Logarithmic accuracy of parton showers

QCD @ LHC, Dresden, 28 August 2018

Frédéric Dreyer

based on arXiv:1805.09327

with Mrinal Dasgupta, Keith Hamilton, Pier Monni & Gavin Salam

- Parton showers are ubiquitous in collider physics, however the theoretical accuracy of these tools is not always well understood.
- Resummations also provide all order calculations, allowing for higher logarithmic accuracy but with narrower scope of application.

	RESUMMATIONS	PARTON SHOWERS
Treatment of radiation	 Several simplifications: amplitudes, phase space, observable All calculations derived in the on-shell/singular limit (only logarithms) 	 Radiation is described fully exclusively. Provide full set of final-state momenta Full momentum conservation necessary (e.g. initial condition for hadronisation)
Observable dependence	 Tailored to the observable, e.g. global vs. non-global, specific approximations in each case 	A simple shower should be accurate for a broad family of observables at once
Logarithmic Accuracy	 Higher logarithmic orders achieved thanks to the above simplifications in the formulation 	• Currently unknown. The goal of this talk is to initiate a formal study of this point

- General purpose Monte Carlo event generators are used to simulate physics over broad range of scales: from hard matrix elements at TeV scale to GeV scale where quarks and gluons hadronise.
- Complicated tools with many subtleties, difficult to systematically quantify the accuracy that can be achieved with a given parton-shower algorithm.
- The accuracy of a shower is important in a number of contexts:
 - Quality of hadronisation models depend on the initial conditions provided by the shower.
 - Jet substructure and machine learning tools exploit very exclusive kinematic regions and leverage it to design better taggers.

A parton shower consists of three main features:

- 1. An ordering variable which defines the sequence according to which emissions are generated (such as k_t , angle, virtuality).
- 2. A branching probability $P(S_n.v)$ of finding a state S_n with *n* partons at scale *v*, which evolves as

$$\frac{dP(\mathcal{S}_n, v)}{d\ln 1/v} = -f(\mathcal{S}_n, v)P(\mathcal{S}_n, v).$$

3. A kinematic mapping \mathcal{M} from state \mathcal{S}_n to \mathcal{S}_{n+1}

$$S_{n+1} = \mathcal{M}(S_n, v; i, j, \underbrace{z, \phi}_{\text{emission}}).$$

with an associated "splitting" weight function $d\mathcal{P}(\mathcal{S}_n, v; i, j, z, \phi)$, governing relative probabilities of new states.

Case study: transverse-momentum ordered showers

As a case study, we will focus specifically on

- transverse-momentum ordered showers,
- with a dipole-local recoil

$$\tilde{p}_i + \tilde{p}_j \longrightarrow p_i + p_j + p_k$$

where spectator j absorbs the longitudinal recoil.

which encompass several modern showers such as Pythia and Dire.

Pythia	Dire
• Evolution variable and branching:	Evolution variable and branching:
$v\equiv p_{\perp,\mathrm{evol}}$	$v \equiv \sqrt{t}$
$\rho_{\perp,\mathrm{evol}}^2 = \frac{p_{\perp,\mathrm{evol}}^2}{(\tilde{p}_i + \tilde{p}_j)^2}, \qquad y = \frac{\rho_{\perp,\mathrm{evol}}^2}{z(1-z)}, \qquad \tilde{z} = \frac{(1-z)\left(z^2 - \rho_{\perp,\mathrm{evol}}^2\right)}{z\left(1-z\right) - \rho_{\perp,\mathrm{evol}}^2}$	$\kappa^2 = \frac{t}{(\tilde{p}_i + \tilde{p}_j)^2}, \qquad y = \frac{\kappa^2}{1-z}, \qquad \tilde{z} = \frac{z-y}{1-y}$
$ ho_{\perp,\mathrm{evol}} \leq z \leq 1 - ho_{\perp,\mathrm{evol}}$	$\frac{1}{2} - \sqrt{\frac{1}{4} - \kappa^2} \le z \le \frac{1}{2} + \sqrt{\frac{1}{4} - \kappa^2}$
\cdot kt and rapidity of emission w.r.t. the emitter	kt and rapidity of emission w.r.t. the emitter
$\eta = \ln \frac{(1-\tilde{z})Q}{ k_{\perp} }, \qquad k_{\perp}^2 = \frac{\left(z^2 - \rho_{\perp \text{evol}}^2\right)\left((1-z)^2 - \rho_{\perp \text{evol}}^2\right)}{\left(z\left(1-z\right) - \rho_{\perp \text{evol}}^2\right)^2}$	$\eta = \ln \frac{(1-\tilde{z})Q}{ k_{\perp} } , \qquad k_{\perp}^2 = (1-z) \frac{z(1-z) - \kappa^2}{(1-z-\kappa^2)^2} t$

- Expect a parton shower to reproduce the matrix element for any single-emission configuration with one or two singularities
- For multiple emissions, expect to control leading singularity of squared amplitude for any number of emissions.
- To reproduce the leading double logarithms, the soft and collinear limit for an emission should be

$$d\mathcal{P} = \frac{2C\alpha_s(p_{\perp}^2)}{\pi} \frac{dp_{\perp}}{p_{\perp}} d\eta$$

For single-logarithmic accuracy, one also needs to reproduce emission pattern in the hard collinear and soft large-angle region.

Single-emission in the soft limit

Both Pythia and Dire divide the dipole at zero rapidity in the dipole's rest frame

Single-emission in the soft limit

Constant evolution variable contours in the Lund plane

- Correct matrix element for single emission reproduced up to (Pythia) or including (Dire) running coupling effects.
- For Pythia, there is suppressed but non-zero probability to have arbitrarily small k_t for any finite value of the evolution variable v.

Two-emission case in the soft limit

Consider two soft-collinear emissions g_1, g_2 with $|\eta_1 - \eta_2| \gg 1$. The corresponding double emission probability is

$$dP_2 = \frac{C_F^2}{2!} \prod_{i=1,2} \left(\frac{2\alpha_s(p_{\perp,i}^2)}{\pi} \frac{dp_{\perp,i}}{p_{\perp,i}} d\eta_i \frac{d\phi_i}{2\pi} \right)$$

where $p_{\perp,i}$ and η_i are defined with respect to the *q* and \bar{q} directions. We want to answer the following question: do the parton showers reproduce this?

To generate two emissions:

- Start from qq and generate a first emission g1 at value v1 of ordering variable.

- ▶ In the strongly ordered limit $v_1 \gg v_2$, kinematics of g_1 not affected by second emission.
- Splitting the q
 g1 dipole into two equal parts in its rest frame causes some part of the radiation assigned to the gluonic part to be in a phase space region where it is closer in angle to the q
 or q than it is to the gluon.
- This leads to a region with an incorrect colour factor $C_F C_A/2$ instead of C_F^2 .

- In the strongly ordered limit $v_1 \gg v_2$, kinematics of g_1 not affected by second emission.
- Splitting the $\bar{q}g_1$ dipole into two equal parts in its rest frame causes some part of the radiation assigned to the gluonic part to be in a phase space region where it is closer in angle to the \bar{q} or q than it is to the gluon.
- This leads to a region with an incorrect colour factor $C_F C_A/2$ instead of C_F^2 .

Difference between dipole and correct pattern for thrust:

$$\delta\Sigma(L) = -\frac{1}{64} \left(\frac{2\alpha_s C_F}{\pi}\right) L^4 \left(\frac{C_A}{2C_F} - 1\right)$$

Two-emission case: single strong ordering

- Consider now the case where the ordering variables are of the same order v₂ ~ v₁/2.
- First emission is affected by recoil after second emission

impact of gluon-2 emission on gluon-1 momentum

Two-emission case: single strong ordering

- Consider now the case where the ordering variables are of the same order v₂ ~ v₁/2.
- First emission is affected by recoil after second emission

- Effective matrix element does not reproduce correct soft limit at a²/_s
- Leads to incorrect NLL terms in many observables.

ratio of dipole-shower double-soft ME to correct result

Logarithmic analysis at second order

Shortcomings of showers impact the logarithmic accuracy for a wide range of observables.

We focus on event shape variables and study probability that the event shape has a value smaller than e^{-L}

$$\Sigma(L) = \exp\left[Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \cdots\right] + O\alpha_s e^{-L},$$

In leading- N_C limit, impact of recoil can be written

$$\begin{split} \delta \Sigma(L) &= \bar{\alpha}^2 \int_0^1 \frac{dv_1}{v_1} \int_{\ln v_1}^{\ln 1/v_1} d\eta_1 \int_0^{v_1} \frac{dv_2}{v_2} \int_{\frac{1}{2}(\eta_1 + \ln v_1)}^{\frac{1}{2}(\eta_1 + \ln v_1)} d\eta_2 \int_0^{2\pi} \frac{d\phi_{12}}{2\pi} \times \\ & \times \left[\Theta \big(e^{-L} - V(p_1^{\mathsf{shower}}, p_2) \big) - \Theta \left(e^{-L} - V(p_1^{\mathsf{correct}}, p_2) \right) \right], \end{split}$$

Observable	$NLL_{\ln \Sigma}$ discrepancy
1 - T	$0.116^{+0.004}_{-0.004}\bar{\alpha}^3 L^3$
vector $p_t\mathrm{sum}$	$-0.349^{+0.003}_{-0.003} \bar{\alpha}^3 L^3$
B_T	$-0.0167335\bar{\alpha}^2 L^2$
y_3^{cam}	$-0.18277 \bar{lpha}^2 L^2$
FC_1	$-0.066934\bar{\alpha}^{2}L^{2}$

CONCLUSIONS

- Introduced formalism needed to study multi-scale accuracy of parton showers.
- Focusing on transverse-momentum ordered shower with dipole-local recoil, studied singular limits up to second order.
- We identified issues that affect the LL accuracy at subleading N_c and the NLL accuracy at leading N_c for a wide range of event-shape observables.
- These issues will impact the prospects for precision studies relying on parton showers.

Established a basis to understand the logarithmic properties of parton shower algorithms.