NEW RESULTS ON VECTOR BOSON SCATTERING PROCESSES WITH THE ATLAS DETECTOR

Wenhao Xu

University of Michigan

On Behalf of the ATLAS Collaboration

QCD@LHC 2018 28 August, 2018

MOTIVATION

- Vector Boson Scattering is important for understanding EWK symmetry breaking
- Without the SM Higgs, longitudinal VV scattering cross section (σ_{VV→VV}) increases as center-ofmass energy and violates unitarity at high energy
- Can be solved by adding contributions from Higgs

Representative Feynman diagrams of the VBS process at the LHC

- BSM Physics can alter the couplings of vector bosons, generating additional contribution to Quartic Gauge Couplings w.r.t the SM predictions.
- Same-Sign WW EWK ($W^{\pm}W^{\pm}jj \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu jj$): WZ and fakes as major backgrounds
- WZ EWK ($W^{\pm}Zjj \rightarrow \ell^{\pm}\nu\ell^{\pm}\ell^{\mp}jj$):WZ-QCD as major background

EWK PRODUCTION OF SSWW VBS

Cuts in Inclusive Region

- Two same-sign ID Lepton with p_T >27GeV
- |η|<2.47(2.5) for Electron (Muon)
- $|\eta_e| < 1.37$ in ee channel
 - Optimization. Suppress charge flip bkg
- Cut on unambiguous electron author
 Reduce Chargflip by 25%-30%
- M₁₁ > 20GeV
- 3rd lepton veto
 - p_T>6GeV for veto leptons

ssWW Event Topology

Cuts in Signal Region

- nJet >= 2, (Sub)leading jet p_T>65(35)GeV
- Jet |η|<4.5
- Z veto in ee @ 15GeV of Z mass window
- MET >30GeV
- nbJet ==0
- $\Delta Y_{jj} > 2$
- M_{jj} > 500 GeV
- Low M_{jj} Control region
 500GeV > M_{jj} > 200GeV

BACKGROUND SUMMARY

- Charge Flip Background (Data-Driven Method)
 - Important only for electron due to bremsstrahlung
 - One electron charge is misidentified
 - Mainly from $t\overline{t}, W^{\pm}W^{\mp}jj, Z/\gamma^{*} + jets$
 - Charge-flip rate(ϵ) is calculated by maximizing likelihood function from $Z \rightarrow ee$ sample
 - Apply a weight to OS samples to estimate the contribution in SS

Non-prompt Background (Data-Driven Method, Dominant Background)

- One jet is mis-reconstructed as an isolated lepton
- Mainly from W+jets and $t\overline{t}$

• Fake factor = $\frac{ID_{dijetData} - ID_{promptMC}}{AntiID_{dijetData} - AntiID_{promptMC}}$ • $N_{hka}^{fake} = \left(N_{ID+AntiID}^{Data} - N_{ID+AntiID}^{promptMC}\right) \cdot fake factor$

- Wγ+jets, Zγ+jets (MC Estimation)
 - The photon is mis-reconstructed as an isolated electron
- Prompt Background (MC Estimation)
 - One or two leptons are not reconstructed
 - Mainly WZ+jets, ZZ+jets, $t\overline{t}V$ (V=W or Z), triboson
 - Use WZ CR to constrain WZ bkg and WZ is one of dominant backgrounds

 $N_{bkg}^{charge-flip} = N_{OC}^{data} \cdot weight$

$$weight = \frac{\epsilon_1(1-\epsilon_2) + \epsilon_2(1-\epsilon_1)}{(1-\epsilon_1)(1-\epsilon_2) + \epsilon_1\epsilon_2}$$

LIKELIHOOD FIT

- Summary of the event yield before fitting
 - WZ background is normalized to data in WZ CR

	e^+e^+	e^e^	$e^+\mu^+$	$e^-\mu^-$	$\mu^+\mu^+$	$\mu^-\mu^-$	combined
WZ	1.7 ± 0.6	1.2 ± 0.4	13 ± 4	8.1 ± 2.5	5.0 ± 1.6	3.3 ± 1.1	32 ± 9
Non-prompt	4.1 ± 2.4	2.3 ± 1.8	9 ± 6	6 ± 4	0.57 ± 0.16	0.67 ± 0.26	23 ± 12
e/γ conversions	1.74 ± 0.31	1.8 ± 0.4	6.1 ± 2.4	3.7 ± 1.0	-	-	13.4 ± 3.5
Other prompt	0.17 ± 0.06	0.14 ± 0.05	0.90 ± 0.24	0.60 ± 0.25	0.36 ± 0.12	0.19 ± 0.07	2.4 ± 0.5
$W^{\pm}W^{\pm}$ jj strong	0.38 ± 0.13	$0.16\pm~0.06$	3.0 ± 1.0	1.2 ± 0.4	1.8 ± 0.6	0.76 ± 0.26	7.3 ± 2.5
Expected background	8.1 ± 2.4	5.6 ± 1.9	32 ± 7	20 ± 5	7.7 ± 1.7	$4.9 ~\pm~ 1.1$	78 ± 15
$W^{\pm}W^{\pm}$ jj electroweak	3.80 ± 0.30	1.49 ± 0.13	16.5 ± 1.2	6.5 ± 0.5	9.1 ± 0.7	$3.50\pm~0.29$	40.9 ± 2.9
Data	10	4	44	28	25	11	122

- Signal is extracted in a binned likelihood fit of M_{ii} distribution
- Use the signal and background shape information and constrain WZ and fake background using events with low M_{jj} and WZ CR
- Perform fitting in 3 regions:
 - Low M_{ii} control region: 1 M_{ii} bin: [200,500]GeV, 6 channels
 - WZ Control region: 1 M_{ii} bin: [200,500]GeV, 1 channel
 - Signal region: 4 M_{jj} bins: [500,700,1000,1500,3000]GeV, 6 channels(ee, em, mm with charge split)

OBSERVED RESULTS

Observed Significance:

6.9σ (4.6σ expected)

Signal strength (Sherpa):

 $\mu_{obs} = 1.45^{+0.25}_{-0.24} \text{ (stat.)}^{+0.13}_{-0.14} \text{ (sys.)}$

• Observed $W^{\pm}W^{\pm}jj$ EWK production fiducial cross section (including interference):

 $\sigma^{\text{fid}} = 2.91^{+0.51}_{-0.47} \text{ (stat.)} \pm 0.27 \text{ (sys.) fb}$

with the predicted fiducial cross section (without interference and NLO EW correction) by Sherpa 2.2.2: $\sigma = 2.01^{+0.33}_{-0.23}$ (sys.+stat.) fb

by Powheg+Pythia8: $\sigma = 3.08^{+0.45}_{-0.46}$ (sys.+stat.) fb

Dominant uncertainty: non-prompt background 40%-90%

EWK PRODUCTION OF WZJJ VBS

- Inclusive Event Selection
 - ZZ Veto: Less than 4 baseline leptons
 - $p_T > 5 \text{ GeV \& } |\eta| < 2.47 \text{ (2.7 for muon)}$
 - Number of Z selection leptons == 3
 - p_T >15GeV & $|\eta|$ exclude 1.37-1.52 ($|\eta|$ < 2.5 for muon)
 - $p_T^{lead} > 27 GeV$
 - 2 SFOS Z selection leptons
 - |M₁₁-M₂|<10GeV
 - 1 W selection lepton
 - p_T>20GeV & Unambigious author for electron
 - m_T^W>30GeV
- WZjj EWK selection is on top of the inclusive selection
- Additional control regions are defined to constrain those irreducible backgrounds
 - WZjj QCD-CR
 - WZjj b-CR: $t\bar{t}$ +V

b-CR (tī̄ + V) _{N_{b-jet} > 0}						
QCD-CR (WZjj-QCD)	SR (WZjj-EW)					
m _{JJ} < 500 GeV	m _{JJ} > 500 GeV					
N _{b-jet} = 0	N _{b-jet} = 0					

WZjj VBS Event Topology

- ZZ-CR
 - Inverting ZZ Veto by requiring at least 4 loose leptons
 - No b-jet

BACKGROUND SUMMARY

- Irreducible background: All candidates are prompt leptons or produced in the decay of tau
 - WZjj-QCD: Sherpa 2.2.2 (0,1j@NLO; 2,3j@LO), Dominate Background
 - ZZ: Sherpa 2.2.2(0,1j), Sherpa 2.1.1 ($gg \rightarrow ZZ$)
 - $t\bar{t}$ +V (V=Z or W): Madgraph5+aMC@NLO+Pythia8
 - tZj: Madgraph5+aMC@NLO+Pythia8
 - VVV: Sherpa 2.1.1

• **Reducible background**: At least one of the candidate leptons is not a prompt lepton

- $Z+j, Z\gamma, t\bar{t}, Wt and WW$
- Data driven matrix method
 - Determine the probability matrix that a fake lepton is misidentified as a loose or tight lepton in a CR enriched in misidentified leptons.
 - Apply the matrix to the data samples of WZjj candidate events where at lease one lepton is loose.
 - Then the number of events with at least one misidentified tight lepton is obtained
- Cross-checked with MC simulations scaled to data
- WZjj-EW Signal: Sherpa 2.2.2

	SR	QCD-CR	<i>b</i> -CR	ZZ-CR
Data	161	213	141	52
Total MC	199.2 ± 1.4	289.4 ± 1.9	159.2 ± 1.8	44.7 ± 6.4
WZjj-EW (signal)	24.93 ± 0.18	8.46 ± 0.10	1.36 ± 0.05	0.21 ± 0.12
WZjj-QCD	144.17 ± 0.85	231.2 ± 1.1	24.44 ± 0.29	1.43 ± 0.69
Misid. leptons	9.2 ± 1.1	17.7 ± 1.5	29.7 ± 1.6	0.50 ± 0.32
ZZ-QCD	8.10 ± 0.19	14.98 ± 0.34	1.96 ± 0.08	35.0 ± 5.9
tZ	6.46 ± 0.18	6.56 ± 0.19	36.19 ± 0.45	0.18 ± 0.09
$t\bar{t} + V$	4.21 ± 0.18	9.11 ± 0.23	65.36 ± 0.64	2.8 ± 1.3
ZZ-EW	1.50 ± 0.10	0.44 ± 0.05	0.10 ± 0.08	3.4 ± 1.6
VVV	0.59 ± 0.03	0.93 ± 0.04	0.13 ± 0.01	1.0 ± 1.0

Number of observed and expected events in SR and CRs before fitting. Only Stats Uncert.

BDT TRAINING

- A BDT is trained in signal region to separate WZjj-EW signal from WZjj-QCD and other backgrounds
- A total of 15 variable is used as input
 - Variables related to the kinematics of tagging jets
 - $m_{jj}, N_{jets}, p_T^{j1}, p_T^{j2}, \eta_{j1}, \Delta \eta(j1, j2), \Delta \phi(j1, j2)$
 - Variables related to the kinematics of vector bosons:
 - $|y_Z y_{l,W}|, m_T^{WZ}, p_T^W, p_T^Z, \eta_W$
 - Variables related to both leptons and jets kinematics:
 - ΔR(j1,Z): Distance in the pseudorapidity-azimuth plane between Z and j1
 - Event balance R^{hard}_{pT}: transverse component of the vectorial sum of the momenta of the 3 leptons+2jets, divided by the scalar sum of their pT

- Centrality $\zeta_{lep} = \min(\Delta \eta_-, \Delta \eta_+)$ with $\Delta \eta_- = \min(\eta_l^W, \eta_{l1}^Z, \eta_{l2}^Z) \min(\eta_{j1}, \eta_{j2})$ and $\Delta \eta_+ = \max(\eta_{j1}, \eta_{j2}) \max(\eta_l^W, \eta_{l1}^Z, \eta_{l2}^Z)$
- BDT training has been verified in WZjj-QCD CR, by good description of the BDT score distribution in data

SIGNAL EXTRACTION

- Signal is extracted in a maximum-likelihood fit of BDT score distribution in SR
- Perform fitting in 4 regions
 - M_{jj} distribution in WZjj QCD-CR: constrain WZjj-QCD $\rightarrow \mu_{WZ-QCD} = 0.60 \pm 0.25$
 - b-jets multiplicity in b-CR: constrain $t\bar{t}+V \rightarrow \mu_{t\bar{t}+V} = 1.18 \pm 0.19$
 - M_{jj} distribution in ZZ-CR: constrain $ZZ \rightarrow \mu_{ZZ} = 1.34 \pm 0.29$
 - BDT score distribution in SR
- Observed results
 - Observed significance: 5.6σ (3.3σ expected)
 - Signal strength (Sherpa): $\mu_{EW} = 1.77 \pm 0.41(\text{stat.}) \pm 0.17(\text{syst.})$
 - Observed WZjj-EW production cross section(including interference):

 $\sigma_{meas.}^{\text{fid., EW}} = 0.57 \, {}^{+0.14}_{-0.13} \, (\text{stat.}) \, {}^{+0.05}_{-0.04} \, (\text{syst.}) \, {}^{+0.04}_{-0.03} \, (\text{th.}) \, \text{fb}$

with SM LO prediction (without interference) from Sherpa:

```
\sigma_{\text{Sherpa}}^{\text{fid., EW th.}} = 0.321 \pm 0.002 \text{ (stat.)} \pm 0.005 \text{ (PDF)}_{-0.023}^{+0.027} \text{ (scale) fb}
```

from Madgraph:

 $\sigma_{\text{MadGraph}}^{\text{fid., EW th.}} = 0.366 \pm 0.004 \text{ (stat.) fb}$

- Dominant Uncertainty: Jet related uncertainty 6.7% to $\mu_{\rm EW}$

DIFFERENTIAL CROSS SECTIONS

- Interesting distributions are unfolded from WZjj-EW SR to VBS fiducial phase space
- Two types of variables:
 - Variables sensitive to aQGCs:

Variables for model constrains:

 $N_{jets}(p_T > 40 \, GeV)$ $N_{jets}^{gap}(p_T > 25 \, GeV)$ m_{jj} $\Delta \phi(j1, j2)$ $\Delta y(j1, j2)$

 A good description of the measured cross sections within uncertainties by Sherpa is observed after the rescaling

CONCLUSION

- The electroweak productions of $W^{\pm}W^{\pm}jj$ and $W^{\pm}Zjj$ are observed in 36.1 fb⁻¹ of pp collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC
- Observed Significance
 - $W^{\pm}W^{\pm}jj$ EWK: 6.9 σ (4.6 σ expected)
 - $W^{\pm}Zjj$ EWK: 5.6 σ (3.3 σ expected)
- Measured fiducial cross section
 - $W^{\pm}W^{\pm}jj$ EWK: $\sigma_{obs}(W^{\pm}W^{\pm}jj \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu jj) = 2.91^{+0.51}_{-0.47}$ (stat.) ± 0.27 (sys.) fb ($2.01^{+0.33}_{-0.23}$ (sys.+stat.) fb predicted by sherpa)
 - $W^{\pm}Zjj$ EWK: $\sigma_{obs}(W^{\pm}Zjj \rightarrow \ell^{\pm}\nu\ell^{\pm}\ell^{\mp}jj) = 0.57 + 0.14 + 0.05 + 0.05 + 0.04 + 0.004 + 0.004 + 0.004 + 0.004 + 0.004 + 0.004 + 0.004 + 0.005 + 0.003 + 0.005 + 0.0027 + 0.027$
- Conference notes
 - <u>W[±]W[±]jj</u> EWK
 - <u>W[±]Zjj EWK</u>

Thanks for listening!

BACK UP

OBJECT DEFINITION

ID Electron

- $p_T > 27GeV \& |\eta| < 2.47 exclude 1.37-1.52$
- Tight LH+ Isolation
- Coming from primary vertex

AntiID Electron

- p_T +p_{Tcone30} > 27GeV & |η|<2.47 exclude 1.37-1.52, p_T>20GeV
- Medium LH
- Coming from primary vertex
- Fail ID Electron
- Veto Electron
 - p_T>6GeV & |η|<2.47 (exclude crack region)
 - Loose LH + Blayer
 - Coming from primary vertex

ID Muon

- $p_{T} > 27 GeV \& |\eta| < 2.5$
- Medium Muon Quality & Isolation
- Coming from primary vertex
- AntiID Muon
 - $p_T + p_{Tcone30} > 27 \text{GeV } \& |\eta| < 2.5, p_T > 15 \text{GeV}$
 - Medium Muon Quality
 - Coming from primary vertex (looser)
 - Fail ID Muon
- Veto Muon
 - $p_T > 6 GeV \& |\eta| < 2.5$
 - Coming from primary vertex (looser)
 - Loose Muon Quality

- Jets
 - $|\eta| < 4.5$: if $|\eta| < 2.4$, $p_T > 25GeV$; otherwise, $p_T > 30GeV$
 - **If 60GeV>p_T>20GeV &** |η|<2.4, apply JVT>0.59
 - Anti-k_t algorithm R=0.4

OBJECT DEFINITION

- Baseline Electron
 - $p_T > 5 \text{ GeV } \& |\eta| < 2.47$
 - Loose LH+ Blayer + Isolation
 - Coming from primary vertex
 - Overlap removal (e-to-µ & e-to-e)
- Z selection Electron(including baseline)
 - Overlap removal (e-to-jets)
 - p_T>15GeV &|η| exclude 1.37-1.52
 - Medium LH + Isolation (tighter)
- W selection Electron (including baseline+Z)
 - p_T>20GeV
 - Tight LH
 - Unambigious author
 - MET reconstruction
 - Negative vector sum of p_T
 - Identified hard physics objects
 - Track-based additional soft terms

- Baseline Muon
 - $p_T > 5 \text{ GeV } \& |\eta| < 2.7$
 - Loose quality + Isolation
 - Coming from primary vertex
- Z selection Muon(including baseline)
 - Overlap removal (µ-to-jets)
 - $p_T > 15 GeV \& |\eta| < 2.5$
 - Medium Quality
- W selection Muon (including baseline+Z)
 - p_T>20GeV
 - Tight Quality + Isolation(tighter)

- Jet
 - Anti-k_t algorithm with R=0.4
 - p_T>25GeV
 - |*η*|<4.5
 - **JVT>0.59 if pT<60GeV &&** |η|<2.4
 - b-tagged (77% WP) using MV2v10

