NLO predictions for $t\bar{t}bb$ production in association with a light-jet at the LHC

Federico Buccioni

in collaboration with

S. Pozzorini M. Zoller

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

QCD@LCH 2018

Outline

 $\triangleright pp \to t\bar{t}H(H \to b\bar{b})$ at the LHC

 $lackbox{D}$ Open questions in theory predictions for $t\bar{t}+b$ -jets production

D Large NLO K-factor in $pp \to t\bar{t}b\bar{b}$ and scale choices

D NLO QCD predictions for $pp \to t\bar{t}b\bar{b}j$

$pp \to t\bar{t}H(H \to b\bar{b})$ at the LHC

The determination of the Higgs boson coupling to the top quark is a crucial test of the SM top quark Yukawa coupling can be determined through measurements of

 $t \bar{t} H$ associated production

$pp \to t\bar{t}H(H \to b\bar{b})$ at the LHC

The determination of the Higgs boson coupling to the top quark is a crucial test of the SM top quark Yukawa coupling can be determined through measurements of

 $t \bar{t} H$ associated production

H branching ratio is dominated by $H \to b\bar{b}$ decay: channel with highest statistics

$pp \to t\bar{t}H(H \to b\bar{b})$ at the LHC

The determination of the Higgs boson coupling to the top quark is a crucial test of the SM top quark Yukawa coupling can be determined through measurements of

$t\bar{t}H$ associated production

H branching ratio is dominated by $H \to b\bar{b}$ decay: channel with highest statistics

But: this channel suffers from a large, irreducible QCD background $pp\to t\bar t+$ b-jets production

An accurate understanding and description of the background is mandatory for the sensitivity of $t\bar{t}H(H\to b\bar{b})$ analyses

$t\bar{t}H$ discovery at the LHC

$t\bar{t}H$ discovery at the LHC

State of the art for $t\bar{t}bb$ predictions

- ▶ First fixed order NLO QCD predictions for $pp \to t\bar{t}b\bar{b}$ [Bredenstein et al. '09, Bevilacqua et al. '09] first estimate of theory uncertainties + first NLO calculation for $2 \to 4$
- ▶ First NLOPS simulation for $t\bar{t}b\bar{b}$ production in Powhel [Garzelli et al. '13] ME in the 5F scheme $(m_b=0)$ + Powheg matching for the parton shower since recently available also in the 4F scheme [Bevilacqua et al. '17]
- ightharpoonup NLOPS generator for $t\bar{t}b\bar{b}$ with massive b-quark in OpenLoops+Sherpa [Cascioli et al. '14] OpenLoops for 1-loop automation + Sherpa employing MC@NLO matching
- ho NLOPS generator for $t\bar{t}+b$ -jet production in 4F scheme in OpenLoops+Powheg [Jeźo et al. '18] OpenLoops for amplitudes automation + Powheg matching in Powheg-Box-Res thorough investigation of uncertainties related to matching method and parton shower modelling
- ightharpoonup tar t + b-jets simulations in the 4F scheme also available in MG5_aMC@NLO [Alwall et al. '14] and Matchbox [Plaetzer, Reuschle et al.]

$t\bar{t} + b$ -jets production in the 4F scheme

$$g = \frac{t}{g} = \frac{1}{b} = \frac{g}{g} = \frac{t}{b} = \frac{t}{b} = \frac{t}{b} = \frac{t}{b} = \frac{t}{b} = \frac{t}{b} = \frac{g}{b} =$$

In the ${\bf 4F}$ scheme: b-quarks are treated as massive

- \Rightarrow calculation of the ME can be extended to the entire the phase space
- \Rightarrow no singularities in $g\to b\bar{b}$ splittings. Safe collinear regime with $g\to b\text{-jet}$

On the other hand:

- \times non-trivial multi-scale multi-particle QCD process
- \times large scales separation between $t\bar{t}$ and $b\bar{b}$ systems
- $m_b \sim 5 \text{ GeV}$ $t\bar{t}$ typical scale up to $\sim 500 \text{ GeV}$

scale choice and estimation of theoretical uncertainties non trivial

$t\bar{t} + b$ -jets production in the 4F scheme

$$g = \underbrace{\frac{t}{\overline{t}}}_{b} = \underbrace{\frac{g}{\overline{t}}}_{b} = \underbrace{\frac{t}{\overline{t}}}_{b} = \underbrace{\frac{g}{\overline{t}}}_{b} + \dots + \underbrace{\frac{g}{\overline{t}}}_{b} = \underbrace{\frac{g}{\overline{t}}}_{$$

In the **4F scheme**: b-quarks are treated as massive

- \Rightarrow calculation of the ME can be extended to the entire the phase space
- \Rightarrow no singularities in $g \to b \bar b$ splittings. Safe collinear regime with $g \to b\text{-jet}$

On the other hand:

- \times non-trivial multi-scale multi-particle QCD process
- \times large scales separation between $t\bar{t}$ and $b\bar{b}$ systems

 $m_b \sim 5 \text{ GeV}$ $t\bar{t}$ typical scale up to $\sim 500 \text{ GeV}$

scale choice and estimation of theoretical uncertainties non trivial

XS dominated by FS $g \to b \bar b$ splittings [Ježo et al. '18]

it supports using $m_b > 0$

Standard factor-2 μ_R variations $\sim 30\%$ NLO scale dependence pr of 1st light-jet (ttbb cuts) But: discrepancies between different NLOPS generators significantly exceed NLO scale variations Most sensitive distribution: light-jet p_T spectrum up to 100% shape differences in the 100-200 GeV region Most likely **hypothesis** on origin of NLOPS differences: interplay between PS and large NLO $t\bar{t}b\bar{b}$ K-factor

which enters the PS matching in the soft regime

Plot by T. Ježo

Standard factor-2 μ_R variations $\sim 30\%$ NLO scale dependence

But: discrepancies between different NLOPS generators
significantly exceed NLO scale variations

Most sensitive distribution: light-jet p_T spectrum
up to 100% shape differences in the 100-200 GeV region

Most likely hypothesis on origin of NLOPS differences:
interplay between PS and large NLO $t\bar{t}b\bar{b}$ K-factor

(1) origin of large K-factor to be understood

which enters the PS matching in the soft regime

Standard factor-2 μ_R variations $\sim 30\%$ NLO scale dependence

But: discrepancies between different NLOPS generators
significantly exceed NLO scale variations

Most sensitive distribution: light-jet p_T spectrum
up to 100% shape differences in the 100-200 GeV region

Most likely hypothesis on origin of NLOPS differences:
interplay between PS and large NLO $t\bar{t}b\bar{b}$ K-factor
which enters the PS matching in the soft regime

- (1) origin of large K-factor to be understood
- (2) Idea: reduce uncertainties discarding less accurate NLOPS predictions by means of a benchmark $p_{T,j}$ spectrum with uncertainty well below 100% Motivation for $pp \to t\bar{t}b\bar{b}j$ at NLO QCD

Standard factor-2 μ_R variations $\sim 30\%$ NLO scale dependence

But: discrepancies between different NLOPS generators significantly exceed NLO scale variations

Most sensitive distribution: light-jet p_T spectrum up to 100% shape differences in the 100-200 GeV region

Most likely **hypothesis** on origin of NLOPS differences: interplay between PS and **large NLO** $t\bar{t}b\bar{b}$ K-factor which enters the PS matching in the soft regime

- (1) origin of large K-factor to be understood
- (2) **Idea**: reduce uncertainties discarding less accurate NLOPS predictions by means of a benchmark $p_{T,j}$ spectrum with uncertainty well below 100% Motivation for $pp \to t\bar{t}b\bar{b}j$ at NLO QCD

This talk

Input parameters, PDFs and scale choices [Ježo et al. '18]

$$m_b = 4.75 \text{ GeV} \qquad m_t = 172.5 \text{ GeV}$$

$$\mu_R = \sqrt{\mu_{t\bar{t}}\mu_{b\bar{b}}} \quad \text{with} \quad \mu_{b\bar{b}} = \sqrt{E_{T,b}E_{T,\bar{b}}} \qquad \mu_{t\bar{t}} = \sqrt{E_{T,t}E_{T,\bar{t}}}$$

$$\mu_F = \frac{H_T}{2} = \frac{1}{2} \sum_{i=t,\bar{t},b,\bar{b},j} E_{T,i}$$

NLO PDFs are used throughout: both at LO and NLO

NNPDF_nlo_as_0118_nf_4 with $\alpha_s^{4\mathrm{f}}$

dynamic scales

Input parameters, PDFs and scale choices [Ježo et al. '18]

$$m_b = 4.75 \; \text{GeV} \qquad m_t = 172.5 \; \text{GeV}$$

$$\mu_R = \sqrt{\mu_{t\bar{t}}\mu_{b\bar{b}}} \quad \text{with} \quad \mu_{b\bar{b}} = \sqrt{E_{T,b}E_{T,\bar{b}}} \quad \mu_{t\bar{t}} = \sqrt{E_{T,t}E_{T,\bar{t}}} \qquad \text{dynamic scales}$$

$$\mu_F = \frac{H_T}{2} = \frac{1}{2} \sum_{i=t,\bar{t},b,\bar{b},j} E_{T,i}$$

NLO PDFs are used throughout: both at LO and NLO NNPDF_nlo_as_0118_nf_4 with α_s^{4f}

The NLO QCD cross sections for $pp \to t\bar{t}b\bar{b}$ feature a large K-factor

K-factor $N_{b-jets\geq0}:2.06$ $N_{b-jets\geq1}:1.92$ $N_{b-jets\geq2}:1.79$

Input parameters, PDFs and scale choices [Ježo et al. '18]

$$m_b = 4.75 \; \text{GeV} \qquad m_t = 172.5 \; \text{GeV}$$

$$\mu_R = \sqrt{\mu_{t\bar{t}}\mu_{b\bar{b}}} \quad \text{with} \quad \mu_{b\bar{b}} = \sqrt{E_{T,b}E_{T,\bar{b}}} \quad \mu_{t\bar{t}} = \sqrt{E_{T,t}E_{T,\bar{t}}} \qquad \text{dynamic scales}$$

$$\mu_F = \frac{H_T}{2} = \frac{1}{2} \sum_{i=t,\bar{t},b,\bar{b},j} E_{T,i}$$

NLO PDFs are used throughout: both at LO and NLO NNPDF_nlo_as_0118_nf_4 with α_s^{4f}

The NLO QCD cross sections for $pp \to t\bar{t}b\bar{b}$ feature a

large K-factor

more realistic picture of perturbative convergence but much bigger K-factor wrt using LO α_S + PDFs for σ_{LO}

The K-factor is large and stable for cross sections and distributions

Such a large K-factor poses a question: are corrections beyond NLO larger than factor 2 scale variations?

The K-factor is large and stable for cross sections and distributions

Such a large K-factor poses a question: are corrections beyond NLO larger than factor 2 scale variations?

origin of large K-factor needs to be understood

Hypotheses on origin of large K-factor:

The K-factor is large and stable for cross sections and distributions

Such a large K-factor poses a question: are corrections beyond NLO larger than factor 2 scale variations?

origin of large K-factor needs to be understood

Hypotheses on origin of large K-factor:

(a) sizeable NLO real emission contribution:

 σ_{NLO} strongly enhanced by hard jet radiation interpreted as $t\bar{t}gg(g \to b\bar{b})$ interplay with large mass gap in $t\bar{t}$ and $b\bar{b}$ systems $(m_b, p_{T,b} \ll m_t) \Rightarrow p_{T,b} < p_{T,j} < m_t$

The K-factor is large and stable for cross sections and distributions

Such a large K-factor poses a question: are corrections beyond NLO larger than factor 2 scale variations?

> origin of large K-factor needs to be understood

Hypotheses on origin of large K-factor:

(a) sizeable NLO real emission contribution:

 σ_{NLO} strongly enhanced by hard jet radiation interpreted as $t\bar{t}gg(g \to b\bar{b})$ interplay with large mass gap in $t\bar{t}$ and $b\bar{b}$ systems $(m_b, p_{T,b} \ll m_t) \Rightarrow p_{T,b} < p_{T,j} < m_t$

it enters as a "new process" described at LO \Rightarrow potentially large NLO QCD corrections

The K-factor is large and stable for cross sections and distributions

Such a large K-factor poses a question: are corrections beyond NLO larger than factor 2 scale variations?

> origin of large K-factor needs to be understood

Hypotheses on origin of large K-factor:

(a) sizeable NLO real emission contribution:

 σ_{NLO} strongly enhanced by hard jet radiation interpreted as $t\bar{t}gg(g \to b\bar{b})$ interplay with large mass gap in $t\bar{t}$ and $b\bar{b}$ systems $(m_b, p_{T,b} \ll m_t) \Rightarrow p_{T,b} < p_{T,j} < m_t$

it enters as a "new process" described at LO \Rightarrow potentially large NLO QCD corrections

(b) non-optimal μ_R scale choice:

an improved μ_R choice might reduce the K-factor and also mitigate the NLOPS discrepancies

(a) Mass effects on $pp \to t\bar{t}b\bar{b}$ X sections

Aim: try to understand if the large K-factor is related to $m_t \gg m_b$

Idea: study the NLO K-factor for different mass configurations by means of $m^*=\sqrt{m_bm_t}$ $m^*\sim 28.62~{\rm GeV}$

8/19

(a) Mass effects on $pp \to t\bar{t}b\bar{b}$ X sections

Aim: try to understand if the large K-factor is related to $m_t \gg m_b$

Idea: study the NLO K-factor for different mass configurations by means of $m^* = \sqrt{m_b m_t}$ $m^* \sim 28.62~{\rm GeV}$

masses [GeV]		$\sigma_{N_{b ext{-jets}} \geq 0}$ [pb]			$\sigma_{N_{b ext{-jets}} \geq 1}$ [pb]			$\sigma_{N_{b ext{-jets}}\geq 2}$ [pb]		
m_b	m_t	LO	NLO	NLO LO	LO	NLO	NLO LO	LO	NLO	NLO LO
4.75	172.5	12.94	26.61	2.06	3.955	7.593	1.92	0.374	0.669	1.79
28.62	28.62	321.1	642.4	2.0	165.3	317.7	1.92	34.61	63.42	1.83
28.62	172.5	0.999	1.911	1.9	0.752	1.400	1.86	0.245	0.437	1.78
172.5	172.5	0.013	0.023	1.82	0.013	0.023	1.81	$9.31\cdot 10^{-3}$	$1.67\cdot 10^{-2}$	1.79

Dynamic scales choice:

$$\mu_R = \prod_{i=t,\bar{t},b,\bar{b}} E_{T,i}^{1/4}$$

$$\mu_F = \frac{H_T}{2}$$

(a) Mass effects on $pp \to t\bar{t}b\bar{b}$ X sections

Aim: try to understand if the large K-factor is related to $m_t \gg m_b$

Idea: study the NLO K-factor for different mass configurations by means of $m^* = \sqrt{m_b m_t}$ $m^* \sim 28.62 \text{ GeV}$

masses [GeV]		$\sigma_{N_{b ext{-jets}} \geq 0}$ [pb]			$\sigma_{N_{b ext{-jets}} \geq 1}$ [pb]			$\sigma_{N_{b ext{-jets}} \geq 2}$ [pb]		
m_b	m_t	LO	NLO	NLO LO	LO	NLO	NLO LO	LO	NLO	NLO LO
4.75	172.5	12.94	26.61	2.06	3.955	7.593	1.92	0.374	0.669	1.79
28.62	28.62	321.1	642.4	2.0	165.3	317.7	1.92	34.61	63.42	1.83
28.62	172.5	0.999	1.911	1.9	0.752	1.400	1.86	0.245	0.437	1.78
172.5	172.5	0.013	0.023	1.82	0.013	0.023	1.81	$9.31 \cdot 10^{-3}$	$1.67\cdot 10^{-2}$	1.79

$$\mu_R = \prod_{i=t,\bar{t},b,\bar{b}} E_{T,i}^{1/4}$$

$$\mu_F = \frac{n_T}{2}$$

wrt variations of m_t , m_b gap

(a) Mass effects on $pp \to t\bar{t}bb$ X sections

Aim: try to understand if the large K-factor is related to $m_t \gg m_b$

Idea: study the NLO K-factor for different mass configurations by means of $m^* = \sqrt{m_b m_t}$ $m^* \sim 28.62 \text{ GeV}$

masses [GeV]		$\sigma_{N_{b ext{-jets}}\geq 0}$ [pb]			$\sigma_{N_{b ext{-jets}} \geq 1}$ [pb]			$\sigma_{N_{b ext{-jets}} \geq 2}$ [pb]		
m_b	m_t	LO	NLO	NLO LO	LO	NLO	NLO LO	LO	NLO	NLO LO
4.75	172.5	12.94	26.61	2.06	3.955	7.593	1.92	0.374	0.669	1.79
28.62	28.62	321.1	642.4	2.0	165.3	317.7	1.92	34.61	63.42	1.83
28.62	172.5	0.999	1.911	1.9	0.752	1.400	1.86	0.245	0.437	1.78
172.5	172.5	0.013	0.023	1.82	0.013	0.023	1.81	$9.31\cdot 10^{-3}$	$1.67\cdot 10^{-2}$	1.79

Dynamic scales choice:

$$\mu_R = \prod_{i=t,\bar{t},b,\bar{b}} E_{T,i}^{1/4}$$

$$H_T$$

 \checkmark good shapes in distributions

(a) Mass effects on $pp \to t\bar{t}bb$ X sections

Aim: try to understand if the large K-factor is related to $m_t \gg m_b$

Idea: study the NLO K-factor for different mass configurations by means of $m^* = \sqrt{m_b m_t}$ $m^* \sim 28.62 \text{ GeV}$

masses [GeV]		$\sigma_{N_{b ext{-jets}}\geq 0}$ [pb]			$\sigma_{N_{b ext{-jets}}\geq 1}$ [pb]			$\sigma_{N_{b ext{-jets}} \geq 2}$ [pb]		
m_b	m_t	LO	NLO	NLO LO	LO	NLO	NLO LO	LO	NLO	NLO LO
4.75	172.5	12.94	26.61	2.06	3.955	7.593	1.92	0.374	0.669	1.79
28.62	28.62	321.1	642.4	2.0	165.3	317.7	1.92	34.61	63.42	1.83
28.62	172.5	0.999	1.911	1.9	0.752	1.400	1.86	0.245	0.437	1.78
172.5	172.5	0.013	0.023	1.82	0.013	0.023	1.81	$9.31 \cdot 10^{-3}$	$1.67\cdot 10^{-2}$	1.79

Dynamic scales choice:

$$\mu_R = \prod_{i=t,\bar{t},b,\bar{b}} E_{T,i}^{1/4}$$

$$\mu_R = \frac{H_T}{H_T}$$

 \checkmark good shapes in distributions

 \Rightarrow hypothesis (a) disfavoured

(b) Renormalisation scale choice

If no mass gap i.e. $m_b = m_t$ there would be a natural choice $\Rightarrow \mu_R = m_t$

A direct generalisation could be $\mu_R = \sqrt{m_b m_t}$

(b) Renormalisation scale choice

If no mass gap i.e. $m_b = m_t$ there would be a natural choice $\Rightarrow \mu_R = m_t$

A direct generalisation could be $\mu_R = \sqrt{m_b m_t}$ moderate K-factor for different m_b, m_t

Physical case: $m_b = 4.75$ GeV, $m_t = 172.5$ GeV $\sqrt{m_b m_t} \sim 28.62$ GeV \rightarrow fixed μ_R scale

- ✓ reduced K-factor ~ 1.47
- × enhanced shape distortion in distributions
- \times unreliable scale uncertainties

(b) Renormalisation scale choice

If no mass gap i.e. $m_b = m_t$ there would be a natural choice $\Rightarrow \mu_R = m_t$

A direct generalisation could be $\mu_R = \sqrt{m_b m_t}$ \longrightarrow moderate K-factor for different m_b, m_t

× unreliable scale uncertainties

motivates a reduced dynamic $\mu_R = \xi$ $i=t.\bar{t}.b.\bar{b}$

Example: $\xi = 1/3$

- \checkmark reduced K-factor
- ✓ no shape distortions in distributions
- $\checkmark \sim 20\%$ scale uncertainties

Both at LO and NLO scale uncertainties are dominated by μ_R variations.

Default choice of scale:
$$\mu_R = \mu_{def} \equiv \prod_{i=t,\bar{t},b,\bar{b}} E_{T,i}^{1/4}$$

Average value
$$\bar{\mu}_{def} \Rightarrow N_{b \geq 0} \sim 73 \text{ GeV} \qquad N_{b \geq 1} \sim 93 \text{ GeV} \qquad N_{b \geq 2} \sim 124 \text{ GeV}$$

$$V_{b\geq 1} \sim 93 \,\, \mathrm{GeV}$$

$$N_{b\geq 2} \sim 124 \text{ GeV}$$

Both at LO and NLO scale uncertainties are dominated by μ_R variations.

Default choice of scale:
$$\mu_R = \mu_{def} \equiv \prod_{i=t,\bar{t},b,\bar{b}} E_{T,i}^{1/4}$$

 $\mbox{Average value $\bar{\mu}_{def}$} \Rightarrow \qquad N_{b \geq 0} \sim 73 \mbox{ GeV} \qquad N_{b \geq 1} \sim 93 \mbox{ GeV} \qquad N_{b \geq 2} \sim 124 \mbox{ GeV}$

Both at LO and NLO scale uncertainties are dominated by μ_R variations.

Default choice of scale:
$$\mu_R = \mu_{def} \equiv \prod_{i=t,\bar{t},b,\bar{b}} E_{T,i}^{1/4}$$

 ${\rm Average\ value\ } \bar{\mu}_{def} \Rightarrow ~~ N_{b \geq 0} \sim 73 {\rm\ GeV} ~~ N_{b \geq 1} \sim 93 {\rm\ GeV} ~~ N_{b \geq 2} \sim 124 {\rm\ GeV}$

Both at LO and NLO scale uncertainties are dominated by μ_R variations.

Default choice of scale:
$$\mu_R = \mu_{def} \equiv \prod_{i=t,\bar{t},b,\bar{b}} E_{T,i}^{1/4}$$

 ${\rm Average\ value\ } \bar{\mu}_{def} \Rightarrow ~~ N_{b \geq 0} \sim 73 {\rm\ GeV} ~~ N_{b \geq 1} \sim 93 {\rm\ GeV} ~~ N_{b \geq 2} \sim 124 {\rm\ GeV}$

Both at LO and NLO scale uncertainties are dominated by μ_R variations.

Default choice of scale:
$$\mu_R = \mu_{def} \equiv \prod_{i=t,\bar{t},b,\bar{b}} E_{T,i}^{1/4}$$

Average value $\bar{\mu}_{def} \Rightarrow N_{b\geq 0} \sim 73~{\rm GeV}$ $N_{b\geq 1} \sim 93~{\rm GeV}$ $N_{b\geq 2} \sim 124~{\rm GeV}$

region where K-factor ~ 1 , close the maximum of the NLO XS

(b) Renormalisation scale dependence

Both at LO and NLO scale uncertainties are dominated by μ_R variations.

Default choice of scale:
$$\mu_R = \mu_{def} \equiv \prod_{i=t,\bar{t},b,\bar{b}} E_{T,i}^{1/4}$$

 ${\rm Average\ value\ }\bar{\mu}_{def}\Rightarrow ~~N_{b\geq 0}\sim 73~{\rm GeV}~~N_{b\geq 1}\sim 93~{\rm GeV}~~N_{b\geq 2}\sim 124~{\rm GeV}$

region where $K\text{-factor}\sim 1,$ close the maximum of the NLO XS

(b) Renormalisation scale dependence

Both at LO and NLO scale uncertainties are dominated by μ_R variations.

Default choice of scale:
$$\mu_R = \mu_{def} \equiv \prod_{i=t,\bar{t},b,\bar{b}} E_{T,i}^{1/4}$$

 ${\rm Average\ value\ }\bar{\mu}_{def}\Rightarrow ~~N_{b\geq 0}\sim 73~{\rm GeV}~~N_{b\geq 1}\sim 93~{\rm GeV}~~N_{b\geq 2}\sim 124~{\rm GeV}$

Federico Buccioni Universität

(b) Alternative dynamic μ_R choice

Alternative μ_R based on k_T of splittings in dominant $t\bar{t}b\bar{b}$ topologies

$$\mu_R = \mu_{gbb} \equiv \left(E_{T,t} E_{T,\bar{t}} E_{T,b\bar{b}} \, m_{b\bar{b}}\right)^{1/4}$$

In general it is a harder scale than μ_{def} : $\bar{\mu}_{gbb} \sim 125~{\rm GeV}$ $\bar{\mu}_{def} \sim 93~{\rm GeV}$

 \rightarrow hence a larger K-factor than μ_{def} at central value

(b) Alternative dynamic μ_R choice

Alternative μ_R based on k_T of splittings in dominant $t\bar{t}b\bar{b}$ topologies

$$\mu_R = \mu_{gbb} \equiv \left(E_{T,t} E_{T,\bar{t}} E_{T,b\bar{b}} \, m_{b\bar{b}} \right)^{1/4}$$

In general it is a harder scale than μ_{def} : $\bar{\mu}_{gbb} \sim 125 \; {\rm GeV} \; \bar{\mu}_{def} \sim 93 \; {\rm GeV}$

 \longrightarrow hence a larger K-factor than μ_{def} at central value

Example: $\frac{\mu_{gbb}}{4} \Rightarrow K$ -factor ~ 1.4 yields 20-25% scale uncertainty at NLO

✓ good shape of K-factor for

QCD@LHC 2018

relevant distributions

$pp \to t\bar{t}b\bar{b}j$ at NLO QCD

First jet emission from matrix element \Rightarrow accurate benchmark for p_T of light jet radiation

Idea: look at $p_{T,j}$ spectrum in $t\bar{t}b\bar{b}$ using reduced μ_R scales and validate against NLO prediction

$pp \to t\bar{t}b\bar{b}j$ at NLO QCD

First jet emission from matrix element \Rightarrow accurate benchmark for p_T of light jet radiation

Idea: look at $p_{T,j}$ spectrum in $t\bar{t}b\bar{b}$ using reduced μ_R scales and validate against NLO prediction

We consider $pp \to t\bar{t}b\bar{b}j$ at 13 TeV centre of mass energy

- ▶ top quark stable, not decayed
- \triangleright jets reconstructed using anti- k_T algorithm as implemented in FastJet-3.2
- $\triangle \Delta R = 0.4, \quad p_T > 50 \text{ GeV}, \quad |\eta| < 2.5$
- ightharpoonup input parameters and scales choices as in $t\bar{t}b\bar{b}$

$pp \to t\bar{t}b\bar{b}j$ at NLO QCD

First jet emission from matrix element \Rightarrow accurate benchmark for p_T of light jet radiation

Idea: look at $p_{T,j}$ spectrum in $t\bar{t}b\bar{b}$ using reduced μ_R scales and validate against NLO prediction

We consider $pp \to t\bar{t}b\bar{b}j$ at 13 TeV centre of mass energy

- ▶ top quark stable, not decayed
- \triangleright jets reconstructed using anti- k_T algorithm as implemented in FastJet-3.2
- $\triangle AR = 0.4, \quad p_T > 50 \text{ GeV}, \quad |\eta| < 2.5$
- ightharpoonup input parameters and scales choices as in $t\bar{t}b\bar{b}$

$pp \to t\bar{t}bbj$ at NLO QCD

First jet emission from matrix element \Rightarrow accurate benchmark for p_T of light jet radiation

Idea: look at $p_{T,j}$ spectrum in $t\bar{t}b\bar{b}$ using reduced μ_R scales and validate against NLO prediction

We consider $pp \to t\bar{t}b\bar{b}j$ at 13 TeV centre of mass energy

- ▶ top quark stable, not decayed
- ightharpoonup jets reconstructed using anti- k_T algorithm as implemented in FastJet-3.2
- $\triangle AR = 0.4, \quad p_T > 50 \text{ GeV}, \quad |\eta| < 2.5$
- ightharpoonup input parameters and scales choices as in $t\bar{t}b\bar{b}$

Disclaimer: all results are preliminary!

this talk b-jets tagging "single-tagged": b or \bar{b} quark content "double-tagged": $b\bar{b}$ content generic b-jet: b, \bar{b} and $b\bar{b}$ equally counted

important for comparisons against PS

QCD@LHC 2018

The 1-loop matrix elements relevant for $t\bar{t}b\bar{b}$ and $t\bar{t}b\bar{b}j$ production are computed using OpenLoops2: new on-the-fly helicity summation and integrand reduction [F.B., S.Pozzorini, M.Zoller '17] publicly available very soon! [F.B., J.Lindert, P.Maierhöfer, S.Pozzorini, M.Zoller]

13/19

The 1-loop matrix elements relevant for $t\bar{t}b\bar{b}$ and $t\bar{t}b\bar{b}j$ production are computed using

 $\textbf{OpenLoops2: new on-the-fly helicity summation and integrand reduction} \ [F.B., S.Pozzorini, M.Zoller \ `17]$

publicly available very soon! [F.B., J.Lindert, P.Maierhöfer, S.Pozzorini, M.Zoller]

The full hadronic prediction is provided through OpenLoops2 + SHERPA-2.2.4

same interface as $\mathrm{OL}1$

The 1-loop matrix elements relevant for $t\bar{t}b\bar{b}$ and $t\bar{t}b\bar{b}j$ production are computed using

OpenLoops2: new on-the-fly helicity summation and integrand reduction [F.B., S.Pozzorini, M.Zoller '17]

publicly available very soon! [F.B., J.Lindert, P.Maierhöfer, S.Pozzorini, M.Zoller]

The full hadronic prediction is provided through OpenLoops2 + SHERPA-2.2.4

In the 4F scheme there are two main partonic channels (+ crossings):

Timings[s/point] (colour + helicity sums)

		OL1	OL2+Collier	OL2+OFR
m_b	=0	0.337	0.208	0.233
m_b	$\neq 0$	0.593	0.269	0.297

$\mathbf{Timings}[s/point]$

	OL1	OL2+Collier	OL2+OFR
$m_b = 0$	4.671	1.877	2.141
$m_b \neq 0$	8.706	2.650	2.958

configurations

The 1-loop matrix elements relevant for $t\bar{t}b\bar{b}$ and $t\bar{t}b\bar{b}j$ production are computed using

OpenLoops2: new on-the-fly helicity summation and integrand reduction [F.B., S.Pozzorini, M.Zoller '17]

publicly available very soon! [F.B., J.Lindert, P.Maierhöfer, S.Pozzorini, M.Zoller]

The full hadronic prediction is provided through OpenLoops2 + SHERPA-2.2.4

In the 4F scheme there are two main partonic channels (+ crossings):

els (+ crossings): same interface as OL1 $gg \to t\bar{t}b\bar{b}g$ • up to rank 5 7-point 1-loop integrals g • 25431 1L Feyn. diags. • 2^7 relevant helicity configurations

Timings[s/point] (colour + helicity sums)

	OL1	OL2+Collier	OL2+OFR
$m_b = 0$	0.337	0.208	0.233
$m_b \neq 0$	0.593	0.269	0.297

+75 - 85%

$\mathbf{Timings}[s/point]$

	OL1	OL2+Collier	OL2+OFR
$m_b = 0$	4.671	1.877	2.141
$m_b \neq 0$	8.706	2.650	2.958

 $\mathrm{OL1/OL2}$ up to 3!

SHERPA + OpenLoops2

$$\sigma_n^{\mathrm{NLO}} = \int \mathrm{d}\Phi_n \left[\mathcal{B}(\Phi_n) + \mathcal{V}(\Phi_n) \right] + \int \mathrm{d}\Phi_{n+1} \mathcal{R}(\Phi_{n+1})$$

Dipole subtraction method [Catani, Seymour '96]: factorisation and universality of IR singularities

$$\mathcal{R}(\Phi_{n+1}) \to \mathcal{B} \otimes \mathcal{S}(\Phi_1)$$
 $\mathcal{I} = \int d\Phi_1 \mathcal{S}(\Phi_1) \Rightarrow \text{integrated analytically}$

It allows for an IR safe numerical integration of the cross section

$$\sigma_n^{\rm NLO} = \int \mathrm{d}\Phi_n \left[\mathcal{B}(\Phi_n) + \mathcal{V}(\Phi_n) + \mathcal{B}(\Phi_n) \otimes \mathcal{I} \right] + \int \mathrm{d}\Phi_{n+1} \left[\mathcal{R}(\Phi_{n+1}) - \mathcal{B}(\Phi_n) \otimes \mathcal{S}(\Phi_1) \right]$$

SHERPA + OpenLoops2

$$\sigma_n^{\mathrm{NLO}} = \int \mathrm{d}\Phi_n \left[\mathcal{B}(\Phi_n) + \mathcal{V}(\Phi_n) \right] + \int \mathrm{d}\Phi_{n+1} \mathcal{R}(\Phi_{n+1})$$

Dipole subtraction method [Catani, Seymour '96]: factorisation and universality of IR singularities

$$\mathcal{R}(\Phi_{n+1}) \to \mathcal{B} \otimes \mathcal{S}(\Phi_1)$$
 $\mathcal{I} = \int d\Phi_1 \mathcal{S}(\Phi_1) \Rightarrow \text{integrated analytically}$

It allows for an IR safe numerical integration of the cross section

$$\sigma_n^{\rm NLO} = \int \mathrm{d}\Phi_n \left[\mathcal{B}(\Phi_n) + \mathcal{V}(\Phi_n) + \mathcal{B}(\Phi_n) \otimes \mathcal{I} \right] + \int \mathrm{d}\Phi_{n+1} \left[\mathcal{R}(\Phi_{n+1}) - \mathcal{B}(\Phi_n) \otimes \mathcal{S}(\Phi_1) \right]$$

In Sherpa the dipole phase space can be restricted by means of DIPOLE_ALPHA

Varying α offers a check of the consistency of the subtraction

- first validation of the calculation \checkmark

α_{dip}	NLO[pb]	BVI[pb]	RS[pb]
0.02	$3.253 \cdot 10^{-1}$	$-0.32 \cdot 10^{-1}$	$3.57 \cdot 10^{-1}$
0.06	$3.266 \cdot 10^{-1}$	$1.97\cdot 10^{-1}$	$1.30 \cdot 10^{-1}$
0.1	$3.247 \cdot 10^{-1}$	$2.73\cdot 10^{-1}$	$0.52 \cdot 10^{-1}$

 $N_{b\text{-iets}>2}$ XS

$pp \to t\bar{t}bbj$ cross sections at 13 TeV

	$\sigma_{N_{b ext{-jets}} \geq 1}$ [pb]			$\sigma_{N_{b ext{-jets}}\geq 2}$ [pb]		
Process	LO	NLO	NLO LO	LO	NLO	NLO LO
$t\bar{t}b\bar{b}$, μ_{def}	$3.955^{+73\%}_{-39\%}$	$7.593^{+32\%}_{-27\%}$	1.92	$0.374^{+69\%}_{-38\%}$	$0.669^{+27\%}_{-25\%}$	1.79
$t\bar{t}b\bar{b}$, μ_{gbb}	$3.441^{+70\%}_{-38\%}$	$7.089^{+37\%}_{-28\%}$	2.06	$0.327^{+67\%}_{-37\%}$	$0.642^{+33\%}_{-27\%}$	1.96
$t\bar{t}b\bar{b}j$, μ_{def}	$2.164^{+96\%}_{-45\%}$	$3.670^{+27\%}_{-30\%}$	1.70	$0.219^{+90\%}_{-44\%}$	$0.327^{+12\%}_{-25\%}$	1.49
$t\bar{t}b\bar{b}j$, μ_{gbb}	$1.894^{+93\%}_{-45\%}$	$4.120^{+46\%}_{-34\%}$	2.17	$0.188^{+87\%}_{-43\%}$	$0.354^{+36\%}_{-30\%}$	1.88

- ${\bf P}$ Scale uncertainty dominated by $\mu_R \text{ variations (as in } t\bar{t}b\bar{b}\,)$
- ▶ For $pp \to t\bar{t}b\bar{b}j$ $\sigma_{LO} \propto \alpha_s^5$ up to $\sim 90 95\%$ scale uncertainty

K-factor:

- ightharpoonup slightly smaller wrt $t\bar{t}b\bar{b}$ but still significant
- ▶ quite large for μ_{gbb} (1.88) bit smaller for μ_{def} (1.49)
- ▶ can be reduced by rescaling the central value

decent convergence with μ_{def}

b-jets distributions

We consider the phase space with two resolved b-jets

K-factor

- Quite stable for both scale choices
- \triangleright though more stable for μ_{abb} over the full spectrum

Scale uncertainty at NLO

- compatible with uncertainty on the cross section:
 - ranges in $\sim 10\text{-}25\%$ for μ_{def} lives around 35% for μ_{abb}
- for both scale choices, the uncertainty reduces in the tails
- μ_{def} shows a smaller scale uncertainty overall

due to $\bar{\mu}_{def} < \bar{\mu}_{abb}$

Light-jet p_T spectrum at NLO

K-factor

- ho shape distortions below 100-200 GeV more pronounced for μ_{def}
- \triangleright more stable for μ_{gbb}

Scale uncertainty at NLO

ho ranges in 20-30% up to 40-50% from bulk to the high p_T tail

Light-jet p_T spectrum at NLO

Scale choices which include jet p_T

$$\mu_{def}^{j} = (E_{T,t} E_{T,\bar{t}} E_{T,b} E_{T,\bar{b}} p_{T,j})^{1/5}$$

$$\mu_{gbb}^{j} = (E_{T,t} E_{T,\bar{t}} M_{T,b\bar{b}} E_{T,b\bar{b}} p_{T,j})^{1/5}$$

tends to reduce NLO uncertainties and shape distortions for both scales

$t\bar{t}b\bar{b}$ vs $t\bar{t}b\bar{b}j$ NLO predictions for $p_{T,j}$

Reference scale choice: $\mu_R = \mu^j{}_{gbb} \equiv (E_{T,t}E_{T,\bar{t}} m_{b\bar{b}}E_{T,b\bar{b}} p_{T,j})^{1/5}$

- ✓ remarkably good shape agreement over all the p_T spectrum (including region of MC disagreement)
- ✓ rescaling μ_{gbb} by 0.5 in $t\bar{t}b\bar{b}$ ~ 15% agreement with NLO $t\bar{t}b\bar{b}j$
- ✓ rescaling μ_{def} by 0.5 in $t\bar{t}b\bar{b}$ → within few % agreement with NLO $t\bar{t}b\bar{b}j$

$t\bar{t}b\bar{b}$ vs $t\bar{t}b\bar{b}j$ NLO predictions for $p_{T,j}$

Reference scale choice: $\mu_R = \mu^j{}_{gbb} \equiv (E_{T,t}E_{T,\bar{t}} m_{b\bar{b}}E_{T,b\bar{b}} p_{T,j})^{1/5}$

- ✓ remarkably good shape agreement over all the p_T spectrum (including region of MC disagreement)
- ✓ rescaling μ_{gbb} by 0.5 in $t\bar{t}b\bar{b}$ ~ 15% agreement with NLO $t\bar{t}b\bar{b}j$
- ✓ rescaling μ_{def} by 0.5 in $t\bar{t}b\bar{b}$ → within few % agreement with NLO $t\bar{t}b\bar{b}j$

- benchmark with precision of $\sim 30\%$ to select optimal $t\bar{t}b\bar{b}$ μ_R scale
- it motivates **reduction** of conventional $t\bar{t}b\bar{b}$ scale by a factor 2 (or more)
- consistent with arguments based on reduction of inclusive $t\bar{t}b\bar{b}$ K-factor

Summary

- ightharpoonup $t\bar{t}H(H\to b\bar{b})$ searches limited by theoretical uncertainty on $t\bar{t}+b$ -jets background
- ightharpoonup crucial to understand sizeable discrepancies between NLOPS $t\bar{t}b\bar{b}$ MC on the market
 - most notably in the spectrum of extra light-jet radiation
 - related to large $t\bar{t}b\bar{b}$ NLO K-factor
- ightharpoonup We have shown that the scale dependence of $\sigma_{t\bar{t}b\bar{b}}$ and its interplay with the m_t/m_b mass gap support a reduced μ_R choice, which would:
 - \blacksquare yield a smaller K-factor and a smaller scale uncertainty
 - probably mitigate NLOPS discrepancies
- ightharpoonup We have presented NLO predictions for $pp \to t\bar{t}b\bar{b}j$
 - first application of OpenLoops2 (with SHERPA)
 - \blacksquare provides additional support for using a reduced μ_R choice in $pp\to t\bar t b\bar b$
 - should help reducing NLOPS uncertainties (by discarding less accurate MC predictions for light-jet spectrum)

Backup slides - 1

Master formula for hardest NLOPS radation:

$$\frac{\mathrm{d}\sigma}{\Phi_{\mathrm{B}}} = \bar{B}_{soft}(\Phi_{B}) \left[\Delta(t_{IR}) + \Delta(t_{1}) \frac{\mathbf{R}_{soft}(\Phi_{R})}{B(\Phi_{B})} \mathrm{d}\Phi_{1} \right] + \left[R(\Phi_{R}) - \mathbf{R}_{soft}(\Phi_{R}) \right] \mathrm{d}\Phi_{1}$$

$$\bar{B}_{soft}(\Phi_B) = B(\Phi_B) + V(\Phi_B) + \int d\Phi_1 R_{soft}(\Phi_R)$$
 NLO improved Born

POWHEG:

$$R_{soft} = R(\Phi_R) g_{soft}(\mu_Q, k_T)$$

MC@NLO:

$$R_{soft} = B(\Phi_B) \mathcal{K}(\Phi_1) g_{soft}(\mu_Q, k_T)$$

$$\mathcal{K}(\Phi_1) = \frac{\alpha}{2\pi} P(z, \phi) \frac{\mathrm{d}t}{t} \mathrm{d}z \mathrm{d}\phi$$

Jet observables

$$\frac{\mathrm{d}\sigma}{\Phi_{\mathrm{B+j}}} = R_{soft}(\Phi_R) \left(\frac{\bar{B}_{soft}(\Phi_B)}{B(\Phi_B)} \Delta(t_1) - 1 \right) + R(\Phi_R)$$
formally of $\mathcal{O}(\alpha_s)$