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Parton showers and resummation

> Parton showers are ubiquitous in collider physics, however the
theoretical accuracy of these tools is not always well understood.

> Resummations also provide all order calculations, allowing for higher
logarithmic accuracy but with narrower scope of application.

RESUMMATIONS

. Several simplifications: amplitudes,

phase space, observable

« All calculations derived in the on-shell/
singular limit (only logarithms)

« Tailored to the observable, e.g. global
vs. non-global, specific approximations
in each case

- Higher logarithmic orders achieved .

thanks to the above simplifications in
the formulation

PARTON SHOWERS

Radiation is described fully exclusively.
Provide full set of final-state momenta

« Full momentum conservation necessary

(e.g. initial condition for hadronisation)

« A simple shower should be accurate for

a broad family of observables at once

Currently unknown. The goal of this
talk is to initiate a formal study of this
point



Accuracy of parton showers

> General purpose Monte Carlo event generators are used to simulate
physics over broad range of scales: from hard matrix elements at TeV
scale to GeV scale where quarks and gluons hadronise.

> Complicated tools with many subtleties, difficult to systematically
quantify the accuracy that can be achieved with a given parton-shower
algorithm.
> The accuracy of a shower is important in a number of contexts:
> Quality of hadronisation models depend on the initial conditions provided
by the shower.

» Jet substructure and machine learning tools exploit very exclusive
kinematic regions and leverage it to design better taggers.
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What is a shower?

A parton shower consists of three main features:
1. An ordering variable which defines the sequence according to which
emissions are generated (such as k;, angle, virtuality).
2. A branching probability P(S,.v) of finding a state S, with n partons at
scale v, which evolves as

dP(S,,v)
Tinijo =/ (Sn 0P 0).

3. A kinematic mapping M from state S,, to S;+1

SVl+1 = M(Si’l/ 0; i/ jr z, (P ) .
N——
emission

with an associated “splitting” weight function dP(S,, v; 1, j, z, ¢),
governing relative probabilities of new states.
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Case study: transverse-momentum ordered showers

As a case study, we will focus specifically on

> transverse-momentum ordered showers,
> with a dipole-local recoil

pi+pj— pi+pj+pk
where spectator j absorbs the longitudinal recoil.

which encompass several modern showers such as Pythia and Dire.

Pythia Dire
- Evolution variable and branching: - Evolution variable and branching:
U =Pl evol v = \/E
2 2 2 2 2 _
5 P evol P71 evol ,_(1-2) (Z - /’,gvol) 2 _ t _ s_*2"Y
evol = 7= = 1 = il = R™ = ~ ~ b} - 9 z =
Preet = Gape  YT-2"  CT 0= P (Bi + ;)2 L gy 1—y
1 1 1 1
Plievol S 2 <1 —pievol S - —R2<2< S - k2
2 Vi~ sEsgtyYgTn
-kt and rapidity of emission w.r.t. the emitter - krand rapidity of emission w.r.t. the emitter
1-2)Q 5 (2% = Plevol) ((1 —2)" = pievol) _ . 1=-2Q D — z(L —2) — &?
g=l o Ikl = > =l K =01-2) a5y
[ (z(1=2) = P2 evo) LAY (1-z-~?)

Frédéric Dreyer ) 412



Singularity structure

> Expect a parton shower to reproduce the matrix element for any
single-emission configuration with one or two singularities

> For multiple emissions, expect to control leading singularity of squared
amplitude for any number of emissions.

> To reproduce the leading double logarithms, the soft and collinear limit
for an emission should be

_ 2Cas(pl) dpy
Tt pL

aP dn

> For single-logarithmic accuracy, one also needs to reproduce emission
pattern in the hard collinear and soft large-angle region.
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Single-emission in the soft limit

Both Pythia and Dire divide the dipole at zero rapidity in the dipole’s rest
frame

g g
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— -+ =
q q q q
o o
Pythia8 and Dire squared amplitudes
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Single-emission in the soft limit

Constant evolution variable contours in the Lund plane
0
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> Correct matrix element for single emission reproduced up to (Pythia) or
including (Dire) running coupling effects.

> For Pythia, there is suppressed but non-zero probability to have
arbitrarily small k; for any finite value of the evolution variable v.
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Two-emission case in the soft limit

Consider two soft-collinear emissions g1, g» with |1 — 12| > 1. The
corresponding double emission probability is

C7 20rs( zi)d i do;
sz:—Fl_[(—PL' iy, 20

T P i 27

i=1,2
where p, ; and n); are defined with respect to the g and 4 directions.

We want to answer the following question: do the parton showers
reproduce this?

To generate two emissions:

> Start from gq and generate a first emission g at value vy of ordering
variable.

> With value v, of ordering variable, select one of the g1 and g14 dipole
to emit g»
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Two-emission case: double strong ordering

> In the strongly ordered limit v1 > v,, kinematics of g1 not affected by
second emission.

» Splitting the § g1 dipole into two equal parts in its rest frame causes
some part of the radiation assigned to the gluonic part to be in a phase
space region where it is closer in angle to the § or g than it is to the

gluon.
> This leads to a region with an incorrect colour factor CrC,4 /2 instead of
C2.
Correct radiation pattern Inp, Dipole radiation pattern Inp,
L., L.,

4
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Two-emission case: double strong ordering

> In the strongly ordered limit v1 > v,, kinematics of g1 not affected by
second emission.

» Splitting the § g1 dipole into two equal parts in its rest frame causes
some part of the radiation assigned to the gluonic part to be in a phase
space region where it is closer in angle to the § or g than it is to the
gluon.

> This leads to a region with an incorrect colour factor CrC,4 /2 instead of
C2.

F

Difference between dipole and correct pattern
for thrust:

1 (2asCFp) 4 Ca -
OL(L) = 64( 7 )L 2Cr !
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Two-emission case: single strong ordering

> Consider now the case where the ordering variables are of the same

order vy ~ v1/2.

> First emission is affected by recoil after second emission

When g, is at relatively central rapidities,
g1 acquires a transverse recoil, leading to

Pie/Pig =1/2.
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Two-emission case: single strong ordering

> Consider now the case where the ordering variables are of the same
order vy ~ v1/2.
> First emission is affected by recoil after second emission

ratio of dipole-shower double-soft ME to correct result
1

0.5

> Effective matrix element does not
reproduce correct soft limit at a2

o
(¥

P2/ PL1

» Leads to incorrect NLL terms in
many observables.
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Logarithmic analysis at second order

Shortcomings of showers impact the logarithmic accuracy for a wide range
of observables.

We focus on event shape variables and study probability that the event
shape has a value smaller than e~

X(L) = exp [Lg1(asL) + go(asL) + asg3(asL) + - ] + Oase_L ,
In leading-N¢ limit, impact of recoil can be written

Inl/vq U1 (7]1+ln1/v1) 21 d
SL(L) = -2/ o1 / dm/ 4 / 2/ a1z
Inovq 0 (1]1+ln‘1}1) 0 27
X [@( _ V(pshower PZ)) -® (E—L _ V(pgorrect,pZ))] ,

Observable  NLLy, y; discrepancy

1-T 0.11670001 a3 L3
vector p; sum 70.349+8 882 atL?
Br —0.0167335 a*L?
y§m —0.18277 a*L*?
FCy —0.066934 &> L?
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CONCLUSIONS



Conclusions

> Introduced formalism needed to study multi-scale accuracy of parton
showers.

> Focusing on transverse-momentum ordered shower with dipole-local
recoil, studied singular limits up to second order.

> We identified issues that affect the LL accuracy at subleading N, and
the NLL accuracy at leading N, for a wide range of event-shape
observables.

> These issues will impact the prospects for precision studies relying on
parton showers.

Established a basis to understand the logarithmic

properties of parton shower algorithms.
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