Role of the Z polarization in the $pp \rightarrow ZH$, $H \rightarrow b\bar{b}$ measurement.

Junya Nakamura

Universität Tübingen

Based on

- D. Gonçalves and JN (arXiv:1805.06385)
- D. Gonçalves and JN (in preparation).

QCD@LHC, 27.08.2018, TU Dresden.

Introduction

Introduction: VH, $H \rightarrow b\bar{b}$ channels.

- $\blacklozenge \ \ H \to b\bar{b} \ \ {\rm has \ the \ \ largest \ Higgs \ decay \ rate, \ \sim \ 58\%. }$
- A The boosted VH production (V = W, Z) has the largest sensitivity to $H \rightarrow b\bar{b}$ (Butterworth et al 2008)
- A Latest results on the VH, $H \rightarrow b\bar{b}$ are 4.9σ (ATLAS $\sim 80 {\rm fb}^{-1}$), 3.8σ (CMS $\sim 36 {\rm fb}^{-1}$).
- ♠ There are 3 channels, based on the number of charged leptons: $ZH \rightarrow \nu\nu b\bar{b}$, $WH \rightarrow \ell\nu b\bar{b}$, $ZH \rightarrow \ell\ell b\bar{b}$.

Channel	Significance			
Citatiliei	Exp.	Obs.		
VBF+ggF	0.9	1.5		
$t\bar{t}H$	1.9	1.9		
VH	5.1	4.9		
$H \rightarrow bb$ Combination	5.5	5.4		

Signal strongth parameter	Signal strongth	p p	Significance		
Signal strength parameter		Exp.	Obs.	Exp.	Obs.
0-lepton	$1.04^{+0.34}_{-0.32}$	$9.5 \cdot 10^{-4}$	$5.1 \cdot 10^{-4}$	3.1	3.3
1-lepton	$1.09^{+0.46}_{-0.42}$	$8.7 \cdot 10^{-3}$	$4.9 \cdot 10^{-3}$	2.4	2.6
2-lepton	$1.38^{+0.46}_{-0.42}$	$4.0 \cdot 10^{-3}$	$3.3 \cdot 10^{-4}$	2.6	3.4
$VH, H \rightarrow b\bar{b}$ combination	$1.16^{+0.27}_{-0.25}$	$7.3 \cdot 10^{-6}$	$5.3 \cdot 10^{-7}$	4.3	4.9

We focus only on 2-lepton channel $Z(\ell^+\ell^-)H(b\bar{b})$.

Process	0-lepton	1-lepton	2-lepton low- $p_{\rm T}({\rm V})$	2-lepton high- $p_{\rm T}({\rm V})$
Vbb	216.8	102.5	617.5	113.9
Vb	31.8	20.0	141.1	17.2
V+udscg	10.2	9.8	58.4	4.1
tī	34.7	98.0	157.7	3.2
Single top quark	11.8	44.6	2.3	0.0
VV(udscg)	0.5	1.5	6.6	0.5
VZ(bb)	9.9	6.9	22.9	3.8
Total background	315.7	283.3	1006.5	142.7
VH	38.3	33.5	33.7	22.1
Data	334	320	1030	179
S/B	0.12	0.12	0.033	0.15

(from CMS 2018)

- \triangleright A higher signal sensitivity is gained in the high- $p_{\rm T}(Z)$ channel.
- $\triangleright Z(\ell^+\ell^-)b\bar{b}$ (part of the $\mathcal{O}(\alpha_s^2)$ correction to the Drell-Yan Z production) is the dominant background.

Introduction: $Z(\ell^+\ell^-)H(b\bar{b})$ v.s. $Z(\ell^+\ell^-)b\bar{b}$ background.

 $Z(\ell^+\ell^-)b\bar{b}$ is an irreducible background:

- ♠ 2-leptons come from $Z \rightarrow \ell^+ \ell^-$ both in ZH signal and $Zb\bar{b}$ background.
- $\blacklozenge \ Z \to \ell^+ \ell^-$ angular distribution is uniquely determined by Z polarization.
- Z polarization is process-dependent, thus can be different between the signal and the background.

In this work,

- 1. we show that Z polarization is very different between the ZH signal and the $Zb\bar{b}$ background.
- 2. we estimate the improvement on the signal sensitivty.

Z polarization in the ZH signal and the $Zb\bar{b}$ background.

The lepton direction is parametrized by two angles θ , ϕ in the Z rest frame as

$$Z: (m_{\ell\ell}, 0, 0, 0),$$

$$E^{-}(\ell^{+}): \frac{m_{\ell\ell}}{2}(1, \pm \sin\theta \cos\phi, \pm \sin\theta \sin\phi, \pm \cos\theta).$$

In general, $Z \to \ell^+ \ell^-$ angular $(\cos \theta, \phi)$ distribution can be described with 8 coefficients A_i (i = 1 to 8) as

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta d\phi} = 1 + \cos^2\theta + A_1(1 - 3\cos^2\theta) + A_2\sin2\theta\cos\phi + A_3\sin^2\theta\cos2\phi + A_4\cos\theta + A_5\sin\theta\cos\phi + A_6\sin\theta\sin\phi + A_7\sin2\theta\sin\phi + A_8\sin^2\theta\sin2\phi.$$

Why 8? \rightarrow because the degrees of freedom of polarization of a spin 1 particle is 8 in the most general case.

Message: 8 coefficients $A_i(i = 1 \text{ to } 8)$ uniquely parametrize Z polarization, and determine $Z \to \ell^+ \ell^-(\cos \theta, \phi)$ distribution. 8 coefficients $A_i(i = 1 \text{ to } 8)$ are process-dependent \to evaluate in next slide.

As the coordinate system of the Z rest frame (i.e. the direction of the z axis), we choose the Collins-Soper frame (Collins, Soper 1977).

Z polarization in ZH and $Zb\bar{b}$: 8 coefficients A_i (i = 1 to 8)

We calculate the coefficients A_i (i = 1 to 8) at the LO and at the QCD NLO with MadGraph5aMC@NLO for 13 TeV LHC, imposing the signal selections such as 75 $< m_{\ell\ell} < 105 \text{ GeV}, p_T(Z) > 200 \text{ GeV}$:

	A_1	A_2	A ₃	A ₄	A ₅	A ₆	A ₇	A ₈
ZH (LO)	0.03(6)	0.2(1)	-80.0(1)	-0.08(8)	-0.01(8)	0.04(8)	0.1(1)	0.1(1)
ZH (NLO)	1.7(1)	0.0(3)	-75.0(3)	-0.1(2)	0.6(2)	-0.2(2)	-0.0(3)	0.1(3)
Zbb (LO)	47.0(1)	0.6(1)	44.7(1)	0.1(1)	0.2(1)	-0.1(1)	-0.1(1)	-0.0(1)

in unit of %. Shown in the parentheses is the statistical uncertainty for the last digit.

- \triangleright Only A_1 and A_3 are significant.
- $ightarrow A_1$ and A_3 (i.e. polarization) are very different between ZH signal and $Zb\bar{b}$ background.

Effectively, $Z \to \ell^+ \ell^-$ angular $(\cos \theta, \phi)$ distribution is determined by

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta d\phi} = 1 + \cos^2\theta + A_1(1 - 3\cos^2\theta) + A_3\sin^2\theta\cos2\phi.$$

 θ and ϕ can be re-defined in the restricted ranges $0 \le \cos \theta \le 1$, $0 \le \phi \le \pi/2$. (originally, $-1 \le \cos \theta \le 1$, $0 \le \phi \le 2\pi$.)

Z polarization in ZH and $Zb\bar{b}$: $Z \to \ell^+ \ell^-$ 2-dimensional $(\cos \theta, \phi)$ distribution.

Ratio of the normalized $Z \to \ell^+ \ell^-$ angular ($\cos \theta, \phi$) distribution for ZH signal to that for $Zb\bar{b}$ background:

 \triangleright A large difference between the signal and the background is clearly visible in this restricted 2-dimensional (cos θ , ϕ) distribution!

Message: 2-dimensional $Z \to \ell^+ \ell^-$ (cos θ, ϕ) distribution may be useful in distinguishing the ZH signal from the dominant-irreducible $Zb\bar{b}$ background.

Analysis at the hadron level

Analysis at the hadron level: Simulation setup.

- \diamond The ZH signal and backgrounds (Zbb, $t\bar{t}$, ZZ) are simulated at the hadron level with Sherpa+OpenLoops. (Gleisberg et al 2009, Cascioli et al 2012, Denner et al 2017)
- \diamond The BDRS analysis is used for the $H \rightarrow b\bar{b}$ tagging; $p_{TJ} > 200$ GeV, $|\eta_J| < 2.5$, $|m_H^{BDRS} - m_H| < 10$ GeV. (Butterwirth et al 2008)
- \diamond Two charged leptons (e or μ) with $p_{T\ell} > 5$ GeV and $|\eta_\ell| < 2.5$ are required, which reconstruct a boosted Z boson: 75 $< m_{\ell\ell} < 105$ GeV, and $q_T \equiv p_{T\ell\ell} > 200$ GeV.
- \diamond 70% *b*-tagging efficiency and 1% misstag rate are taken into account.
- \diamond 5% systematic uncertainties on the backgrounds are assumed.
- ♦ At the very end, we perform a two dimensional binned log-likelihood analysis based on the $Z \rightarrow \ell^+ \ell^-$ angular (cos θ, ϕ) distribution, invoking the CL_s method (Read 2002).

Message: Our proposal uses only the lepton information, independent of how the $H \rightarrow b\bar{b}$ tagging performed is.

Analysis at the hadron level: Results.

x axis: Luminosity.

y axis: 95% CL upper bound on anomalous $Z(\ell\ell)H(b\bar{b})$ signal strength, $\frac{\delta\sigma}{\sigma_{\rm SM}} = \frac{\sigma - \sigma_{\rm SM}}{\sigma_{\rm SM}}$. (only the 2-lepton channel!) Red curve: Takes into account the difference in Z polarization. Blue curve: Does NOT take it into account.

 $\rhd\,$ Enhancing the precision on the signal strength determination; from about 30% to 25% at $L=3~ab^{-1}.$

Message: Making use of the difference in Z polarization between the ZH signal and the background(s) seems to work well.

Summary

We have studied the potential of exploiting the Z polarization to improve the sensitivity to the signal $pp \rightarrow Z(\ell\ell)H(b\bar{b})$.

- ♣ Process-dependent Z polarization determines $Z \rightarrow \ell^+ \ell^-$ angular 2-dimensional $(\cos \theta, \phi)$ distribution.
- ♣ The *ZH* signal and the dominant-irreducible *Zbb* background, which is part of the $O(\alpha_s^2)$ correction to the Drell-Yan *Z* production, predict very different states of *Z* polarization. These are found robust against the QCD NLO correction.
- **&** This difference appears as the large difference in the $(\cos \theta, \phi)$ distribution.
- & We have estimated the improvement by performing a 2-dimensional log-likelihood analysis based on the $(\cos \theta, \phi)$ distribution; improvement from about 30% to 25% in the precision on the signal strength determination at $L = 3 \text{ ab}^{-1}$.

Thank you so much for your attention.

Appendix

- Multivariate analysis after basic event selections.
- Only $m(\ell^+\ell^-)$ as the information of the charged leptons:

Variable	0-lepton	1-lepton	2-lepton			
p_{T}^{V}	$\equiv E_{\mathrm{T}}^{\mathrm{miss}}$	×	×			
$E_{\rm T}^{\rm miss}$	×	×	\times			
$p_{T}^{b_{1}}$	×	×	×			
$p_{T}^{b_{2}}$	×	×	×			
m_{bb}	×	×	×			
$\Delta R(\vec{b}_1, \vec{b}_2)$	×	×	×			
$ \Delta \eta(\vec{b}_1, \vec{b}_2) $	×					
$\Delta \phi(\vec{V}, \vec{bb})$	×	×	×			
$ \Delta \eta(\vec{V}, \vec{bb}) $			×			
$m_{\rm eff}$	×					
$\min[\Delta \phi(\vec{\ell}, \vec{b})]$		×				
m_{T}^{W}		×				
$m_{\ell\ell}$			×			
$m_{\rm top}$		×				
$ \Delta Y(\vec{V}, \vec{bb}) $		×				
	Only in 3-jet events					
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×			
m_{bbj}	×	×	×			

(ATLAS 2017)

- Multivariate analysis after basic event selections.
- Only $m(\ell^+\ell^-)$ as the information of the charged leptons:

Variable	Description	Channels
M(jj)	dijet invariant mass	All
$p_{\rm T}(jj)$	dijet transverse momentum	All
$p_{T}(j_{1}), p_{T}(j_{2})$	transverse momentum of each jet	0- and 2-lepton
$\Delta R(jj)$	distance in η - ϕ between jets	2-lepton
$\Delta \eta$ (jj)	difference in η between jets	0- and 2-lepton
$\Delta \phi(jj)$	azimuthal angle between jets	0-lepton
$p_{\rm T}({\rm V})$	vector boson transverse momentum	All
$\Delta \phi(V, jj)$	azimuthal angle between vector boson and dijet directions	All
$p_{\rm T}(jj)/p_{\rm T}(V)$	p _T ratio between dijet and vector boson	2-lepton
$M(\ell \ell)$	reconstructed Z boson mass	2-lepton
CMVA _{max}	value of CMVA discriminant for the jet	0- and 2-lepton
	with highest CMVA value	
CMVA _{min}	value of CMVA discriminant for the jet	All
	with second highest CMVA value	
CMVA _{add}	value of CMVA for the additional jet	0-lepton
	with highest CMVA value	
p_{T}^{miss}	missing transverse momentum	1- and 2-lepton
$\Delta \phi(\vec{p}_{T}^{miss},j)$	azimuthal angle between \vec{p}_{T}^{miss} and closest jet ($p_{T} > 30 \text{ GeV}$)	0-lepton
$\Delta \phi(\vec{p}_{T}^{miss}, \ell)$	azimuthal angle between \vec{p}_{T}^{miss} and lepton	1-lepton
m _T	mass of lepton $\vec{p}_{T} + \vec{p}_{T}^{miss}$	1-lepton
mtop	reconstructed top quark mass	1-lepton
Naj	number of additional jets	1- and 2-lepton
$p_{\rm T}({\rm add})$	transverse momentum of leading additional jet	0-lepton
SA5	number of soft-track jets with $p_T > 5 \text{ GeV}$	All

(CMS 2018)

Signal regions	0-le	pton	1-lepton		2-lepton			
oignai regions	$p_T^V > 150 C$	GeV, 2-b-tag	$p_T^V > 150 GeV$, 2-b-tag		$75 GeV < p_T^V < 150 GeV$, 2-b-tag $p_T^V >$		$p_T^V > 150 G$	eV, 2-b-tag
Sample	2-jet	3-jet	2-jet	3-jet	2-jet	≥3-jet	2-jet	≥3-jet
Z + ll	17 ± 11	27 ± 18	1.5 ± 1.0	3.4 ± 2.3	13.7 ± 8.7	49 ± 32	4.1 ± 2.8	30 ± 19
Z + cl	45 ± 18	76 ± 30	3.0 ± 1.2	6.9 ± 2.8	43 ± 17	170 ± 67	11.5 ± 4.6	88 ± 35
Z + HF	4770 ± 140	5940 ± 300	179.5 ± 9.1	348 ± 21	7400 ± 120	14160 ± 220	1421 ± 34	5370 ± 100
W + ll	20 ± 13	32 ± 22	31 ± 23	65 ± 48	< 1	< 1	< 1	< 1
W + cl	43 ± 20	83 ± 38	139 ± 67	250 ± 120	< 1	< 1	< 1	< 1
W + HF	1000 ± 87	1990 ± 200	2660 ± 270	5400 ± 670	1.8 ± 0.2	13.2 ± 1.5	1.4 ± 0.2	4.0 ± 0.5
Single top quark	368 ± 53	1410 ± 210	2080 ± 290	9400 ± 1400	188 ± 89	440 ± 200	23.1 ± 7.3	93 ± 26
$t\bar{t}$	1333 ± 82	9150 ± 400	6600 ± 320	50200 ± 1400	3170 ± 100	8880 ± 220	104 ± 6	839 ± 40
Diboson	254 ± 49	318 ± 90	178 ± 47	330 ± 110	152 ± 32	355 ± 68	52 ± 11	196 ± 35
Multi-jet e sub-ch.	-	-	100 ± 100	41 ± 35	-	-	-	-
Multi-jet μ sub-ch.	-	-	138 ± 92	260 ± 270	-	-	-	-
Total bkg.	7851 ± 90	19020 ± 140	12110 ± 120	66230 ± 270	10964 ± 99	24070 ± 150	1617 ± 31	6622 ± 78
Signal (fit)	128 ± 28	128 ± 29	131 ± 30	125 ± 30	51 ± 11	86 ± 22	27.7 ± 6.1	67 ± 17
Data	8003	19143	12242	66348	11014	24197	1626	6686

(ATLAS 2018)

Selection	0-lepton	1-1	epton	2-lepton			
		e sub-channel	μ sub-channel				
Trigger	E_{T}^{miss}	Single lepton	E_{T}^{miss}	Single lepton			
Leptons	0 loose leptons	1 tight electron	1 medium muon	2 loose leptons with $p_T > 7 \text{ GeV}$			
	with $p_T > 7 \text{ GeV}$	$p_T > 27 \text{ GeV}$	$p_T > 25 \text{ GeV}$	≥ 1 lepton with $p_T > 27$ GeV			
E_{T}^{miss}	> 150 GeV	> 30 GeV	-	-			
$m_{\ell\ell}$	-		-	$81 \text{ GeV} < m_{\ell \ell} < 101 \text{ GeV}$			
Jets	Exactly	2 or 3 jets		Exactly 2 or ≥ 3 jets			
Jet p_T	> 20 GeV						
b-jets	Exactly 2 b-tagged jets						
Leading b-tagged jet p_T	> 45 GeV						
H_{T}	> 120 (2 jets), >150 GeV (3 jets)	-		-			
$\min[\Delta \phi(\vec{E}_T^{miss}, jets)]$	$> 20^{\circ}$ (2 jets), $> 30^{\circ}$ (3 jets)	-		-			
$\Delta \phi(\vec{E}_{T}^{miss}, \vec{bb})$	> 120°	-		-			
$\Delta \phi(\vec{b}_1, \vec{b}_2)$	< 140°		-	-			
$\Delta \phi(\vec{E}_{T}^{miss}, \vec{E}_{T,trk}^{miss})$	< 90°	-		-			
p_T^V regions	> 15	(75, 150] GeV, > 150 GeV					
Signal regions	✓	$m_{bb} \ge 75 \text{ GeV or } m_{top} \le 225 \text{ GeV}$		Same-flavour leptons			
				Opposite-sign charge ($\mu\mu$ sub-channel)			
Control regions	-	$m_{bb} < 75 \text{ GeV}$ and $m_{top} > 225 \text{ GeV}$		Different-flavour leptons			

(ATLAS 2017)

Variable	0-lepton	1-lepton	2-lepton
$p_{\rm T}({\rm V})$	>170	>100	[50, 150], >150
$M(\ell\ell)$	—	_	[75, 105]
p_{T}^{ℓ}	—	(> 25, > 30)	>20
$p_{\mathrm{T}}(\mathbf{j}_1)$	>60	>25	>20
$p_{\mathrm{T}}(\mathbf{j}_2)$	>35	>25	>20
$p_{\rm T}(jj)$	>120	>100	—
M(jj)	[60, 160]	[90, 150]	[90, 150]
$\Delta \phi(V, jj)$	>2.0	>2.5	>2.5
CMVA _{max}	>CMVA _T	>CMVA _T	>CMVA _L
CMVA _{min}	>CMVA _L	>CMVA _L	>CMVA _L
N _{aj}	<2	<2	—
$N_{a\ell}$	=0	=0	—
$p_{\rm T}^{\rm miss}$	> 170	—	—
$\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, j)$	>0.5	_	—
$\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\rm miss}({\rm trk}))$	< 0.5	_	—
$\Delta \phi(\vec{p}_{\rm T}^{\rm miss},\ell)$	—	<2.0	—
Lepton isolation	_	< 0.06	(< 0.25, < 0.15)
Event BDT	> -0.8	>0.3	> -0.8

(CMS 2018)

The angles θ ($0 \le \theta \le \pi/2$) and ϕ ($0 \le \phi \le \pi/2$) defined in the Collins-Soper frame can be obtained from

$$\begin{split} |\cos\theta| &= \frac{2|q^0 p_{\ell}^3 - q^3 p_{\ell}^0|}{Q\sqrt{Q^2 + |\vec{q}_{\rm T}|^2}} \,, \\ |\cos\phi| &= \frac{2}{\sin\theta} \frac{|Q^2 \vec{p}_{{\rm T}\ell} \cdot \vec{q}_{\rm T} - |\vec{q}_{\rm T}|^2 p_{\ell} \cdot q|}{Q^2 |\vec{q}_{\rm T}| \sqrt{Q^2 + |\vec{q}_{\rm T}|^2}} \end{split}$$

where $q^{\mu} = (q^0, \vec{q}_T, q^3)$ and $p_{\ell}^{\mu} = (p_{\ell}^0, \vec{p}_{T\ell}, p_{\ell}^3)$ are four-momenta of the Z boson and one of the leptons, respectively, in the laboratory frame. We stress that p_{ℓ}^{μ} can be the momentum of either ℓ^- or ℓ^+ (*i.e.* either gives the same θ and ϕ values). This is simply because interchanging ℓ^- and ℓ^+ corresponds to $\theta \to \pi - \theta$ and $\phi \to \phi + \pi$ (i.e. $\cos \theta \to -\cos \theta$ and $\cos \phi \to -\cos \phi$). In terms of the scattering amplitudes $\mathcal{M}^\lambda_{\lambda_1\lambda_2}$, where $\lambda_{1,2}$ denote the helicity of the initial gluons, the functions f_i can be written as

$$\begin{split} f_{1} &= \overline{\sum_{\lambda_{1},\lambda_{2}}} \frac{1}{2} \left(|\mathcal{M}_{\lambda_{1}\lambda_{2}}^{+}|^{2} + |\mathcal{M}_{\lambda_{1}\lambda_{2}}^{-}|^{2} + |\mathcal{M}_{\lambda_{1}\lambda_{2}}^{0}|^{2} \right) \\ f_{2} &= \overline{\sum_{\lambda_{1},\lambda_{2}}} \frac{1}{2} |\mathcal{M}_{\lambda_{1}\lambda_{2}}^{0}|^{2} \\ f_{3} &= \overline{\sum_{\lambda_{1},\lambda_{2}}} \frac{1}{\sqrt{2}} Re \big[\mathcal{M}_{\lambda_{1}\lambda_{2}}^{0} (\mathcal{M}_{\lambda_{1}\lambda_{2}}^{+})^{*} - \mathcal{M}_{\lambda_{1}\lambda_{2}}^{-} (\mathcal{M}_{\lambda_{1}\lambda_{2}}^{0})^{*} \big] \\ f_{4} &= \overline{\sum_{\lambda_{1},\lambda_{2}}} Re \big[\mathcal{M}_{\lambda_{1}\lambda_{2}}^{-} (\mathcal{M}_{\lambda_{1}\lambda_{2}}^{+})^{*} \big] \\ f_{5} &= \overline{\sum_{\lambda_{1},\lambda_{2}}} \big(|\mathcal{M}_{\lambda_{1}\lambda_{2}}^{+}|^{2} - |\mathcal{M}_{\lambda_{1}\lambda_{2}}^{-}|^{2} \big) \\ f_{6} &= \overline{\sum_{\lambda_{1},\lambda_{2}}} \sqrt{2} Re \big[\mathcal{M}_{\lambda_{1}\lambda_{2}}^{0} (\mathcal{M}_{\lambda_{1}\lambda_{2}}^{+})^{*} + \mathcal{M}_{\lambda_{1}\lambda_{2}}^{-} (\mathcal{M}_{\lambda_{1}\lambda_{2}}^{0})^{*} \big] \\ f_{7} &= \overline{\sum_{\lambda_{1},\lambda_{2}}} \sqrt{2} Im \big[\mathcal{M}_{\lambda_{1}\lambda_{2}}^{0} (\mathcal{M}_{\lambda_{1}\lambda_{2}}^{+})^{*} + \mathcal{M}_{\lambda_{1}\lambda_{2}}^{-} (\mathcal{M}_{\lambda_{1}\lambda_{2}}^{0})^{*} \big] \\ f_{8} &= \overline{\sum_{\lambda_{1},\lambda_{2}}} \frac{1}{\sqrt{2}} Im \big[\mathcal{M}_{\lambda_{1}\lambda_{2}}^{0} (\mathcal{M}_{\lambda_{1}\lambda_{2}}^{+})^{*} - \mathcal{M}_{\lambda_{1}\lambda_{2}}^{-} (\mathcal{M}_{\lambda_{1}\lambda_{2}}^{0})^{*} \big] \\ f_{9} &= \overline{\sum_{\lambda_{1},\lambda_{2}}} Im \big[\mathcal{M}_{\lambda_{1}\lambda_{2}}^{-} (\mathcal{M}_{\lambda_{1}\lambda_{2}}^{+})^{*} \big]. \end{split}$$

Lepton $p_{\rm T}$ in terms of the Collins-Soper angles

Lepton $p_{\rm T}$ in terms of the CS angles: general formula

Lepton $p_{\rm T}$ in Lab. frame has a simple formula:

In the Collins Soper frame : $(p_{\ell^-(\ell^+)}^*)^\mu = \frac{m_{\ell\ell}}{2}(1, \pm \sin\theta\cos\phi, \pm \sin\theta\sin\phi, \pm\cos\theta).$

 \Downarrow boost to the lab. frame

 $\text{In the Lab. frame}: \vec{p}_{\mathrm{T}\ell^-(\ell^+)} = \frac{1}{2} \Big(q_{\mathrm{T}} \pm \sqrt{m_{\ell\ell}^2 + q_{\mathrm{T}}^2} \sin\theta \cos\phi, \ \pm m_{\ell\ell} \sin\theta \sin\phi \Big).$

 \Downarrow calculate the absolute values

$$\begin{split} p_{\mathrm{T}\ell^-(\ell^+)} &= \frac{1}{2} \sqrt{q_{\mathrm{T}}^2 + m_{\ell\ell}^2 \sin^2\theta + q_{\mathrm{T}}^2 \sin^2\theta \cos^2\phi \pm 2q_{\mathrm{T}} \sqrt{m_{\ell\ell}^2 + q_{\mathrm{T}}^2} \sin\theta \cos\phi} \\ & \text{That's all!} \end{split}$$

$$p_{\mathrm{T}\ell 1(2)} = \frac{1}{2} \sqrt{q_{\mathrm{T}}^2 + Q^2 \sin^2 \theta + q_{\mathrm{T}}^2 \sin^2 \theta \cos^2 \phi \pm 2q_{\mathrm{T}} \sqrt{Q^2 + q_{\mathrm{T}}^2} \sin \theta |\cos \phi|}.$$

Signal predicts more events at $\phi \sim \pi/2$: $p_{_{\rm T}}$ of the 2 leptons are equivalent,

$$p_{\mathrm{T}\ell 1} = p_{\mathrm{T}\ell 2} = rac{1}{2} \sqrt{q_{\mathrm{T}}^2 + Q^2 \sin^2 heta}.$$

Background predicts more events at $\phi \sim$ 0: 1 lepton is very hard, another is very soft,

Message: The difference in Z polarization largely appears in lepton p_{T} .

$$p_{\mathrm{T}\ell 1(2)} = rac{1}{2} \Big| q_{\mathrm{T}} \pm \sqrt{Q^2 + q_{\mathrm{T}}^2} \sin heta \Big|.$$