High-energy resummation for the background to weak boson fusion

Andreas Maier

IPPP, Durham University

Andersen, Hapola, AM, Smillie; JHEP 1709 (2017) 065; arXiv:1706.01002 Andersen, Hapola, Heil, AM, Smillie; JHEP 1808 (2018) 090; arXiv:1805.04446 Andersen, Cockburn, Heil, AM, Smillie; arXiv:18??????

Higgs production in weak-boson fusion

- Second largest channel for Higgs production
- Direct probe of couplings to weak bosons
- Widely separated jets
 → WBF cuts: y_{j1j2} > 2.8, m_{j1j2} > 400 GeV
- Known at NNLO: $\sim 5\%$ correction

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi 2015; Cruz-Martinez, Gehrmann, Glover, Huss 2018]

Gluon-fusion background with major uncertainty

Gluon fusion background

- LO with full mass dependence for H + 2, 3 jets: $\sim 2\%$ correction to $m \rightarrow \infty$ [Greiner, Höche, Luisoni, Schönherr, Winter 2016]
- H + 2, 3 jets with $m \to \infty$ known at NLO: [Cullen et al. 2013] large contribution from higher multiplicities

plot from [Greiner, Höche, Luisoni, Schönherr, Winter, Yundin 2015]

Multi-Regge kinematics for H+jets

High energy limit:

- Outgoing invariant masses >> t-channel momenta
- Large rapidity separations

Single *t*-channel gluon exchange possible

Multi-Regge kinematics for *H*+jets

High energy limit:

- Outgoing invariant masses $\gg t$ -channel momenta
- Large rapidity separations
- Non-FKL configurations suppressed

No single t-channel gluon exchange possible

High Energy Jets (HEJ) resummation

Matrix element [Andersen, Del Duca, Smillie, White 2008-2010]

University

5

High Energy Jets (HEJ) resummation Matching to leading order

Fixed-order FKL event MadGraph, Sherpa, ... $\sim |\mathcal{M}_{LO}|^2$

Resummation events Keep Higgs + jet rapidities, shift jet $p_{\perp} \sim |\mathcal{M}_{\text{HEJ}}|^2$

Final resummation event weight $\sim \frac{|\mathcal{M}_{LO}|^2|\mathcal{M}_{HEJ}|^2}{|\mathcal{M}_{HEJ,\,LO}|^2}$

High Energy Jets (HEJ) resummation

- High-multiplicity (> 4 jets) input events in HEJ approximation \hookrightarrow Matching factor $\frac{|\mathcal{M}_{\text{HEJ, LO}}|^2|\mathcal{M}_{\text{HEJ}}|^2}{|\mathcal{M}_{\text{HEJ, LO}}|^2} = |\mathcal{M}_{\text{HEJ}}|^2$
- Subleading corrections beyond FKL e.g. unordered emissions $j_{uno} = -$
- Finite quark-mass effects

Results

Invariant mass distribution

 $\sigma_{\rm HEJ}$ rescaled to $\sigma_{\rm NLO}$

Jet multiplicity

Higgs transverse momentum distribution

Higgs transverse momentum distribution Quark mass effects

Angular separation

Jet veto efficiency

[Rainwater, Szalapski, Zeppenfeld 1996]

 $\overline{}$

Conclusion

- Need good prediction for H+ jets in WBF region now
- High-energy resummation has significant effects
- Work in progress:
 - NLO matching at event level
 - Combination with parton shower
 [Andersen, Brooks, Lönnblad 2017]
- Benchmark HEJ processes: $W, Z/\gamma$ + jets

Backup

Comparison for W + jets

[arXiv:1703.04362]

Durham

Comparison to leading-order matrix element

Scaling of matrix element

