Exotic and Conventional Quarkonium Physics Prospects at Belle II

Bianca SCAVINO bscavino@uni-mainz.de

- QUARKONIA: legacy of 1st generation B-Factories
- BELLE 11: the next generation B-Factory
- FUTURE PROSPECTS:
 - · Charmonium (-like) production
 - · Bottomonium (-like): above Y(45)
 - · Bottomonium (-like): below Y(45)

- QUARKONIA: legacy of 1st generation B-Factories
- BELLE 11: the next generation B-Factory
- FUTURE PROSPECTS:
 - · Charmonium (-like) production
 - · Bottomonium (-like): above Y(45)
 - · Bottomonium (-like): below Y(45)

Quarkonium spectroscopy

- The legacy of 1st generation B-factories is a variety of quarkonium states
- Good agreement with predictions below open flavor threshold
- Many discoveries are difficult to explain with quarkonium model
- Several states have non-zero charge (cannot be qq pairs)
- Exotic candidates, XYZ states

Challenge for the new generation B-factories

B-Factory milestones

- QUARKONIA: legacy of 1st generation B-Factories
- BELLE 11: the next generation B-Factory
- FUTURE PROSPECTS:
 - · Charmonium (-like) production
 - · Bottomonium (-like): above Y(45)
 - · Bottomonium (-like): below Y(45)

From KEKB to SuperKEKB

- → Goal: x50 Belle integrated luminosity (50 ab⁻¹)
- **→** Target luminosity:

$$L = 8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1} (x40 \text{ Belle})$$

$$L = \frac{\gamma_{e\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \left(\frac{I_{e\pm} \cdot \xi_{y,e\pm}}{\beta_y^*} \right) \left(\frac{R_L}{R_{\xi_y}} \right)$$

- Nano-beam scheme(P. Raimondi for SuperB)
 - beam currents x2
 - squeeze beam @ IP by 1/20

Nano beam scheme

As expected, the effective bunch length is reduced from ~10 mm (KEKB) to ~0.5 mm (SuperKEKB)

→ We measured it in two track events with early Belle II data

8

The Belle 11 detector

- Phase 1: Accelerator commissioning (completed in 2016)
- Detector roll-in (April 2017)

11

- Phase 2 (ended in July 2018):
 - Beam optimization and background minimization, ~1/10 vertex detector
 - Detector calibration
 - Understanding of the new machine, test of the nano beam scheme
 - First collisions and first data collected

Accelerator status during Phase 2 (July 2018)

In Phase 2 luminosity tuning had priority over data taking

 $L_{peak} = 5.5 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

Getting ready for physics

- Optimization of tracking algorithms and performance
- "Re-discovery" of most particles
- Calorimeter energy calibration
- Detector alignment
- Calibration of PID
- Background studies

Getting ready for physics

- Optimization of tracking algorithms and performance
- "Re-discovery" of most particles
- Calorimeter energy calibration
- Detector alignment
- Calibration of PID
- Background studies

1 week after the first collisions!

16

Getting ready for physics

- Optimization of tracking algorithms and performance
- "Re-discovery" of most particles
- Calorimeter energy calibration
- Detector alignment
- Calibration of PID
- Background studies

Phase3 (early 2019):
 Full Belle II detector (vertex detector), physics run

Current samples in fb⁻¹ (millions of events)

Experiment	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(4S)$	Υ(5S)	Υ(6S)	$\frac{\Upsilon(nS)}{\Upsilon(4S)}$
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-	23%
BaBar	-	14 (99)	30 (122)	433 (471)	R_b scan	R_b scan	11%
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5	23%
BelleII			300(1200)	5x10 ⁴ (5.4x10 ⁴)	1000(300)	100+400(scan)	3.6%

- QUARKONIA: legacy of 1st generation B-Factories
- BELLE 11: the next generation B-Factory
- FUTURE PROSPECTS:
 - · Charmonium (-like) production
 - · Bottomonium (-like): above Y(45)
 - · Bottomonium (-like): below Y(45)

Charmonia: overview

- Competition from LHCb (B decays) and BESIII (scans for 1-- states)
- Exploit different production methods

Charmonia: B decay

Competition from LHCb

Phys. Rev. Lett. 118, 022003 (2017) Phys. Rev. D 95, 012002 (2017)

LHCb amplitude analysis of B → J/ψ φ K

Belle II • e+e- B-factories only:

PRD 97, 012005 (2018)

Charmonia: B decay

Competition from LHCb

Phys. Rev. Lett. 118, 022003 (2017) Phys. Rev. D 95, 012002 (2017)

LHCb amplitude analysis of B → J/ψ φ K

• e+e- B-factories only:

PRD 97, 012005 (2018)

Competitive with LHCb exclusive reconstruction only for:

- hadronic transitions with π^0 , η , ω in final state
- states decaying with large multiplicities

23

Charmonia: ISR

Competition from BESIII

 Recent BESIII scan data show a complex landscape: scan of all decay channels is needed!

→ Belle II

- Higher effective luminosity
- Wider mass range

Charmonia: double charmonium production

Observed in combinations of J=1 and J=0
 e+e⁻ → cc̄ (0+/-) cc̄ (1-/+)

only at Belle II

→ Belle II

- angular distributions, production
- probe for new states

Bottomonia: motivation for non-Y(45) running

⇒ above Y(4S):

- conventional state search
- exotica discovery
- precision Z_b mass measurement
- 1 ab⁻¹ @Y(5S): also B_s physics
- $100 \text{ fb}^{-1}@Y(6S) + \sim 400 \text{ fb}^{-1} \text{ scan}$

Current samples in fb⁻¹ (millions of events)

Experiment	$\Upsilon(1S)$	$\Upsilon(2S)$	Υ(3S)	$\Upsilon(4S)$	Υ(5S)	Υ(6S)	$\frac{\Upsilon(nS)}{\Upsilon(4S)}$
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-	23%
BaBar	-	14 (99)	30 (122)	433 (471)	R_b scan	R_b scan	11%
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5	23%
BelleII			300(1200)	5x10 ⁴ (5.4x10 ⁴)	1000(300)	100+400(scan	3.6%

Bottomonia: motivation for non-Y(45) running

⇒ below Y(4S):

- bottomonium studies/searches
- new physics in decays (DM / light Higgs)
- anti nucleon production (possible DM application)
- baryon physics
- 300 fb⁻¹ @Y(3S): order of magnitude increase

Current samples in fb⁻¹ (millions of events)

Experiment	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(4S)$	Y(5S)	$\Upsilon(6S)$	$\frac{\Upsilon(nS)}{\Upsilon(4S)}$
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-	23%
BaBar	-	14 (99)	30 (122)	433 (471)	R_b scan	R_b scan	11%
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5	23%
BelleII			300(1200)	5x10 ⁴ (5.4x10 ⁴)	1000(300)	100+400(scan)	3.6%

Y(55) runs: Zb masses (precision study)

- open question: are Z_b masses below or above B^(*)B* thresholds?
- fundamental question to understand their nature

→ Belle II

- 1 ab⁻¹ @ Y(5S): determine if they are located above or below the open threshold

estimate of the Z_b location with respect to the thresholds:

$$\varepsilon_B(Z_b) = (0.60^{+1.40}_{-0.49} \pm i0.02^{+0.02}_{-0.01}) \text{ MeV},$$

$$\varepsilon_B(Z_b') = (0.97^{+1.42}_{-0.68} \pm i0.84^{+0.22}_{-0.34}) \text{ MeV},$$

$$\varepsilon_B(Z_b) \equiv M(B\bar{B}^*) - M(Z_b),$$

$$\varepsilon_B(Z_{b'}) \equiv M(B^*\bar{B}^*) - M(Z_{b'}),$$

High energy scans: resolve new states (Zb+)

PRL 117, 142001 (2016)

- Belle energy scan, search for Y(6S)→π+ π- h_b(1P,2P) decay
- Observation of $Z_b(106XX)$ state, but unable to resolve them

→ Belle II

- Understand Y(6S)→ Z_b decay
 - Y(6S) → $\pi^+ \pi^- h_b(1P,2P)$
 - Y(6S) → $\pi^+ \pi^- Y(1S,2S,3S)$

Y(35) runs: (Anti)deuteron

PRD 62, 043003 (2000) Phys. Rev. D89 (2014) no.11, 111102

Process	Rate
$\mathcal{B}(\Upsilon(3S) \to \bar{d}X)$	$(2.33 \pm 0.15^{+0.31}_{-0.28}) \times 10^{-5}$
$B(\Upsilon(2S) \rightarrow \bar{d}X)$	$(2.64 \pm 0.11^{+0.26}_{-0.21}) \times 10^{-5}$
$B(\Upsilon(1S) \rightarrow \bar{d}X)$	$(2.81 \pm 0.49^{+0.20}_{-0.24}) \times 10^{-5}$
$\sigma(e^+e^- \to \bar{d}X) \ [\sqrt{s} \approx 10.58 \text{ GeV}]$	$(9.63 \pm 0.41^{+1.17}_{-1.01})$ fb
$\frac{\sigma(e^+e^- \rightarrow \bar{d}X)}{\sigma(e^+e^- \rightarrow \text{Hadrons})}$	$(3.01 \pm 0.13^{+0.37}_{-0.31}) \times 10^{-6}$

- d in cosmic rays have long been considered a probe for supersymmetric relics in the galactic halo
- d production described with coalescence models tuned on HEP data
- need to further constrain in the production model
- → CLEO and Babar measured the d̄ spectrum (no dedicated PID or tracking)

→ Belle II:

- dedicated tracking and PID
- collect $\sim 3x10^4 \,\overline{d}$ in 300 fb⁻¹
- world's best estimate of coalescence parameter
- search for excited nucleons (d*)
- dd associated production

Y(35) runs: A-A interaction

→ From Belle:

- No sign of weakly bound H dibaryon
- Near threshold enhancement in exclusive annihilations Y(1S,2S) → Λ Λ X (still not published)

→ Belle II

- search for H dibaryon in missing mass $(Y(3S) \rightarrow \Lambda \overline{\Lambda} H + hadrons)$
- high statistics study near threshold

Rough extrapolation to 300 fb⁻¹ Y(3S) \sim 60 Million events with one Λ or Λ \sim 3 Million events with one Λ Λ pair

Summary

- We have entered the post B-factory era:
 - Variety of states in the quarkonium spectroscopy
 - Exotic states
- Belle II will collect 50 times more statistics than Belle II
- Belle II just ended Phase 2 commissioning run:
 - Effort to understand machine and the backgrounds, detector response, and test the software
 - First collision data
- Physics run will start at the beginning of 2019
- A variety of quarkonium studies will be possible

Summary

- We have entered the post B-factory era:
 - Variety of states in the quarkonium spectroscopy
 - Exotic states
- Belle II will collect 50 times more statistics than Belle II

Thanks for the attention and.. stay tuned!

- Belle II just ended Phase 2 commissioning run:
 - Effort to understand machine and the backgrounds, detector response, and test the software
 - First collision data
- Physics run will start at the beginning of 2019
- A variety of quarkonium studies will be possible

BACKUP

KEKB VS SuperKEKB

novemetove		KEKB		SuperKEKB		units	
parameters	LER	HER	LER	HER	uiits		
beam energy	Еь	3.5	8	4	7	GeV	
CM boost	βγ	0.425		0.28			
half crossing angle Φ		П		41.5		mrad	
horizontal emittance	ε _x	18	24	3.2	4.6	nm	
emittance ratio	K	0.88	0.66	0.37	0.40	%	
beta-function at IP	β_x*/β_y*	1200/5.9		32/0.27	25/0.30	mm	
beam currents	lь	1.64	1.19	3.6	2.6	Α	
beam-beam parameter	ξγ	129	90	0.0881	0.0807		
beam size at IP	σ_x^*/σ_y^*	100/2		10/0.059		μm	
Luminosity &		2.1×10 ³⁴		8x10 ³⁵		cm ⁻² s ⁻¹	

From Belle to Belle 11

New challenges

- → x40 luminosity:
 - x40 produced signal events
 - Higher background (detector occupancy, fake hits, radiation damage)
 - Higher event rate (trigger rate, DAQ, computing)
- → Important to have a dedicated phase for background studies, detector response and alignment

Quarkonium production at B-factory

B decays

Initial State Radiation(ISR)

Two γ interaction

Double charmonium production

Coalescence model for anti-deuteron production

Anti-deuteron production is described by p-n coalescence models tuned on the HEP data

Most recent data are from Alice

- Large final state
- MC-driven correction

Donato, Fornengo, Salati, PRD 62, 043003 (2000) Aramaki et al. Phys. Rept. 618 (2016) 137

$$\frac{dN_{\bar{d}}}{dT_{\bar{d}}} = \left. \begin{array}{c} p_0^3 \\ 6k_{\bar{d}} \end{array} \frac{m_{\bar{d}}}{m_{\bar{p}}m_{\bar{n}}} \left. \frac{dN}{dT_{\bar{p}}} \right|^{**} \left. \frac{dN}{dT_{\bar{n}}} \right|^{**}$$

where $T_i = E_i - m_i$ is the kinetic energy of $i = \bar{d}, \bar{p}, \bar{n}$ and the |**| notation recalls that the \bar{p} and \bar{n} spectra must be evaluated at $T_{\bar{p}} = T_{\bar{d}}/2$ and $T_{\bar{n}} = T_{\bar{d}}/2$, respectively (as dictated by Eq. (2.14)). In deriving Eq. (2.19), we have clearly assumed $m_{\bar{p}} = m_{\bar{n}} = m_{\bar{d}}/2$.