The

color structure becomes trivial in the large-Nc limit. Using the trace basis for the color

structure, emissions only arise between neighbouring legs in this limit

Ti · Tj ! �Nc

2
�i,j±1 1 , (3.11)

and each loop or real emission simply leads to an additional factor of Nc. We have discussed

this point in detail in [2] and reproduce an illustration from this paper in Figure 2 which

shows how the real-emission operatorRm acts on an amplitude withm legs. The amplitude

at large Nc can be viewed as a set of color dipoles and the real emission operator adds a

new leg, splitting an existing dipole into two new ones. Similarly, the virtual correction

operator (3.2) reduces to a sum of integrals for each dipole involving neighbouring legs

Vm = �4Nc 1

X

i

Z
d⌦(nl)

4⇡
W

l

i,i+1 (3.12)

in the large-Nc limit. The treatment of color is of course completely standard and exactly

what is implemented in all parton-shower programs. In our practical implementation, we

work with Les Houches Event Files (LHEF) [35] obtained by computing the tree-level

amplitudes with MadGraph5_aMC@NLO. The event files provide the directions of the

hard partons in Hk(t) as well as their color connections. We can thus read out all the

necessary information to start the shower and to generate Hm(t) for m > k.
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and the index a is the color of the emitted gluon. Note that there is no sum over the color

a. The color sum will only be taken at the end after multiplying with the soft function.

We nevertheless use the scalar product notation Ti,L · Tj,R since it allows us to suppress

the color indices, which is one of the advantages of the color-space formalism. However,

when applying the real emission operator Rm one needs to keep in mind that one changes

into new color space and that subsequent applications of color matrices can act on the new

color index.

We have explicitly indicated the imaginary part of the virtual diagrams in the anoma-

lous dimension (3.2). The corresponding Glauber phase arises from cutting the two lines

between which the virtual gluon is exchanged and arises when i and j are both incoming or

outgoing, and the factor ⇧ij is defined to be 1 in this case and 0 otherwise. For e+e� colli-

sions, this part immediately vanishes due to color conservation
P

i
Ti = 0 but it is present

in hadronic collisions and induces the super-leading logarithms discovered in [29, 30].

Let us now discuss the solution of the RG at leading logarithmic accuracy. Using the

simple structure of the anomalous dimension matrix (3.1) and changing variables from µ

to t, the RG equation (2.5) reads

d

dt
Hm(t) = Hm(t)Vm +Hm�1(t)Rm�1 , (3.6)

where we have suppressed the dependence on the other variables. The solution of the

homogenous part of the equation is simply an exponential and we can thus rewrite (3.6) as

Hm(t) = Hm(t0) e
(t�t0)Vm +

Z
t

t0

dt
0
Hm�1(t

0)Rm�1 e
(t�t

0
)Vm . (3.7)

This is the form in which parton-shower equations are usually presented: we evolve from

t0 to time t either without an emission (the first part), or by adding an additional emission

to a lower-leg amplitude. In this context e(t�t
0
)Vm is usually called the Sudakov factor, but

since our problem is single logarithmic, this nomenclature does not quite fit. To map to

expression (2.8), we note that

Hm(t) ⌘ Hk({n}, Q, µh)Ukm({n}, µs, µh) (3.8)

and that the initial condition is Hm(0) = 0 for all m > k. To solve the equation for a

process with k jets, one starts with m = k and then uses (3.7) iteratively to generate all

higher functions

Hk(t) = Hk(0) e
tVk

Hk+1(t) =

Z
t

0

dt
0
Hk(t

0)Rk e
(t�t

0
)Vk+1 (3.9)

Hk+2(t) =

Z
t

0

dt
0
Hk+1(t

0)Rk+1 e
(t�t

0
)Vk+2

Hk+3(t) = . . .
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What is a shower?

A parton shower consists of three main features:

1. An ordering variable which defines the sequence according to which
emissions are generated (such as kt , angle, virtuality).

2. A branching probability P(Sn .v) of finding a state Sn with n partons at
scale v, which evolves as

dP(Sn , v)
d ln 1/v

⇤ � f (Sn , v)P(Sn , v) .

3. A kinematic mapping M from state Sn to Sn+1

Sn+1 ⇤ M(Sn , v; i , j, z , �|{z}
emission

) .

with an associated “splitting” weight function dP(Sn , v; i , j, z , �),
governing relative probabilities of new states.

Frédéric Dreyer 3/12

RG evolution = Parton Shower

Renormalization Scale  
or Observable

Vm

Rm

JHEP08(2018)104

nevertheless use the scalar product notation Ti,L · Tj,R since it allows us to suppress the

color indices, which is one of the advantages of the color-space formalism. However, when

applying the real emission operator Rm one needs to keep in mind that one changes into

new color space and that subsequent applications of color matrices can act on the new

color index.

We have explicitly indicated the imaginary part of the virtual diagrams in the anoma-

lous dimension (3.2). The corresponding Glauber phase arises from cutting the two lines

between which the virtual gluon is exchanged and arises when i and j are both incoming or

outgoing, and the factor Πij is defined to be 1 in this case and 0 otherwise. For e+e− colli-

sions, this part immediately vanishes due to color conservation
∑

i Ti = 0 but it is present

in hadronic collisions and induces the super-leading logarithms discovered in [29, 30].

Let us now discuss the solution of the RG at leading logarithmic accuracy. Using the

simple structure of the anomalous dimension matrix (3.1) and changing variables from µ

to t, the RG equation (2.5) reads

d

dt
Hm(t) = Hm(t)Vm +Hm−1(t)Rm−1 , (3.6)

where we have suppressed the dependence on the other variables. The solution of the

homogenous part of the equation is simply an exponential and we can thus rewrite (3.6) as

Hm(t) = Hm(t0) e
(t−t0)Vm +

∫ t

t0

dt′Hm−1(t
′)Rm−1 e

(t−t′)Vm . (3.7)

This is the form in which parton-shower equations are usually presented: we evolve from

t0 to time t either without an emission (the first part), or by adding an additional emission

to a lower-leg amplitude. In this context e(t−t
′)Vm is usually called the Sudakov factor, but

since our problem is single logarithmic, this nomenclature does not quite fit. To map to

expression (2.8), we note that

Hm(t) ≡ Hk({n}, Q, µh)Ukm({n}, µs, µh) , (3.8)

and that the initial condition is Hm(0) = 0 for all m > k. To solve the equation for a

process with k jets, one starts with m = k and then uses (3.7) iteratively to generate all

higher functions

Hk(t) = Hk(0) e
tVk ,

Hk+1(t) =

∫ t

0
dt′Hk(t

′)Rk e
(t−t′)Vk+1 , (3.9)

Hk+2(t) =

∫ t

0
dt′Hk+1(t

′)Rk+1 e
(t−t′)Vk+2 ,

Hk+3(t) = . . . .
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Automated resummation for Non-global observables

• Use Madgraph5_aMC@NLO generator

• event file with directions and large-Nc color connections of 
hard partons

• provides lowest multiplicity hard function for given process

• Run our shower on each event to generate additional partons 
and write result back into event file 

• Analyze events, according to cuts on hard partons, obtain 
resummed cross section with hard cuts and veto scale
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(Balsiger, Becher, DYS,’18)

Figure 1. The relation between shower time t, hard scale µh and soft scale µs. We stop the lines
in the plot when µs reaches 1GeV.

coupling constants ↵s(µh) and ↵s(µs). At leading logarithmic accuracy, we only need these

functions at leading power in ↵s. The soft functions then become trivial Sm = 1 and all

higher hard functions are suppressed, Hm ⇠ ↵
m�k
s Hk. The cross section thus simplifies

to

d�LL(Q,Q0) =
1X

m=k

⌦
Hk({n }, Q, µh) ⌦ Ukm({n}, µs, µh) ⌦̂1

↵
, (2.8)

where the evolution factor can be evaluated with the leading-order expression for the

anomalous dimension �
H . We note that the Born-level cross section is given by

d�0(Q,Q0) =
⌦
Hk({n}, Q, µh)

↵
. (2.9)

This demonstrates, what we have indicated earlier, that the starting point of the evolu-

tion is the tree-level cross section. The additional piece of information needed is the color

structure since the evolution changes the colors. The paper [29] has modified the Mad-

Graph5_aMC@NLO code in such a way that it provides the full color information. We will

focus on the large-Nc limit below and we can thus simply use the color information which

MadGraph5_aMC@NLO provides for showering its tree-level events. We will come back

to this point later.

It is convenient to rewrite the exponent of the evolution matrix (2.6) at leading order

in RG-improved perturbation theory in the form

Z
µh

µs

dµ

µ
�
H

nm =

Z
↵(µh)

↵(µs)

d↵

�(↵)

↵

4⇡
�
(1)

nm =
1

2�0
ln

↵(µs)

↵(µh)
�
(1)

nm . (2.10)

Using the one-loop anomalous dimension �
(1)

nm” yields leading logarithmic accuracy in the

evolution. The prefactor

t =
1

2�0
ln

↵(µs)

↵(µh)
=

↵s

4⇡
ln

µh

µs

+O(↵2

s) (2.11)
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• Experiments use isolation to reduce photon from hard 
scattering from photons due to hadron decays. 

• Experimentalists choose

• E.g. ATLAS ’16 imposes                                on 
hadronic energy inside cone. 

• Smooth isolation  Frixione ’98

• collinear safe; no fragmentation process

• not applied in experiments now

• Soft-drop isolation Hall & Thaler ’18

• democratic criteria; equivalent to smooth isolation at LO
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Resummation in isolation cross section

VOLUME 76, NUMBER 13 P HY S I CA L REV I EW LE T T ER S 25 MARCH 1996

Breakdown of Conventional Factorization for Isolated Photon Cross Sections

Edmond L. Berger,1 Xiaofeng Guo,2 Jianwei Qiu2

1High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439
2Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011

(Received 12 December 1995)
Using e1e2 ! g 1 X as an example, we show that the conventional factorization theorem in

perturbative quantum chromodynamics breaks down for isolated photon cross sections in a well-defined
part of phase space. Implications and physical consequences are discussed.

PACS numbers: 12.38.Bx, 13.65.+i, 12.38.Qk

High energy photons are considered an excellent probe
of short-distance physics in strong interactions. They
couple directly to pointlike quark constituents and do not
interact strongly once produced [1]. Photons can also
result from long-distance fragmentation of quarks and
gluons, themselves produced in short-distance hard colli-
sions. Consequently, the inclusive photon cross section at
high energy includes both short-distance direct and long-
distance fragmentation contributions, and the cross section
is not completely perturbative. Nevertheless, in accord
with the factorization theorem of perturbative quantum
chromodynamics (QCD) [2], all long-distance physics
associated with parton-to-photon fragmentation can be
represented by nonperturbative, but well-defined and uni-
versal photon fragmentation functions, and the remainder
of the theoretical expression for the cross section, calcu-
lable in QCD perturbation theory, is insensitive to the in-
frared region of the theory.
However, for observational reasons the inclusive cross

section may not be measurable at high energy. Owing to
backgrounds from, e.g., p0 ! gg, a single high energy
photon is observed and the cross section is measured
only when the photon is relatively isolated. Isolation
procedures differ in their details in different experiments
at electron-positron and hadron-hadron collider facilities.
In this Letter, we model the essence of isolation by
drawing a cone of half-angle d about the direction of
the photon’s momentum, and we define the isolated cross
section to be that for photons accompanied by less than
a specified amount of hadronic energy in the cone, e.g.,
Econe

h # Emax. While this is but one of the possible
definitions of isolation, other choices change only the
details of our analysis, not the basic physics. Because
of isolation, the experimental cross section for isolated
photons depends explicitly on the isolation parameters d
and Emax.
A proper theoretical treatment of the cross section

for isolated photons requires careful consideration of the
origins and cancellation of both infrared and collinear
singularities in QCD perturbation theory. In a theoretical
calculation, isolation of the photon restricts the final-
state phase space accessible to accompanying quarks and
gluons. In this Letter, using e1e2 ! gX as an example,

we demonstrate that this phase space restriction inevitably
breaks the perfect cancellation of infrared singularities
between real gluon emission and virtual gluon exchange
diagrams that is required to yield finite cross sections in
each perturbative order.
Breakdown of the cancellation of infrared singularities

appears first at next-to-leading order in the fragmentation
contributions. The associated physics can be summarized
as follows. In the fragmentation contribution, sketched
in Fig. 1, hadronic energy in the isolation cone has
two sources: (a) energy from parton fragmentation Efrag
and (b) energy from nonfragmenting final-state partons
Econe

partons that enter the cone. When the maximum hadronic
energy allowed in the isolation cone is saturated by the
fragmentation energy Emax ≠ Efrag, there is no allowance
for energy in the cone from other final-state partons. In
particular, if there is a gluon in the final state, the phase
space for this gluon becomes restricted. By contrast,
isolation does not affect the virtual gluon exchange
contribution. Therefore, in the isolated case, there is a
possibility that the infrared singularity from the virtual
contribution may not be canceled completely by the
restricted real contribution. In the remainder of this

FIG. 1. Illustration of an isolation cone containing a parton c
that fragments into a g plus hadronic energy Efrag. In addition,
a gluon enters the cone and fragments giving hadronic energy
Eparton.
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Figure 8. E↵ect of the isolation cut in e
+
e
� ! � + X. The plot shows a comparison of the

resummed result (dots) with the one-loop contribution (dashed lines) and the global logarithms
(dotted line).

the discussion in Section 4.1. The situation is interesting for isolation cones because the

logarithms are typically large (experiments often restrict the isolation energy to a few

GeVs), while the area tends to be small. If we substitute Eiso ! Eiso(�) from (4.8) into

(4.12), we can compute the soft function for the smooth-cone. In the approximation (4.11),

we find the smooth-cone result is obtained from the fixed cone one-loop result using the

substitution

ln
✏�E�

µ
�! ln

✏�e
�n

E�

µ
(4.13)

In other words, the smooth-cone isolation is more restrictive than fixed-cone isolation by a

factor en. A computation such as [55] which uses smooth-cone isolation with ✏� = 0.1 and

n = 2, therefore has the same size logarithms as a fixed-cone computation with ✏� = 0.01.

For photon energies of a few hundred GeVs, this indeed matches up with the fixed-cone

isolation criterion

E
T

iso = 4.8GeV + 0.0042ET

� (4.14)

used in the ATLAS analysis [59].

As we discussed in Section 4.1 above, the two-loop non-global and global logarithms

can cancel each other out and for photon isolation results displayed in Figure 8, this e↵ect

is quite pronounced. In this plot we consider e
+
e
� ! � +X with an isolation cone with

half-angle � = ⇡/4 and compare the resummed result with the one-loop logarithm and with

the global contribution, which is given by the exponential of the one-loop logarithm. We

observe that higher-order e↵ects are quite small down to relatively low isolation energies

which correspond to larger values of t in the figure. Resumming the global logarithms leads

to a much larger e↵ect, which cancels after accounting also for the non-global contribution.

By now there are many papers in the SCET literature which resum observables up to

non-global contributions. This example demonstrates that such estimates of higher-order
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New scales introduced by isolation
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• Tight isolation cut

• Large logs        from soft gluon radiation inside cone

• Fragmentation process are power suppressed 

• At the NLO log term is 

• NLO results show no significant infrared sensitivity. 

• Non-global observables: more complicated logarithmic terms will 
appear beyond NLO
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Resummation effects in isolation
✏� ⌧ 1

ln ✏�

↵sR
2 ln ✏�

R2 ⇥ ↵n
s lnn ✏� ln

n�1 R
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7.2 Open problems

We conclude with some remarks on several questions left open by our NLO treatment when
the cone radius R becomes too small, as well as when the parameter ET max is small and
isolation becomes very tight.

7.2.1 Small cone radius

As seen numerically in section 6, the result of the NLO calculation for the isolated cross
section at pT γ = 15GeV violates the physical constraint σ(with isol.) < σ(no isol.) when
R ∼ 0.1. This value of R is smaller than the ones relevant to experimental practice.
However, the value R ∼ 0.1 is not much smaller than the value R = 0.4 that is used in
the most recent measurements at the Tevatron [4, 5] and that is going to be used at the
LHC [14]. Therefore, we should be concerned about the actual value of R below which the
reliability of the fixed-order perturbative calculation breaks down.

Note that pT γ = 15GeV and R = 0.1 imply R pT γ ∼ 1GeV and αs(µ2) ln 1/R2 ∼ 1
(recall that µ = pT γ/2 is used in the numerical results of table 1). Therefore, as discussed
at the end of section 5.1, the scale RpT γ is close to the non-perturbative region and,
at the same time, higher-order corrections proportional to (αs ln 1/R2)n can be relevant.
Summation of the logarithmic dependence on R to all perturbative orders, combined with a
careful study of the border-line between perturbative and non-perturbative regions, has to
be undertaken to improve our understanding of the small-R behaviour of isolated-photon
prodution. Work in this direction is in progress, and the results will be reported elsewhere.

7.2.2 Tight isolation

Formally, the perturbative calculation of the cross section of isolated prompt photons is
infrared-divergent in the limit εh → 0. Indeed, εh = 0 would imply that the isolation cone
about the photon would become an absolutely forbidden region of the phase space for gluon
radiation, no matter how soft it is, thus spoiling the cancellation of infrared singularities
between real and virtual soft-gluon contributions. As discussed in section 6, at NLO this
divergent behaviour shows up as a logarithmic term proportional to αsR2 ln εh in the direct
component of the cross section.

In practice, using a cone of radius R = 0.7, we have found no significant infrared sensi-
tivity in our numerical study, down to the very low value εh = 0.033333, which corresponds
to ET max = 0.5GeV for a photon with pT γ = 15GeV. Therefore the implementation of
the isolation criterion (1.1) with (finite but) tight transverse-energy cuts does not seem to
destabilize the numerical convergence of the perturbative expansion. Nonetheless, owing to
the presence of higher powers of ln εh at higher perturbative orders, the actual sensitivity
of the cross section to very low values of εh is probably underestimated in the present
NLO calculation.

In the present work we have treated all the quarks as being massless. This treatment
is not adequate in the case of a heavy quark when ET max is comparable to its mass. This
issue especially concerns heavy quarks that are experimentally not identified. In this case,
better theoretical calculations and studies of heavy-quark fragmentation based on Monte
Carlo event generators are required.

– 29 –
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7.2 Open problems

We conclude with some remarks on several questions left open by our NLO treatment when
the cone radius R becomes too small, as well as when the parameter ET max is small and
isolation becomes very tight.

7.2.1 Small cone radius

As seen numerically in section 6, the result of the NLO calculation for the isolated cross
section at pT γ = 15GeV violates the physical constraint σ(with isol.) < σ(no isol.) when
R ∼ 0.1. This value of R is smaller than the ones relevant to experimental practice.
However, the value R ∼ 0.1 is not much smaller than the value R = 0.4 that is used in
the most recent measurements at the Tevatron [4, 5] and that is going to be used at the
LHC [14]. Therefore, we should be concerned about the actual value of R below which the
reliability of the fixed-order perturbative calculation breaks down.

Note that pT γ = 15GeV and R = 0.1 imply R pT γ ∼ 1GeV and αs(µ2) ln 1/R2 ∼ 1
(recall that µ = pT γ/2 is used in the numerical results of table 1). Therefore, as discussed
at the end of section 5.1, the scale RpT γ is close to the non-perturbative region and,
at the same time, higher-order corrections proportional to (αs ln 1/R2)n can be relevant.
Summation of the logarithmic dependence on R to all perturbative orders, combined with a
careful study of the border-line between perturbative and non-perturbative regions, has to
be undertaken to improve our understanding of the small-R behaviour of isolated-photon
prodution. Work in this direction is in progress, and the results will be reported elsewhere.

7.2.2 Tight isolation

Formally, the perturbative calculation of the cross section of isolated prompt photons is
infrared-divergent in the limit εh → 0. Indeed, εh = 0 would imply that the isolation cone
about the photon would become an absolutely forbidden region of the phase space for gluon
radiation, no matter how soft it is, thus spoiling the cancellation of infrared singularities
between real and virtual soft-gluon contributions. As discussed in section 6, at NLO this
divergent behaviour shows up as a logarithmic term proportional to αsR2 ln εh in the direct
component of the cross section.

In practice, using a cone of radius R = 0.7, we have found no significant infrared sensi-
tivity in our numerical study, down to the very low value εh = 0.033333, which corresponds
to ET max = 0.5GeV for a photon with pT γ = 15GeV. Therefore the implementation of
the isolation criterion (1.1) with (finite but) tight transverse-energy cuts does not seem to
destabilize the numerical convergence of the perturbative expansion. Nonetheless, owing to
the presence of higher powers of ln εh at higher perturbative orders, the actual sensitivity
of the cross section to very low values of εh is probably underestimated in the present
NLO calculation.

In the present work we have treated all the quarks as being massless. This treatment
is not adequate in the case of a heavy quark when ET max is comparable to its mass. This
issue especially concerns heavy quarks that are experimentally not identified. In this case,
better theoretical calculations and studies of heavy-quark fragmentation based on Monte
Carlo event generators are required.
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Resummation effects in γ isolation at the LHC

• NLO: ~5% reduction, NNLO ~10%, resummed ~ 12%

• NGL dominates over global contribution: naive exponentiation (dashed)

• LL result suffers from large scale uncertainties
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Figure 10. Ratio of the pp ! � +X cross section with isolation to the inclusive one. Left: Ratio
as a function of t (or equivalently ✏�) for E

�
T > 400GeV. Right: Ratio for the ATLAS isolation

criterion (4.14) as a function of E�
T . In both plots we show the resummed result as well as its NLO

and NNLO expansions obtained using the approximation (4.11). The red uncertainty bands are
obtained by scale variations, see text.

which correspond to larger values of t in the figure. Resumming the global logarithms leads

to a much larger e↵ect, which cancels after accounting also for the non-global contribution.

By now there are many papers in the SCET literature which resum observables up to

non-global contributions. This example demonstrates that such estimates of higher-order

terms are not always reliable. In the present example this incomplete resummation leads

to worse predictions than no resummation at all.

Finally, let us analyze photon isolation in hadronic collisions. Of course, in this case

the same caveats apply that we discussed for gaps between jets: a full factorization analysis

for hadronic collisions is not yet available. We will therefore again work in the large-Nc

limit and resum the leading logarithms captured by evolving the hard function from the

scale µh ⇡ E
�

T
down to the soft scale µs ⇡ E

iso

T
. We need to evaluate the PDFs at the hard

scale µf = µh, as explained in the gaps-between-jets case.

The small angular size R of the veto region suppresses higher-order corrections and the

overall e↵ect of the isolation cone is therefore moderate. At the same time, the typical scale

ratios ✏� that arise in experimental measurements can be quite large. We have discussed

in Section 4.1 that the global logarithms scale as ↵n
s R

2n lnn(✏�), while the non-global ones

scale as ↵
n
s R

2 lnn�1(R) lnn(✏�), since they involve only a single gluon in the veto region.

For small R, the non-global logarithms completely dominate the cross section. In order

to verify this, we extract large logarithms up to two-loop from our parton-shower code.

Explicitly, as is shown in [2], the first two coe�cients in the expansion

�(t)/�0 = 1 + S(1)
t+ S(2)

t
2 + . . . (4.15)

in the shower time (2.11) take the form

S(1) =� 4Nc

Z

⌦

3outW
3

12,
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Figure 9. E↵ect of the isolation cut in e
+
e
� ! � + X. The plot shows a comparison of the

resummed result (red line) with the one-loop contribution (orange line) and the global logarithms
(dashed purple line).

For a fixed cone-energy Eiso, the energy integration produces a divergences with an asso-

ciated logarithm, which gets multiplied by the angular area of the cone, in line with the

discussion in Section 4.1. The situation is interesting for isolation cones because the loga-

rithms are typically large (experiments often restrict the isolation energy to a few GeVs),

while the area tends to be small. If we substitute Eiso ! Eiso(�) from (4.8) into (4.12),

we can compute the soft function for the smooth-cone. In the approximation (4.11), we

find that the smooth-cone result is obtained from the fixed cone one-loop result using the

substitution

ln
✏�E�

µ
�! ln

✏�e
�n

E�

µ
. (4.13)

In other words, the smooth-cone isolation is more restrictive than fixed-cone isolation by a

factor en. A computation such as [55] which uses smooth-cone isolation with ✏� = 0.1 and

n = 2, therefore has the same size logarithms as a fixed-cone computation with ✏� = 0.01.

For photon energies of a few hundred GeVs, this indeed matches up with the fixed-cone

isolation criterion

E
iso

T = 4.8GeV + 0.0042ET

� (4.14)

used in the ATLAS analysis [59]. ATLAS uses a cone of R = 0.4 in the rapidity and

azimuthal-angle plane. A particle is considered to be inside the cone (and therefore belongs

to the “out”-region), if �y
2 +��

2
< R

2, where �y is the rapidity di↵erence and �� the

di↵erence of the azimuthal angle between the particle and the photon.

As we discussed in Section 4.1 above, the two-loop non-global and global logarithms

can cancel each other out and for photon isolation results displayed in Figure 9, this e↵ect

is quite pronounced. In this plot we consider e
+
e
� ! � +X with an isolation cone with

half-angle �0 = ⇡/4 and compare the resummed result with the one-loop logarithm and

with the global contribution, which is given by the exponential of the one-loop logarithm.

We observe that higher-order e↵ects are quite small down to relatively low isolation energies
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as a function of t (or equivalently ✏�) for E
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T > 400GeV. Right: Ratio for the ATLAS isolation
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obtained by scale variations, see text.
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By now there are many papers in the SCET literature which resum observables up to

non-global contributions. This example demonstrates that such estimates of higher-order

terms are not always reliable. In the present example this incomplete resummation leads

to worse predictions than no resummation at all.

Finally, let us analyze photon isolation in hadronic collisions. Of course, in this case

the same caveats apply that we discussed for gaps between jets: a full factorization analysis

for hadronic collisions is not yet available. We will therefore again work in the large-Nc
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down to the soft scale µs ⇡ E

iso

T
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From LL to NLL: Sub-leading NGLs

• In order to resum sub-leading NGLs, one needs

• One-loop soft function

• One-loop hard function       and tree level hard function

• Two-loop anomalous dimensions:

• Monte-Carlo implementation of all ingredients

S(1)
m

H
(1)
k

H
(1)
k+1

For the moment, we will work in the large Nc limit. Using component notation, the

leading-order RG can then be written in the form

d

dt
Hm(t) = Hm(t)Vm +Hm−1(t)Rm−1 . (2.4)

Also the second term lives in them-parton space because Rm−1 adds an additional emission

to Hm−1(t). To write this in a form suitable for MC implementation, let us now consider

the evolution from a time t1 to time t. The solution for this can be written in the form

Hm(t) = Hm(t1)e
(t−t1)Vn +

∫ t

t1

dt′Hm−1(t
′)Rm−1e

(t−t′)Vn (2.5)

It is easy to verify that Hm(t) defined in this way fulfills the RG equation (2.4) by taking

the derivative with respect to t. This form is exactly what is implemented in a standard

parton shower Monte-Carlos. The first term is the contribution in which no emission

occurred between t1 and t, while the second term is the contribution from all terms which

had their last emission at t′ between t1 and t.

Together with the LO initial conditions that H2(0) = σ0, while all higher hard func-

tions vanish for t = 0, equation (2.5) provides a natural framework for a Monte-Carlos

computation of the hard functions. One first obtains a MC sample of

H2(t) = σ0 e
tV2 (2.6)

by generating a set of random values of t according the distribution p2(∆t) = V2etV2 . For

each of these, one then generates H3(t+∆t)’s by adding a first emission at t and generating

a next step ∆t with distribution p3(∆t) = V3e∆tV3 .

3 Two-loop anomalous dimension matrix

We expand the anomalous dimension matrix as

Γ =
αs

4π
Γ(1) +

(αs

4π

)2
Γ(2) (3.1)

The one- and two-loop matrices have the form

Γ(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Γ(2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

v2 r2 d2 0 . . .

0 v3 r3 d2 . . .

0 0 v4 r4 . . .

0 0 0 v5 . . .
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.2)

Where we now put superscripts to distinguish the one and two-loop entries. The

quantities vm encode divergencies due to two-loop virtual corrections, rm includes the one-

loop corrections to single emissions and the double branching terms d2 describe divergences

in the correlated emission of two gluons.

– 4 –
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Inter-jet energy flow at e+e- collider
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We extend factorization and resummation in SCET to non-global 
observables 

• have analyzed a variety of such observables 
• multi-Wilson line operators are key ingredient 

We obtain a parton shower from effective field theory 

• not restricted to leading logarithms or large Nc 
• not a General Purpose Parton Shower, but helpful to understand how to 
extend showers to higher accuracy 

• flexible implementation of LL shower using LHE event files
• include one-loop matching coefficients: first important step in sub-
leading NGLs resummation
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Summary
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Numerical results
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Gap fraction at the LHC
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�

Figure 4. Definition of gap region for dijet system in the rapidity and azimuthal plane. If any
jet radiating into the gray region with transverse momentum is larger than Q0, then this event is
vetoed. The two red dashed lines indicate the approximated cuts used in [13], which imposed the
veto only in the region between these two lines

in the recent paper [47] which presented a version of the BMS equation which allows for

their all-order resummation. It would be interesting to analyze this in our e↵ective field

theory framework. The corresponding e↵ective theory would involve boundary modes to

describe the emissions near the gap boundary. The problem is however challenging because

the gap fraction is suppressed by a power of �y in the limit �y ! 0.

4.2 Gaps between jets

We now perform the resummation for the gap fraction at the LHC, as measured by the

ATLAS experiment [48, 49]. The gap fraction is defined as the fraction of dijet events that

do not have an additional jet with transverse momentum greater than a given veto scale

Q0 in the rapidity interval bounded by the dijet system, and we will study it as a function

of pT , the average transverse momentum of the two leading jets. More explicitly, the gap

fraction is defined as the ratio of the cross sections with and without veto

R(pT , Q0) =
�2�jet(pT , Q0)

�2�jet(pT , Q0 = pT )
. (4.4)

Below, we will compute R(pT , Q0) for di↵erent gap sizes defined by the rapidity di↵erence

�y between the two leading jets. The precise geometry of the gap is shown in Figure 4.

The jets are reconstructed with the anti-kT jet algorithm with R = 0.6 and are required

to have rapidity |y| < 4.4.

The ATLAS paper [48] observed that MC predictions are not always consistent with

ATLAS data. For example the NLO predictions matched to PYTHIA [51] and HERWIG

[52] using POWHEG [50] are lower than data, especially in the region of large jet pT

and rapidity di↵erence �y between the jets. Specifically, for 210 GeV < pT < 240 GeV

and 4 < �y < 5, POWHEG+HERWIG underestimates the data by about 40%, and

POWHEG+PYTHIA by about 20%.

For small values of Q0, the gap fraction R(pT , Q0) involves large logarithms of the

form ↵
n
s ln

m
pT /Q0. It is interesting to perform systematic soft gluon resummations to

try to understand the di↵erence between theoretical prediction and experimental data.

The resummation of the leading logarithms has been studied in the papers [13, 53, 54].
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• Moderate non-perturbative corrections 
• Need soft gluon resummation at small Q0

• ATLAS ’11 ’14 observe MC predictions are not always consistent with 
data

• GL with full color, NGLs estimated by a K-factor
• Numerical solution of BMS equation but with approximated veto region 

pT =
1

2
(pT, jet1 + pT, jet2)

pT, jet3 > Q0
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Resummation
• Factorization formula to all order is unknown due to glauber gluons
• We work in LL and large Nc limit

• scale setting                 and
• focus on central jets, no collinear logs

the non-global e↵ects were included by reweighing with a K factor. The most detailed

theoretical study so far was [16], which resummed all large logarithms at LL in the large-

Nc limit by solving the BMS equation and also compared directly to the experimental

measurement. One limitation of this work is that the veto region was approximated by a

rectangle in the rapidity and azimuthal angle plane, see Figure 4. This made it possible to

obtain all NGLs by boosting the same solution of the BMS equation. In our computation

we will take into account the exact veto region used by ATLAS. Rather than relying on

the BMS equation, we will use our parton shower to resum all large logarithms.

Formula (2.1) was derived for leptonic collisions. The factorization formula for dijet

production at hadron colliders also includes PDFs fa(x, µ) and has the form

d�(Q0)

d�y d pT

=
X

a,b= q,q̄,g

Z
dx1dx2 fa(x1, µ)fb(x2, µ)

⇥
1X

m=2

⌦
H

ab

m({n}, ŝ, pT , µ) ⌦ Wm({n}, pT , Q0, µ)
↵

(4.5)

where ŝ = x1x2s is the partonic center-of-mass energy. The functions Wm({n}, pT , Q0, µ)

consist of a matrix element of the Wilson lines in the operator Sm+2 for the incoming and

outgoing partons, together with collinear fields of the two incoming ones. The functions

Wm contain rapidity logarithms due to Glauber gluon exchanges, which induce a depen-

dence on the large scale pT . This dependence has to be present in order to cancel the scale

dependence of the super-leading logarithms mentioned in Section 3. These double loga-

rithms of µ/pT arise from evolving the hard function and have a scale dependence which

cannot cancel against the single-logarithmic scale dependence of the purely soft matrix

element and the PDFs. We will discuss the factorization for the hadron-collider observable

in detail in a forthcoming paper. For the moment, we will concentrate on the leading

logarithms in the large-Nc limit, where these complications are absent and the resummed

cross section takes the simple form

d�(Q0)

d�y d pT

=
X

a,b= q,q̄,g

Z
dx1dx2fa(x1, µf )fb(x2, µf )H

ab

2 (ŝ,�y, pT , µh)hU2m(µs, µh)⌦̂1i .

(4.6)

The hard function H
ab

2
accounts for the process with two partons in the final state, and

all kinematics and color information is encoded in the hard events generated by Mad-

Graph5_aMC@NLO. The tree-level generator computes the exact color dependence of

the amplitudes, but to interface with a parton shower such as PYTHIA, it randomly as-

signs a possible large-Nc dipole color structure to each tree-level event. We use this color

information to start our shower, which then computes the evolution from 2 partons in the

final state to m partons, as encoded in the matrix elements U2m defined in (2.6). Since we

use full tree-level amplitudes, our hard function also contains terms of subleading color.

The paper [32] has modified MadGraph in such a way that the full color information

is written into the event file. Using this, one could perform a computation in the strict

large-Nc limit.
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Figure 5. The gap fraction as a function of the jet transverse momentum pT (left plot) and the
gap energy Q0 (right plot). The red line shows the LL result for the gap fraction; the error band is
obtained from scale variation. The ATLAS data is plotted in blue.

We choose µf = µh = pT as the central values for the factorization and hard scales,

and set the soft scale to be µs = Q0. A lower value of µf would enhance the gap fraction

and bring our results closer to the ATLAS measurements. However, the high value is

appropriate since the hard anomalous dimension has two parts, a soft contribution related

to non-global logarithms and a collinear part inducing the usual Altarelli-Parisi evolution.

In our shower, we only evolve with the soft part of the anomalous dimension and to avoid

the necessity for additional collinear evolution we have to to evaluate the PDFs at the high

scale.

In our calculations we use NNPDF23LO [44] PDF sets with ↵s(mZ) = 0.130 and use

one-loop running for ↵s. In Figure 5 we show the resummed gap fraction in comparison

with the ATLAS measurements [14]. In the left plot, we keep Q0 = 20GeV fixed and vary

the transverse momentum pT of the jets, while the right plot shows the gap fraction as a

function of Q0 for 210 GeV < pT < 240 GeV. ATLAS has performed measurements for

di↵erent rapidity separations between the jets. We want to avoid collinear enhancements

and focus on fairly central jets, since we do not resum collinear logarithms for the time

being. Specifically, we use 1 < �y < 2 in the left plot and 2 < �y < 3 in the right one.

To estimate the uncertainty of our predictions we vary the scales µh and µs by a factor of

two around their default values µh = pT and µs = Q0. The µs variation is larger, except

at low pT . In the plots we show the envelope of the two variations. We observe that the

results are marginally compatible with the experimental measurements within the fairly

large uncertainty bands, but it is clear that the theoretical description at LL accuracy is

fairly poor. This should be contrasted to the O(↵s) fixed-order result shown in orange

and the result obtained with PYTHIA [45] (solid green line) shown in Figure 6. We will

call the O(↵s) prediction leading order (LO), even though strictly speaking the leading-

order gap fraction is R(pT , Q0) = 1. Neither the fixed-order result nor PYTHIA describe

the ATLAS perfectly, but both yield a better description than the LL result. (In their

paper ATLAS uses POWHEG matched PYTHIA, which agrees with the data well for this
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Factorization

• The operator for the emission from an amplitude with m hard 
partons 

Mm

soft Wilson lines along the directions of the 
energetic particles (color matrices)

hard scattering amplitude with m particles 
(vector in color space)

J
H
E
P
1
1
(
2
0
1
6
)
0
1
9

n⃗

α
δ = tan(α/2)

2Eout < βQ

Figure 1. Definition of the parameters δ and β of the dijet cross section. We use the thrust axis
n⃗ as the jet axis.

Weinberg [42]. Using the thrust vector as the jet axis leads to a simpler form of the

phase-space constraints and enables us to use existing two-loop results for the cone-jet soft

function obtained in [32, 33].

2.1 Wide-angle jets

Let us first consider wide-angle jets with δ ∼ 1. In this case the effective theory contains

only two relevant momentum regions, whose components (n · p, n̄ · p, p⊥) scale as follows:

hard: ph ∼ Q (1, 1, 1) ,

soft: ps ∼ Qβ (1, 1, 1) .
(2.3)

The hard mode describes the energetic particles inside the jet. Since we are dealing with

wide jets, the energetic radiation inside the jet covers a large angular range. It is thus not

collinear to n⃗ but has a homogenous scaling of all components. Given their large energy,

these particles can never go outside the jet, in contrast to the soft partons which can be

emitted inside or outside. Since there are no collinear singularities for large cone size, the

cross section is single-logarithmic, i.e. the leading logarithms have the form αn
s ln

nβ.

The factorization of an amplitude with m hard partons and an arbitrary number of soft

partons is of course well known. Each hard parton gets dressed with a Wilson line along

its direction. For an outgoing particle in the color representation Ti propagating along the

direction ni, the appropriate Wilson line is given by the path-ordered exponential

Si(ni) = P exp

(
igs

∫ ∞

0
ds ni ·Aa

s(sni)T
a
i

)
. (2.4)

The Wilson line Si is a matrix in color space, which acts on the color index of particle i.

The operator for the emission from an amplitude with m hard partons then takes the form

S1(n1)S2(n2) . . . Sm(nm) |Mm({p})⟩ , (2.5)

where nµ
i = pµi /Ei, and we use the compact notation {p} ≡ {p1, p2, . . . , pm}. This equation

is analogous to the factorization for amplitudes with coft particles [38], but while the coft

case involves splitting amplitudes, we are now dealing with ordinary amplitudes |Mm({p})⟩.
In writing (2.5) we use the color-space formalism of [43, 44], in which amplitudes are treated

as n-dimensional vectors in color space. Since they act on different particles, the different

generators trivially commute [T a
i ,T

b
j ] = 0 for i ≠ j. The same is therefore true for the
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• NLO results are unphysical as          !!!

• Log(R) spoils perturbative convergence

• This log comes from mismatching between inside and outside radiation

• LL resummation has been studied by Catani & et. al. ‘13

• Higher-order effects are moderate for 

26

Resummation effects in isolation
• Small cone radius R ⌧ 1

JHEP05(2002)028

Isolation radius Direct contribution Fragmentation contribution Total
R Born NLO Born NLO NLO
1.0 1764.6 3318.4 265.0 446.7 3765.1
0.7 1764.6 3603.0 265.0 495.0 4098.0
0.4 1764.6 3968.9 265.0 555.6 4524.5
0.1 1764.6 4758.2 265.0 678.9 5431.1

Without isolation 1764.6 3341.1 1724.3 1876.8 5217.9

Table 1: Isolated cross sections (the values are given in pb/GeV) corresponding to εh = 0.13333.

Table 1 shows the sensitivity of the cross section to the value R of the isolation cone.
In this study we fixed εh = 2/15 ≃ 0.13333, which means that all events with hadronic
transverse energy larger than 2 GeV in the isolation cone are rejected. The results without
isolation are also reported for comparison. We verify that the Born cross sections are not
sensitive to the isolation radius, as they should.

It is interesting to note that the HO contributions, both to the direct and to the
fragmentation components, increase when R decreases. This is due to the fact that the im-
plementation of isolation amounts to subtracting a contribution proportional to ln R from
the non-isolated cross section (see eqs. (5.2) and (5.11)). Since this subtracted contribution
is negative when R < 1, the HO contribution to the direct component of the isolated cross
section is quite large for small values of R. A similar behaviour is observed in the HO con-
tribution to the fragmentation component. When all contributions are taken into account,
the total cross section (direct + fragmentation) strongly increases with decreasing R.

In particular, when R = 0.1, the NLO calculation gives an unphysical result: the
isolated cross section turns out to be larger than the non-isolated one! Such a behaviour
had to be expected in view of the discussion at the end of section 5.1. The NLO results
in table 1 imply that the value R ∼ 0.1 is sufficiently small to demand the inclusion of
beyond-NLO perturbative terms and non-perturbative contributions.

The sensitivity of the cross sections to variations of εh is displayed in table 2. Now we
fix R = 0.7. Note that, already at the Born level, the fragmentation component is quite
sensitive to εh and strongly decreases when such a cut is installed.

The ratios NLO/Born increase when εh decreases, indicating that the effect of higher-
order corrections is larger at small than at large εh. This is due to the following mechanism.
Radiation collinear to the photon is more suppressed by the transverse-energy isolation cut
than hard non-collinear radiation. Since the collinear contributions are negative when
evaluated in the MS factorization scheme (see e.g. eq. (3.19)), their strong suppression
leads to a sizeable NLO correction when εh decreases. We also note that, as expected,
the effect of the εh cut-off is very large on the fragmentation component, in which a large
part of the z-integration domain is suppressed. The total (direct + fragmentation) cross
section at NLO is rather stable with respect to εh variations, because of the behaviour of
the direct contribution.
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Global vs Non-global Logs
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Figure 3. Left: two-loop global and non-global coefficients as a function of the gap size ∆y. Right:
comparison of the LL resummation and fixed-order results up to four loops, for ∆y = 1.

The leading NGLs to the same observable arise at two-loops and are given by [2, 40]

σLL
NGL

σ0
= 4CFCA

[
−2π2

3
+ 4Li2

(
e−2∆y

)]
t2. (4.2)

This contribution arises from a hard gluon emission inside one of the jets, which in turn

emits a soft gluon into the gap between the jets. It is encoded in the term H3 ⊗S3 in the

factorization formula (2.1).

In figure 3, we numerically compare the two-loop global and non-global coefficients as a

function of the gap size ∆y, working in the large-Nc limit. When the veto area is small, the

gap fraction is dominated by the non-global part, but with increasing veto area the global

logarithms become more and more important. Since the two contributions have opposite

sign, cancellations between global and non-global contributions can occur at intermediate

values of the gap size. To understand this behavior better, it is instructive to expand (4.2)

in the small ∆y region

σLL
NGL

σ0
= 4CFCA

[
8∆y

(
ln(2∆y)− 1

)
− 4∆y2 + . . .

]
t2 . (4.3)

The expansion (4.3) shows that the two-loop non-global logarithmic term is only suppressed

by a single power of ∆y, while the global piece involves two powers. The reason for this

scaling is that in the non-global piece only one gluon is in the gap of size ∆y, while in the

global piece both gluons are. One further observes that in the large-Nc limit the ∆y2 part

of the non-global piece precisely cancels the global piece. Phenomenologically, the limit of

a small gap is for example relevant for isolation cone cross sections, where the veto typically

is only applied in a small angular region. Below, we will see an explicit example where the

higher-order global and non-global effects cancel for a photon isolation cross section.

Interestingly, the leading term in (4.3) involves a logarithm of ∆y. This contribution

corresponds to a collinear enhancement which arises when both the gluon in the gap and

the one outside are close to the boundary. These types of collinear logarithms were studied

in the recent paper [41] which presented a version of the BMS equation which allows for
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• E.g. Inter-jet energy flow @ e+e- colliders

• Soft radiations from two Wilson lines (global)

• Leading NGLs at two-loops

• Narrow gap limit: 
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Collinear limit and NGLs

�LL
GL

�0
= exp [�8CF�y t]

Figure 3. Left: Two-loop global and non-global coe�cients as the function of gap size �y.
Right: Comparison of LL resummation and fixed-order expansion results with �y = 1, where the
expansion results are performed up to four-loop order.

The leading NGLs to the same observable arise at two-loops and are given by [2, 44]
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LL
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This contribution arises from a hard gluon emission inside one of the jets, which in turn

emits a soft gluon into the gap between the jets. It is encoded in the term H3 ⌦S3 in the

factorization formula (2.1).

In Figure 3, we numerically compare the two-loop global and non-global coe�cients

as the function of gap size �y in the large Nc limit. When the veto area is small, the

gap fraction is dominated by the non-global part but with increasing veto area the global

logarithms become more and more important. Since the two contributions have opposite

sign, cancellations between global and non-global contributions can occur at intermediate

values of the gap size. To understand this behavior better, it is instructive to expand (4.2)

in the small �y region

�
LL

NGL
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= 4CFCA

h
8�y

�
ln(2�y)� 1

�
� 4�y

2 + . . .

i
t
2
, (4.3)

The expansion (4.3) shows that the two-loop non-global logrithmic term is only suppressed

by a single power of �y, while the global piece involves two powers. The reason for this

scaling is that in the non-global piece only one gluon is in the gap of size �y, while in the

global piece both gluons are. One further observes that in the large Nc limit the �y
2 part

of the non-global piece precisely cancels the global piece. Phenomenologically, the limit of

a small gap is for example relevant for isolation cone cross sections, where the veto typically

is only applied in a small angular region. Below, we will see an explicit example where the

higher-order global and non-global e↵ects cancel for a photon isolation cross section.

Interestingly, the leading term in (4.3) involves a logarithm of �y. This contribution

corresponds to a collinear enhancement which arises when both the gluon in the gap and

the one outside are close to the boundary. These types of collinear logarithms were studied
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Figure 3. Left: Two-loop global and non-global coe�cients as the function of gap size �y.
Right: Comparison of LL resummation and fixed-order expansion results with �y = 1, where the
expansion results are performed up to four-loop order.

The leading NGLs to the same observable arise at two-loops and are given by [2, 44]

�
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NGL

�0
= 4CFCA


�2⇡2

3
+ 4Li2

�
e
�2�y

��
t
2
. (4.2)

This contribution arises from a hard gluon emission inside one of the jets, which in turn

emits a soft gluon into the gap between the jets. It is encoded in the term H3 ⌦S3 in the

factorization formula (2.1).

In Figure 3, we numerically compare the two-loop global and non-global coe�cients

as the function of gap size �y in the large Nc limit. When the veto area is small, the

gap fraction is dominated by the non-global part but with increasing veto area the global

logarithms become more and more important. Since the two contributions have opposite

sign, cancellations between global and non-global contributions can occur at intermediate

values of the gap size. To understand this behavior better, it is instructive to expand (4.2)

in the small �y region
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8�y

�
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�
� 4�y

2 + . . .

i
t
2
, (4.3)

The expansion (4.3) shows that the two-loop non-global logrithmic term is only suppressed

by a single power of �y, while the global piece involves two powers. The reason for this

scaling is that in the non-global piece only one gluon is in the gap of size �y, while in the

global piece both gluons are. One further observes that in the large Nc limit the �y
2 part

of the non-global piece precisely cancels the global piece. Phenomenologically, the limit of

a small gap is for example relevant for isolation cone cross sections, where the veto typically

is only applied in a small angular region. Below, we will see an explicit example where the

higher-order global and non-global e↵ects cancel for a photon isolation cross section.

Interestingly, the leading term in (4.3) involves a logarithm of �y. This contribution

corresponds to a collinear enhancement which arises when both the gluon in the gap and

the one outside are close to the boundary. These types of collinear logarithms were studied
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• Collinear enhancement from boundary region
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I: x1 > x2 > x3 II : x1 > x3 > x2 III: x3 > x1 > x2

q(p1)

q̄(p2)

g(p3)

Figure 9. Kinematics in the first three regions. Particles with the smallest energy are indicated
with a red line.

were the variables u and v are integrated from 0 to 1. We can then again perform the

integration over the trivial angular variables as in (3.17). This allows one to express

H3({n}, Q, ✏) as a singular distribution in u and v. Similar parametrizations are introduced

in sectors II and III; the details of the calculations can be found in Appendix B. The one-

loop hard function H
(1)

3
is then given by

D
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with L = ln(Q/µ) and C✏ = 4✏e✏�/�(1 � ✏). The explicit expressions for h
i

3
(u, v, �, ✏) are

listed in Appendix B. Convoluting with the trivial LO soft function S3 = 1 and combining

all the kinematic regions, one finds
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4.2 Soft Function

The soft function Sm is given by the vacuum expectation value of m soft Wilson loop

operators, as defined in Eq.(2.12). The LO contribution is the unit operator 1 in color

space. The one-loop soft function Sm involves a sum of contributions from pairs of di↵erent

Wilson lines as shown in Figure 10. Since the one-loop virtual corrections are scaleless,

only real emission diagrams contribute. We first calculate the one-loop correction to the

function with two Wilson lines, i.e. S(1)

2
. In momentum space, after taking the color trace,

the bare soft function is given by
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The renormalized one-loop hard function H2 is given by
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We parametrize the phase space in terms of cos ✓2 and cos ✓3. For convenience we

express them as two variables u and v from 0 to 1
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H
(1)
3,I =

Nc

2

(
4 ln2

µh

Q
� 4 ln

µh

Q
ln

✓
�
2

1 + �2

◆
�

⇡
2

6
+ ln2

✓
�
2

1 + �2

◆�
�(u)�(v)

+


� ln

µ

Q
F (0, v) +

F (0, v)

2
ln

✓
�
2

1 + �2

◆�
�(u)

✓
1

v

◆

+

+
F (0, v)

2
�(u)

✓
ln v

v

◆

+

+


�2 ln

µ

Q
F (u, 0) +

2u2

(1 + u)3
+ F (u, 0) ln

✓
�
2

1 + �2

◆
� 2F (u, 0) ln(1 + u)

�
�(v)

✓
1

u

◆

+

+ 2F (u, 0)�(v)

✓
lnu

u

◆

+

+ F (u, v)

✓
1

u

◆

+

✓
1

v

◆

+

)
, (1.3)
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Ingredients at LL’ level

• One-loop soft function can be implemented by re-weighting the 
events when they radiate outside jet cone (inside gap)
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2 LL’ resummation
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3 Soft Function

After performing MS substraction in the large Nc limit NLO renormalized soft function

can be expressed as
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