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Parton showers and resummation

I Parton showers are ubiquitous in collider physics, however the
theoretical accuracy of these tools is not always well understood.

I Resummations also provide all order calculations, allowing for higher
logarithmic accuracy but with narrower scope of application.
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Accuracy of parton showers

I General purpose Monte Carlo event generators are used to simulate
physics over broad range of scales: from hard matrix elements at TeV
scale to GeV scale where quarks and gluons hadronise.

I Complicated tools with many subtleties, difficult to systematically
quantify the accuracy that can be achieved with a given parton-shower
algorithm.

I The accuracy of a shower is important in a number of contexts:
I Quality of hadronisation models depend on the initial conditions provided

by the shower.
I Jet substructure and machine learning tools exploit very exclusive

kinematic regions and leverage it to design better taggers.
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What is a shower?

A parton shower consists of three main features:

1. An ordering variable which defines the sequence according to which
emissions are generated (such as kt , angle, virtuality).

2. A branching probability P(Sn .v) of finding a state Sn with n partons at
scale v, which evolves as

dP(Sn , v)
d ln 1/v � − f (Sn , v)P(Sn , v) .

3. A kinematic mappingM from state Sn to Sn+1

Sn+1 �M(Sn , v; i , j, z , φ︸︷︷︸
emission

) .

with an associated “splitting” weight function dP(Sn , v; i , j, z , φ),
governing relative probabilities of new states.
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Case study: transverse-momentum ordered showers

As a case study, we will focus specifically on
I transverse-momentum ordered showers,
I with a dipole-local recoil

p̃i + p̃ j → pi + p j + pk

where spectator j absorbs the longitudinal recoil.

which encompass several modern showers such as Pythia and Dire.
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Singularity structure

I Expect a parton shower to reproduce the matrix element for any
single-emission configuration with one or two singularities

I For multiple emissions, expect to control leading singularity of squared
amplitude for any number of emissions.

I To reproduce the leading double logarithms, the soft and collinear limit
for an emission should be

dP �
2Cαs(p2

⊥)
π

dp⊥
p⊥

dη

I For single-logarithmic accuracy, one also needs to reproduce emission
pattern in the hard collinear and soft large-angle region.
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Single-emission in the soft limit

Both Pythia and Dire divide the dipole at zero rapidity in the dipole’s rest
frame
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Pythia:

dPq→q g �

2αs (p2
⊥,evol)CF

π

dp⊥
p⊥

dη
(

e2η

1 + e2η

)
Dire:

dPq→q g �
2αs (t)CF

π

dp⊥
p⊥

dη
(

e2η

1 + e2η

)
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Single-emission in the soft limit
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Pythia:

η �
1
2 ln

[
(1 − z)2

ρ2
⊥,evol

− 1

]
, |p2

⊥ | � p2
⊥,evol

(
1 −

ρ2
⊥,evol
(1 − z)2

)

Dire:
η �

1
2 ln

[
(1 − z)2
κ2

]
, |p2

⊥ | � t

I Correct matrix element for single emission reproduced up to (Pythia) or
including (Dire) running coupling effects.

I For Pythia, there is suppressed but non-zero probability to have
arbitrarily small kt for any finite value of the evolution variable v.
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Two-emission case in the soft limit

Consider two soft-collinear emissions g1 , g2 with |η1 − η2 | � 1. The
corresponding double emission probability is

dP2 �
C2

F

2!

∏
i�1,2

(
2αs(p2

⊥,i)
π

dp⊥,i
p⊥,i

dηi
dφi

2π

)
where p⊥,i and ηi are defined with respect to the q and q̄ directions.

We want to answer the following question: do the parton showers
reproduce this?

To generate two emissions:

I Start from q̄q and generate a first emission g1 at value v1 of ordering
variable.

I With value v2 of ordering variable, select one of the q̄ g1 and g1q dipole
to emit g2
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Two-emission case: double strong ordering

I In the strongly ordered limit v1 � v2, kinematics of g1 not affected by
second emission.

I Splitting the q̄ g1 dipole into two equal parts in its rest frame causes
some part of the radiation assigned to the gluonic part to be in a phase
space region where it is closer in angle to the q̄ or q than it is to the
gluon.

I This leads to a region with an incorrect colour factor CFCA/2 instead of
C2

F.

g1g1

η

ln p⊥Correct radiation pattern

CF

CA/2

g1g1

η

ln p⊥Dipole radiation pattern

CF

CA/2
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I This leads to a region with an incorrect colour factor CFCA/2 instead of
C2

F.

Difference between dipole and correct pattern
for thrust:

δΣ(L) � − 1
64

(
2αs CF
π

)
L4

(
CA
2CF
− 1

)
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Two-emission case: single strong ordering

I Consider now the case where the ordering variables are of the same
order v2 ∼ v1/2.

I First emission is affected by recoil after second emission

When g2 is at relatively central rapidities,
g1 acquires a transverse recoil, leading to
p⊥,g1/p̃⊥,g1 � 1/2.

            impact of gluon-2 emission on gluon-1 momentum
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Two-emission case: single strong ordering

I Consider now the case where the ordering variables are of the same
order v2 ∼ v1/2.

I First emission is affected by recoil after second emission

I Effective matrix element does not
reproduce correct soft limit at α2

s

I Leads to incorrect NLL terms in
many observables.
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Logarithmic analysis at second order

Shortcomings of showers impact the logarithmic accuracy for a wide range
of observables.
We focus on event shape variables and study probability that the event
shape has a value smaller than e−L

Σ(L) � exp
[
Lg1(αs L) + g2(αs L) + αs g3(αs L) + · · ·

]
+ Oαs e−L ,

In leading-NC limit, impact of recoil can be written

δΣ(L) � ᾱ2
∫ 1

0

dv1
v1

∫ ln 1/v1

ln v1

dη1

∫ v1

0

dv2
v2

∫ 1
2 (η1+ln 1/v1)

1
2 (η1+ln v1)

dη2

∫ 2π

0

dφ12
2π ×

×
[
Θ

(
e−L − V(pshower

1 , p2)
)
−Θ

(
e−L − V(pcorrect

1 , p2)
)]
,
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CONCLUSIONS



Conclusions

I Introduced formalism needed to study multi-scale accuracy of parton
showers.

I Focusing on transverse-momentum ordered shower with dipole-local
recoil, studied singular limits up to second order.

I We identified issues that affect the LL accuracy at subleading Nc and
the NLL accuracy at leading Nc for a wide range of event-shape
observables.

I These issues will impact the prospects for precision studies relying on
parton showers.

Established a basis to understand the logarithmic
properties of parton shower algorithms.
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