Top quark production crosssection measurements

Knut Zoch,

University of Göttingen on behalf of the ATLAS Collaboration

> QCD@LHC 2018, Dresden 27th August 2018

Why care about the top?

- Unique role in the SM due to its large $m_t \approx 173 \text{ GeV}$
- Same order as VEV of the Higgs field ($v \approx 246 \text{ GeV}$)
 - Top quark regime one of the "likely" places for beyond-SM observations to manifest
- Broad decay width, short lifetime ($\tau \sim 10^{-25}$ s)
 - Study of "bare" quark properties
 - Precision measurements of QCD
- Background to many BSM and exotic searches
 - Modelling uncertainties have become limiting factor
 - Experimental results help in constraining them
- Other than that, top quarks are exciting!

ATLAS has a rich catalogue of top physics results:

- Many Run 2 results already published
- More in preparation
- This talk only covers a fraction of what's available!

Link: ATLAS TopPublicResults

Top-pair production

Tops come in pairs ...

- Inclusive measurements have reached high precision (<5%!)
- Lots of data from the LHC: differential measurements now also feasible
- Stringent tests of our predictions:
 - Sensitive to higher order corrections
 - Sensitive to PDFs
- Major background to many BSM searches → Accurate description pivotal!

Most precise theory predictions with ~ 5.5%: at 8 TeV: $\sigma_{t\bar{t}} \approx 250^{+13}_{-14}$ pb at 13 TeV: $\sigma_{t\bar{t}} \approx 820^{+40}_{-45}$ pb Main limitations: PDF + α_s uncertainties

calculated with Top++

4

Knut Zoch

... and we catch 'em (precisely)

27/08/2018

Knut Zoch

Inclusive results

- Generally the most precise: dilepton (eµ) channel
 - $\sigma_{t\bar{t}}(13 \text{ TeV}) = 818 \pm 8 \text{ (stat)} \pm 27 \text{ (syst)} \pm 19 \text{ (lumi)} \pm 12 \text{ (beam) pb}$
 - Relative uncertainty: 4.4% (!)
 - Very little background
 - Low systematic uncertainties
- I+jets: more stats, but also larger systematics
 - Dominantly: jet-related uncertainties, modelling
 - At 8 TeV: 5.7% precision reached

All measurements at 8 and 13 TeV in good agreement with SM predictions!

And differential?

- Cross-sections unfolded to:
 - Particle level, i.e. stable particles after hadronisation
 - Parton level, i.e. top quarks before decay
- Important constraints on various modelling predictions
- Different channels have different uncertainties, but usually:
 - Limited modelling of $t\bar{t}$ (ME and PS)
 - Jet energy scale, especially in the boosted topologies
- ATLAS has performed measurements at 7, 8, and 13 TeV with various final states

Dominant uncertainties in l+jets (resolved) unfolding

Unfolded top p_T

- Predicted p_T^t spectra harder than observed
- Different trends also among predictions
- Uncertainties generally dominated by modelling (ME and showering), jet energy resolution

I+jets boosted

Data

PWG+PY6 h

PWG+PY6 h_{damp}=2m_t radHi

PWG+PY6 h damp=mt radLo

PWG+PY8 h_{damp}=1.5 m_t

PWG+H7 h_{damp}=1.5 m_t PWG+H++ h_{damp}=m_t aMC@NLO+H++

aMC@NLO+PY8 Stat. unc.

Stat.+Svst. unc.

d σ_{tf} / dp^{t,had} [pb/GeV

Prediction Data

Prediction Data 10

10

10⁻

ATLAS

Boosted

vs = 13 TeV. 3.2 fb

Fiducial phase-space

Unfolded in Njets

- Split-up in jet multiplicity with separate unfolding ٠
- Reveals previously unseen discrepancies
- Several predictions disfavoured in $p_T^{t\bar{t}}$ for high jet • multiplicities (6incl)

$t\bar{t}$ with heavy-flavour jets

- Stringent test of QCD calculations, due to non-zero b-quark mass
- Major background for ttH ($H \rightarrow bb$)
- Measurements = valuable input for MC tuning
 - Disagreements in combined variables (e.g. in $\Delta R_{bb}^{\Delta min}$ of I+jets)
 - Overall best description: Sherpa 2.2 (next talk!)

Single-top production

Overview

- Single-top production?
 - Possibility to constrain PDFs
 - Possibility to tune generators
 - Tests of CKM matrix unitarity
 - Sensitivity to BSM in the Wtb vertex
- Three channels: s, t, and associated with W (tW)
 - Various precision measurements in tW and tchannel
 - Evidence for s-channel at 8 TeV, and tqZ at 13 TeV

leee g W^{-}

- Strong interference between tW and $t\bar{t}$:
 - Predictions use diagram removal (DR)
 - Large uncertainties estimated with diagram subtraction (DS) scheme
- Recent measurement sensitive to interference terms in $m_{bl}^{minimax}$
- Good agreement with four-flavour scheme Powheg+Pythia8 $l^{\pm}vl^{\mp}\bar{v}b\bar{b}$

Evidence for tZ

- Rare SM process ($\sigma \approx 800 \text{ fb}$)
 - Sensitive to tZ and WWZ coupling
 - Background to tH and FCNC
- Trileptonic channel
- Neural network to maximise separation between signal and BG
- Binned likelihood fit of NN output
- $\sigma = 600 \pm 170 \text{ (stat)} \pm 140 \text{ (syst) fb}$
- Observed (expected) significance for signal+BG of 4.2 (5.4)

Summary

- ATLAS has a rich programme in top physics*
- Inclusive cross-section measurements:
 - Have reached same precision as modelling
 - Constrain BSM theories in the top-quark regime
- **Differential measurements:**
 - Unfolded to particle or parton level
 - Reveal modelling limitations, e.g. in p_T^t
 - Important input for generator tuning
- Single-top measurements:
 - Precision measurements in t-channel and tW
 - Evidence for tZ production (and for the s-channel at 8 TeV)

*Top quark properties talk tomorrow afternoon in the "Heavy Quarks" session!

ο/ μ ο ρ. μ υ/

10

Prediction Data

Backup

ATLAS-CONF-2015-049

- Preliminary results at 13 TeV, using only 85/pb of data
 - Measured in both in I+jets and eµ channels
 - $\sigma_{t\bar{t}}(13 \text{ TeV}, 1 + \text{jets}) = 817 \pm 13 \text{ (stat)} \pm 103 \text{ (syst)} \pm 88 \text{ (lumi) pb}$
 - $\sigma_{t\bar{t}}/\sigma(Z \rightarrow ee, \mu\mu)$ cancels many uncertainties

27/08/2018

- 13 TeV, 3.2/fb, eµ channel
- Selection: two jets, at least one b-tag, no MET requirements
- Reconstruction: neutrino weighting method
- Discrepancies in particular for Powheg-Box + Herwig++ in distributions of p_T^{top} and m(tt)

do / GeV d m(tī)

. т-ю

Pred. / Data

Pred. / Data

1

10-

10-2

 10^{-3}

10-4

1.2

0.8

1.2

0.8

ō

ATLAS

 $\sqrt{s} = 13 \text{ TeV}$. 3.2 fb⁻¹

400

200

600

800

1000

1200

1400

Fiducial phase-space

POWHEG Box + PYTHIA 6

POWHEG Box + HERWIG++

MG5_aMC@NLO + HERWIG++ MG5_aMC@NLO + PYTHIA 8

POWHEG Box + PYTHIA 8

Data Stat. Stat ⊕ Svst.

SHERPA

- Resolved: one lepton, at least four small-R jets (0.4), at least 2 b-tags
- Boosted: one lepton, at least one large-R and one small-R jet (1.0, 0.4)
 - Small-R jet close to the lepton ($\Delta R \leq 2.0$)
 - Large-R jet <u>top-tagged</u> ($p_T > 300$ GeV), separated from lepton and jet ($\Delta R \ge 1.0$)
 - At least one small-R jet with b-tag (77%): either inside large-R jet, or close to lepton
 - MET \geq 20 GeV, MET + transverse m_W \geq 60 GeV

- 13 TeV, 36/fb (2015+16), all-hadronic
- At least two large-R jets (1.0): •
 - All required to fulfil $p_T > 350~{\rm GeV}$ and $\left|m_J m_t\right| < 50~{\rm GeV}$
 - At least two of them top-tagged, and both with associated b-jet ($\Delta R \le 1.0$) ٠
 - Leading large-R jet with $p_T > 500 \text{ GeV}$
- At least two small-R jets (0.4), at least two of which b-tagged

p_T^{t,1}[GeV]

TOPQ-2016-09 (2)

- Additional unfolding to parton level: two top quarks with $p_T^{t1} > 500 \text{ GeV}$ and $p_T^{t2} > 350 \text{ GeV}$
- Generally a lot more dominated by statistical uncertainties (both in MC and data), due to extrapolation from fiducial phase space
- Discrepancies observed in rapidity distributions (broader in data)

TOPQ-2017-01

- Submitted to JHEP (pre-print: 1802.06572v1)
- 13 TeV, 3.2/fb, l+jets channels
- $|p_{out}^{tt}| = \left| \vec{p}^{t,had} \cdot \frac{\vec{p}^{t,lep} \times \hat{z}}{|\vec{p}^{t,lep} \times \hat{z}|} \right|$
- Exactly one lepton, at least four (two) jets (b-jets)
- Events categorised according to n_jets

TOPQ-2017-01 (2)

- Dominant for 6incl: JES (jet energy scale)
- Dominant for 4excl: flavour-tagging
- Total uncertainties reduced for normalised Xsec due to cancellation of correlated uncertainties

absolute Xsec (4excl, 5excl, 6incl)

Fiducial phase-space

Stat. Unc.

100 200 300 400 500 600 700 800 900 1000

Normalised cross-section

Flavour Tagging

Hard Scattering

ISR/FSR, PDF, MC Stat.

p_t,had [GeV]

Fractional uncertainty [%]

35

30F

25

20

15⊢

10⊢

ATLAS

4-jet exclusive

√s = 13 TeV, 3.2 fb⁻¹

Stat.+Syst. Unc

Backgrounds

Hadronisation

JES/JER

TOPQ-2017-01 (3)

Table 6: Comparison of the measured fiducial phase space normalised differential cross sections as a function of $p_T^{t\bar{t}}$ and the predictions from several MC generators in different *n*-jet configurations. For each prediction a χ^2 and a *p*-value are calculated using the covariance matrix of the measured spectrum. The number of degrees of freedom (NDF) is equal to the number of bins in the distribution minus one.

	4-jet exclusive		5-jet exclusive		6-jet inclusive	
	χ^2 /NDF	<i>p</i> -value	χ^2 /NDF	<i>p</i> -value	χ^2 /NDF	<i>p</i> -value
Powheg+Pythia6	4.3/5	0.51	3.0/5	0.70	3.9/5	0.56
Powheg+Pythia6 (radHi)	5.2/5	0.40	6.3/5	0.28	9.8/5	0.08
Powheg+Pythia6 (radLo)	6.2/5	0.29	3.5/5	0.62	5.2/5	0.39
Powheg+Pythia8 ($h_{damp} = m_t$)	7.6/5	0.18	4.5/5	0.48	4.7/5	0.46
POWHEG+PYTHIA8 ($h_{damp} = 1.5 m_t$)	5.5/5	0.36	3.9/5	0.57	6.2/5	0.28
POWHEG+PYTHIA8 (radHi) ($h_{damp} = 3 m_t$)	6.5/5	0.26	4.0/5	0.55	10.5/5	0.06
POWHEG+PYTHIA8 (radLo) $(h_{damp} = 1.5 m_t)$	5.2/5	0.39	5.6/5	0.35	7.6/5	0.18
Powheg+Herwig7	10.5/5	0.06	5.1/5	0.41	3.1/5	0.68
Powheg+Herwig++	18.6/5	< 0.01	16.2/5	< 0.01	19.4/5	< 0.01
MadGraph5_aMC@NLO+Herwig++	12.8/5	0.03	10.0/5	0.07	9.3/5	0.10
MadGraph5_aMC@NLO+Pythia8 $(H_T/2)$	26.8/5	< 0.01	10.2/5	0.07	8.2/5	0.14
MadGraph5_aMC@NLO+Pythia8 $(\sqrt{m_t^2 + p_T^2})$	17.3/5	< 0.01	10.0/5	0.07	7.8/5	0.17
Sherpa 2.2.1	7.5/5	0.19	1.7/5	0.89	2.2/5	0.82

ATLAS-CONF-2018-029

- 13 TeV, 36.1/fb (2015+16)
- eµ: exactly one each, opposite charge, at least one trigger-matched, at least two jets with at least two b-tags (@77%)
- I+jets: exactly one lepton, trigger-matched, at least five jets with at least two b-tagged (@60%)
- Data-driven correction factors for flavour composition
- Templates for different b-tag discriminant bins (corresponding to efficiency ranges)

ATLAS-CONF-2018-029 (2)

eµ channel distributions

27/08/2018

ATLAS-CONF-2018-029 (3)

I+jets channel distributions

27/08/2018

Knut Zoch

ATLAS-CONF-2018-029 (4)

I+jets channel distributions

27/08/2018

- 13 TeV, 36/fb, Wt production
- Exactly one jet with b-tag (77%), lepton pair with opposite charge, complex requirements on MET and m_{ll} to reduce tt and Z+jets backgrounds
- Cut on BDT response > 0.3 to further reduce $t\overline{t}$ contamination

TOPQ-2017-05

- 13 TeV, 36/fb, $Wt + t\bar{t}$ interference
- Lepton pair with opposite charge, exactly two b-tagged jets (@60%), no other b-jets passing 85%
- Dominant: $t\bar{t}$ + HF, SFs extrapolated from data (3b region)
- $m_{bl}^{minimax} = \min\{\max(m_{b1l1}, m_{b2l2}), \max(m_{b1l2}, m_{b2l1})\}$
- At leading order, doubly-resonant $t\bar{t}$ suppressed due to: $m_b^{minimax} < \sqrt{m_t^2 - m_W^2}$

Model	Full Distribution		$m_{b\ell}^{\rm minimax} > 160 { m ~GeV}$		
	χ^2 / nDOF	<i>p</i> -value	$ \chi^2$ / nDOF	p-value	
Powheg+Pythia8 $t\bar{t} + tW$ (DR)	10 / 14	0.71	8.5 / 8	0.40	
Powheg+Pythia8 $t\bar{t} + tW$ (DS)	10 / 14	0.77	6.6 / 8	0.56	
Powheg+Pythia8 $\ell^+ \nu \ell^- \nu b b$	5.9 / 14	0.92	2.0 / 8	0.95	
MG5_aMC+Pythia8 $t\bar{t} + tW$ (DR1)	26 / 14	0.14	13 / 8	0.17	
MG5_aMC+Pythia8 $t\bar{t} + tW$ (DR2)	36 / 14	0.02	20 / 8	0.08	
Powheg+Herwig++ $t\bar{t} + tW$ (DR)	26 / 14	0.07	7.3 / 8	0.48	
$MG5_aMC + Herwig + t\bar{t} + tW (DR)$	30 / 14	0.04	11 / 8	0.23	
Powheg+Pythia6 $t\bar{t} + tW$ (DR)	14 / 14	0.49	11 / 8	0.23	
Powheg+Pythia6 $t\bar{t} + tW$ (DS)	14 / 14	0.49	10 / 8	0.32	
MG5_aMC+Pythia8 (LO) WWbb	12 / 14	0.68	8.2 / 8	0.42	
MG5_aMC+Pythia8 (LO) WWbb, no int.	28 / 14	0.05	22 / 8	0.005	

TOPQ-2015-11*

- Top quark spin polarisation transferred to decay products
 - Sensitivity to $Im(g_R)$ in polarisation observables of decay products x_i
 - $\frac{1}{\Gamma} \frac{d\Gamma}{d(\cos \theta_x)} = \frac{1}{2} (1 + \alpha_x P \cos \theta_x)$ in the top quark rest frame
- Largest sensitivities in A^N_{FB}
 - I.e. forward-backward asymmetry in $\cos \theta_l^N$ distribution of the lepton
 - Normal axis: $\vec{N} = \hat{s_t} \times \vec{q_l}$

 $A_{FB}^{N} = -0.04 \pm 0.02 \text{ (stat)} \pm 0.03 \text{ (syst)}$ $Im(g_{R}) \in [-0.18, 0.06] \text{ at } 95\% \text{ C.L.}$

TOPQ-2015-11 (2)

- Exactly one lepton (e/μ), large MET, exactly two jets, with one of them b-tagged (@50% efficiency)
- Spectator b-jet expected to be softer in p_T and broader in $|\eta|$, and is therefore excluded intentionally
- All asymmetries compatible with predicted values by SM

TOPQ-2015-01*

- Matrix Element Method (MEM) to calculate per-event signal probability
- Dominant uncertainties:
 - Data and MC statistics
 - Jet energy resolution
 - t-channel generator choice
- $\sigma_s = 4.8 \pm 0.8$ (stat) $^{+1.6}_{-1.3}$ (syst) pb
- Signal strength: $\mu = 0.86^{+0.31}_{-0.28}$ with an observed (expected) significance of 3.2 (3.9)

W

 \bar{q}'