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FIG. 2: Scale variation of the gluon fusion cross-section at
all perturbative orders through N3LO.

pressions valid for all regions are known, is similarly sup-
prerssed. We therefore believe that the uncertainty of
our computation for the hadronic cross-section due to
the truncation of the threshold expansion is negligible
(less than 0.2%).

In Fig. 2 we present the hadronic gluon-fusion Higgs
production cross-section at N3LO as a function of a com-
mon renormalisation and factorisation scale µ = µr =
µf . We observe a significant reduction of the sensitiv-
ity of the cross-section to the scale µ. Inside a range

µ 2
⇥
mH

4 ,mH

⇤
the cross-section at N3LO varies in the

interval [�2.7%,+0.3%] with respect to the cross-section
value at the central scale µ = mH

2 . For comparison, we
note that the corresponding scale variation at NNLO is
about ±9% [2, 3]. This improvement in the precision of
the Higgs cross-section is a major accomplishment due to
our calculation and will have a strong impact on future
measurements of Higgs-boson properties. Furthermore,
even though for the scale choice µ = mH

2 the N3LO cor-
rections change the cross-section by about +2.2%, this
correction is captured by the scale variation estimate for
the missing higher order e↵ects of the NNLO result at
that scale. We illustrate this point in Fig. 3, where we
present the hadronic cross-section as a function of the
hadronic center-of-mass energy

p
S at the scale µ = mH

2 .
We observe that the N3LO scale uncertainty band is in-
cluded within the NNLO band, indicating that the per-
turbative expansion of the hadronic cross-section is con-
vergent. However, we note that for a larger scale choice,
e.g., µ = mH , the convergence of the perturbative series
is slower than for µ = mH

2 .

In table I we quote the gluon fusion cross section
in e↵ective theory at N3LO for di↵erent LHC energies.
The perturbative uncertainty is determined by varying
the common renormalisation and factorisation scale in
the interval

⇥
mH

4 ,mH

⇤
around mH

2 and in the interval⇥
mH

2 , 2mH

⇤
around mH .

�/pb 2 TeV 7 TeV 8 TeV 13 TeV 14 TeV

µ = mH

2 0.99+0.43%
�4.65% 15.31+0.31%

�3.08% 19.47+0.32%
�2.99% 44.31+0.31%

�2.64% 49.87+0.32%
�2.61%

µ = mH 0.94+4.87%
�7.35% 14.84+3.18%

�5.27% 18.90+3.08%
�5.02% 43.14+2.71%

�4.45% 48.57+2.68%
�4.24%

TABLE I: The gluon fusion cross-section in picobarn in the e↵ective theory for di↵erent collider energies in the interval
[mH

4 ,mH ] around µ = mH

2 and in the interval [mH

2 , 2mH ] around µ = mH .

Given the substantial reduction of the scale uncertainty
at N3LO, the question naturally arises whether other
sources of theoretical uncertainty may contribute at a
similar level. In the remainder of this Letter we briefly
comment on this issue, leaving a more detailed quantita-
tive study for future work.

First, we note that given the small size of the N3LO
corrections compared to NNLO, we expect that an esti-
mate for the higher-order corrections at N4LO and be-
yond can be obtained from the scale variation uncer-
tainty. Alternatively, partial N4LO results can be ob-
tained by means of factorisation theorems for thresh-
old resummation. However, we expect that the insight
from resummation on the N4LO soft contributions is only

qualitative given the importance of next-to-soft, next-to-
next-to-soft and purely virtual contributions observed at
N3LO, as seen in Fig. 1.

Electroweak corrections to Higgs production have been
calculated through two loops in ref. [32], and estimated
at three loops in ref. [33]. They furnish a correction of
less than +5% to the inclusive cross-section. Thus, they
are not negligible at the level of accuracy indicated by
the scale variation at N3LO and need to be combined
with our result in the future. Mixed QCD-electroweak
or purely electroweak corrections of even higher order
are expected to contribute at the sub-percent level and
should be negligible.

Next, we have to comment on our assumption that the
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Anastasiou et al.  (2015,2016)

▸ gluon fusion by far the dominant 
production channel 

▸ it suffers from large QCD corrections

▸ theoretical calculations have been 
pushed to a remarkable precision 

▸ one of the few processes for which 
three-loop corrections are known (in 
the infinite top mass limit)
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HIGHER-ORDER CORRECTIONS
▸ Higher-order QCD corrections correspond to emission of 

extra partons or virtual corrections 

▸ these corrections are enhanced in particular regions of 
phase-space
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 WE WILL MOST CONVENIENTLY WORK IN MELLIN SPACE 
SOFT-GLUON RESUMMATION: Z→1 ➪ LOGS OF N 
BFKL RESUMMATION:  Z→0 ➪ POLES IN N (SAY N=0)
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All-order techniques offer a 
complementary way to tackle 
perturbative corrections



LARGE-X  
RESUMMATION
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PRODUCTION AT THRESHOLD
▸ absolute threshold: the initial-

state energy is just enough to 
produce the final state with 
invariant mass Q 

▸ emissions forced to be soft, 
leading to log-enhanced 
contributions order-by-order in 
perturbation theory

x =
Q2

s
! 1

LO : Q2
= ŝ
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WHY BOTHER WITH THRESHOLD AT THE LHC?
▸ Gluon PDF shows a steep 

increase at low x 

▸ region of partonic threshold is 
enhanced in the convolution

ŝ = x1x2s

▸ Mellin-space argument: a saddle-point approximation indicates the region 
that gives the bulk of the contribution to the inverse Mellin integral   

▸ this region turns out to be fairly narrow around the (real) saddle-point
Bonvini, Forte, Ridolfi (2012)
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THRESHOLD RESUMMATION OF COEFFICIENT FUNCTIONS
▸ momentum space:  distributional terms for z →1 
▸ moment space: terms that do not vanish at large N

where we have used the same symbols, with different arguments, for a function and its Mellin transform.
Note that threshold resummation only affects the gg channel: we therefore suppress the flavours indices
and implicitly focus on the gg channel. We will later comment on the role of the quark channels. The
N -space resummed coefficient function has the form (see [13] and reference therein):

Cres(N,↵s) = ḡ0
�
↵s, µ

2

F

�
exp S̄(↵s, N), (3.2)

S̄(↵s, N) =

Z
1

0

dz
zN�1

� 1

1 � z

0

@
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�
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�
1

A, (3.3)

ḡ0(↵s, µ
2

F
) = 1 +

1X

k=1

ḡ0,k(µ
2

F
)↵k

s , (3.4)

A(↵s) =
1X

k=1

Ak↵
k
s , D(↵s) =

1X

k=1

Dk↵
k
s , (3.5)

where ḡ0(↵s, µ2
F
) does not depend on N . We note that in the full theory, all the top-mass dependence

is in ḡ0. Furthermore, under the rEFT assumption, its expression factorizes as

ḡ0(↵s, µ
2

F
) = W (m2

H
,m2

t
, µ2

F
) ˜̄g0(↵s, µ

2

F
) (3.6)

where now ˜̄g0(↵s, µ2
F
) does not depend on the top mass. Note that we have restored explicit scale

dependence and we have chosen the factorization scale µF as the scale of the running coupling ↵s =
↵s(µ2

F
). The three-loop coefficients of A(↵s) and D(↵s) have been known for a while (see for instance

Refs. [39–41]), while the O
�
↵3
s

�
contribution to ˜̄g0 has been recently computed [9]. The four-loop

contribution to A(↵s), which is needed to achieve full N3LL accuracy, is unknown. However, a Padé
estimate [40] can suggest the size of its value, and a numerical analysis shows that its impact in a
resummed result is essentially negligible.

The integrals in Eq. (3.3) can be computed at any finite logarithmic accuracy by using the explicit
solution of the running coupling, in terms of ↵s at a given reference scale, which we can also choose
to be µF in first place. At this point we have a result which depends on a single scale µF, with ↵s

always computed at µF (note that, while the µF dependence of S̄ is explicit, the one of ḡ0 can be
recovered by imposing µF-independence of the full cross section). In order to write the result in a
canonical way, we further evolve ↵s from µF to µR using the explicit solution of the running coupling
equation at sufficiently high order, and propagating the resulting logarithms in the various terms at
each fixed-order (in ḡ0) and logarithmic-order (in S̄) accuracy. Then, the final result explicitly depends
on both µR and µF.

The computation of the integrals in Eq. (3.3) is rather cumbersome when performed exactly. The
resulting expression was called A-soft in Ref. [13]. The computation is much simpler when performed
in the large-N limit, where the result of the integrals is written as a function of lnN only. We call
the result in this limit N -soft. Explicit expressions for S̄ in the N -soft limit up to N3LL are given in
Ref. [40]4 with full µF and µR dependence.

In Ref. [13] two of us proposed a variant of the N -soft resummation based on the simple replace-
ment

lnN !  0(N), (3.7)
4To be precise, the expressions in Ref. [40] are for the logarithmic part of the exponent, and not for the N -independent

terms.

– 6 –

Anastasiou et al. (2014)

Catani et al. (2002); Moch, Vogt (2005); 
Laenen, Magnea (2005) […]

‣ state of the art N3LL (4-loop cusp only partially known)     Moch et al. (2018) 
‣ constants can go in the exponent of in front of it (good for estimating uncertainties)  
‣ DGLAP evolution free of large logs (in MSbar)

�7

Korchemsky (1989); Albino and Ball (2001)



‣ consistency suggests that one should use PDFs determined with resummed 
coefficient functions 

‣ comparison to global fit: larger uncertainties because of reduced dataset 

‣ only “proof-of-concept” studies because of restricted dataset
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PARTONS WITH THRESHOLD RESUMMATION

Impact on PDF fits: PDFs
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Impact on PDF fits: luminosities
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Bonvini et al. (2015)
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Figure 1: Left: decomposition of the cut partonic cross-section in terms of two-
gluon irreducible hard part and a reducible ladder part. Right: generalized ladder
expansion of the ladder part.

Since everything is on-shell and we are working in an axial gauge, we can decom-
pose both the hard part and the ladder part in terms of conserved Lorentz structures
time dimensionless scalar functions:

Hµν(n, pL, pF ,αs) =

(

−gµν +
pµLp

ν
L

p2L

)

H⊥

(

Q2

n · pL
,
−p2L
Q2

,ΩF ,αs

)

+

+p2L

(

pµL
p2L

− nµ

n · pL

)(

pνL
p2L

− nν

n · pL

)

H||

(

Q2

n · pL
,
−p2L
Q2

,ΩF ,αs

)

(4)

Lµν(pL, p, µ,αs) =
1

p2L

(

−gµν +
pµLp

ν
L

p2L

)

L⊥

(

−p2L
p · pL

,
µ2

−p2L
,αs

)

+

(

pµL
p2L

− pµ

p · pL

)(

pνL
p2L

− pν

p · pL

)

L||

(

−p2L
p · pL

,
µ2

−p2L
,αs

)

(5)

where ΩF stands for a set of (typically angular, see e.g. [7]) dimensionless variables
which characterize the final state F . Note that we have explicitly extracted the
propagator factor 1/p2L from the scalar functions L||,⊥.

In the high energy limit Eq. (2) simplifies somewhat. To see this, we work
in the center-of-mass frame of the colliding partons and introduce the Sudakov
parametrization

pL = zp− k − k2
T

s(1− z)
n =

(
√

s

2
z,− k2

T√
2s(1− z)

;−kT

)

(6)

6

COEFFICIENT FUNCTIONS AT SMALL X
‣ the high-energy behaviour of coefficient function is obtained using    

kt-factorisation 

‣ derivation in terms of ladder expansion allowed for its generalisation 
to differential distributions 

Catani, Ciafaloni, Hautmann (1991); Collins, Ellis (1991)

Caola, Forte, SM (2010); Forte, Muselli (2016); Muselli (2017)

H(n, pL, pF ,αs)

pL

n
2

2GIdΠF

S

X̃

F

pL

n

δ4(p + n − pS − pX)

Figure 2: Graphic representation of the hard part in Eq. (2). Note that the hard
part contains the momentum conservation delta function as well as the S and X̃
phase space integration, but it does not contain phase space integration for gluons
emitted along the ladder.

2.2 Hard part

Let us now concentrate on the process-dependent hard part. We introduce a hard
coefficient function C defined as

C

(

Q2

zs
,
Q2

k2
T

,αs

)

≡
∫ 2π

0

dθ

2π

Q2

2sz
[PµνH

µν(n, pL, pF ,αs)] =

= −
∫ 2π

0

dθ

2π

Q2

2sz
H||

(

Q2

zs
,
Q2

k2
T

,ΩF ,αs

)

(1 +O(z)) , (11)

where we have defined the projector

Pµν ≡ kµkν

k2
T

(12)

which, up to O(z) terms, selects the longitudinal part H|| of the full Hµν . In Eq. (11)
the explicit dependence of C on ΩF is understood.

Equation (11) has a simple interpretation: C is the cross-section for the partonic
process V(n) + g∗(q) → F for an off-shell incoming gluon with momentum

q = zp + k; q2 = −k2
T . (13)

In this interpretation, P can be thought of as the sum over the polarizations of the
off-shell gluon. Note that

⟨Pµν⟩θ ≡
∫ 2π

0

dθ

2π
Pµν =

1

2

(

−gµν +
qµnν + qνnµ

q · n

)

≡ dµν
2

, (14)

i.e. the azimuthal average of Pµν performs the average over the polarizations of an
on-shell gluon with momentum q. Equations (11, 14) then imply

lim
k2T→0

〈

C

(

Q2

zs
,
Q2

k2
T

,αs

)〉

θ

= σon-shell (V(n), g(zp) → F) , (15)

8

‣ for most processes of interest (DIS, DY) resummation starts at NLLx

�10SIMONE MARZANI - QCD@LHC 2018



‣ DGLAP evolution in the singlet sector 

‣ the gluon splitting functions start at LLx 

‣ while the quarks are NLLx

DGLAP EVOLUTION AT SMALL-X

Marco Bonvini, et al.: Small-x resummation from HELL 3

We address these three steps in turn, giving a brief sum-
mary of the ABF procedure, emphasizing those aspects
that are di�erent from the original construction. We finally
comment on the numerical implementation and present
some results.

2.1 Resummation of the largest eigenvalue

The singlet-sector DGLAP evolution equation reads

Q2
d

dQ2

3
fg

fq

4
= ≈

!
N, –s(Q2)

" 3
fg

fq

4
, (2.3)

where fg = fg(N, Q2) and fq = fq(N, Q2) are the gluon
and quark-singlet PDFs respectively, and the evolution
matrix is given by (omitting arguments for readability)

≈ (N, –s) ©

3
“gg “gq

“qg “qq

4
. (2.4)

As already mentioned, the non-singlet sector is not af-
fected by small-x logarithmic enhancement, and we there-
fore ignore it.

The DGLAP evolution equation Eq. (2.3) can be di-
agonalised by performing a change of basis. We define the
“eigenvectors” f± as
3

f+

f≠

4
= R

!
N, –s(Q2)

" 3
fg

fq

4
, (2.5)

where the transformation matrix R (and its inverse) can
be generically written as

R = 1
r≠ ≠ r+

3
r≠ ≠1

≠r+ 1

4
, R≠1 =

3
1 1

r+ r≠

4
. (2.6)

Substituting Eq. (2.5) into Eq. (2.3) we get

Q2
d

dQ2

3
f+

f≠

4
=

5
R≈R≠1 + Q2

dR

dQ2
R≠1

63
f+

f≠

4
. (2.7)

In general, to make the equation diagonal, one has to pro-
vide a matrix R such that the matrix in squared brackets
in Eq. (2.7) is diagonal,

R≈R≠1 + Q2
dR

dQ2
R≠1 =

3
“+ 0
0 “≠

4
. (2.8)

Solving this problem in general is rather complicated.
However, we notice that at pure LL level the matrix
that diagonalizes ≈ has constant coe�cients, so we can
ignore the second term in squared brackets and simply
solve an eigenvalue problem. At NLL, a non-trivial depen-
dence on Q2 appears; however, the action of the derivative
with respect to Q2 further suppresses the second term in
squared brackets by –s—0, showing that it first contributes
at NNLL level. Therefore, when treating running coupling

e�ects perturbatively, we can ignore the derivative contri-
bution and simply focus on the eigenvalue problem, which
in particular leads to the following explicit form for R,

r± = “qg

“± ≠ “qq
, (2.9)

being “± the eigenvalues of ≈ . We anticipate that run-
ning coupling e�ects will eventually be resummed to all
orders in –s—0: when this counting is adopted, the deriva-
tive term is no longer subleading and the matrix R should
be corrected for it. We will come back to this point later
in Sect. 2.3 and in Sect. 3.2.

The eigenvalue “+ is chosen to be the largest eigen-
value at small-x, i.e. N ≥ 0, namely the one which
is enhanced at small N , while “≠ is finite in N = 0.
Consequently, f+ is the only eigenvector that contains
logarithmic enhancement and which is a�ected by high-
energy resummation. This holds for several factorization
schemes, including DIS and MS, and the so-called Q0MS
scheme which is particularly useful in small-x resumma-
tion [32,34,46,47]. The resummation of small-x logarithms
in the evolution is then encoded in the resummation of the
largest eigenvalue “+. The di�erence between the MS and
Q0MS factorization schemes influences the resummation
of “+ beyond the leading logarithmic accuracy, as well as
the resummation of “qg and of the coe�cient functions,
as we shall see in more detail in Sec. 3. The structure of
the resummation described in the remainder of the section
is rather general and it is valid for both MS and Q0MS
schemes. When presenting phenomenological results our
scheme of choice will be Q0MS, which is preferred from
an all-order viewpoint, because it gives more stable re-
sults [22]. It has to be noted that, when expanded to fixed-
order, the di�erence between the two schemes only starts
at relative O(–3

s): thus, all theoretical predictions that en-
ter current PDF fits are not sensitive to this choice.

High-energy resummation is achieved thanks to the
BFKL equation [7–12], which, in analogy with DGLAP,
we write as an evolution equation for the moments of the
parton density. Therefore, defining the M moments of f+

by

f+(x, M) =
⁄ Œ

≠Œ

dQ2

Q2

3
Q2

Q2
0

4≠M

f+(x, Q2), (2.10)

with Q0 some reference scale (the PDFs depend logarith-
mically on Q, so the value of Q0 is irrelevant), we have

≠x
d

dx
f+(x, M) = ‰(M, –s) f+(x, M), (2.11)

where ‰ is the BFKL kernel, currently known to NLO [12]
and to NNLO in the collinear approximation [47] (see
Ref. [48] for recent work beyond NLO accuracy). In the
small-x and high-Q2 limit, both the DGLAP and BFKL
equations are expected to hold, and consistency between
the solutions to both equations allows to resum to all or-
ders collinear contributions in the BFKL kernerl or, equiv-
alently, small-x contributions in the DGLAP anomalous

Marco Bonvini, et al.: Small-x resummation from HELL 3

We address these three steps in turn, giving a brief sum-
mary of the ABF procedure, emphasizing those aspects
that are di�erent from the original construction. We finally
comment on the numerical implementation and present
some results.

2.1 Resummation of the largest eigenvalue

The singlet-sector DGLAP evolution equation reads

Q2
d

dQ2

3
fg

fq

4
= ≈

!
N, –s(Q2)

" 3
fg

fq

4
, (2.3)

where fg = fg(N, Q2) and fq = fq(N, Q2) are the gluon
and quark-singlet PDFs respectively, and the evolution
matrix is given by (omitting arguments for readability)

≈ (N, –s) ©

3
“gg “gq

“qg “qq

4
. (2.4)

As already mentioned, the non-singlet sector is not af-
fected by small-x logarithmic enhancement, and we there-
fore ignore it.

The DGLAP evolution equation Eq. (2.3) can be di-
agonalised by performing a change of basis. We define the
“eigenvectors” f± as
3

f+

f≠

4
= R

!
N, –s(Q2)

" 3
fg

fq

4
, (2.5)

where the transformation matrix R (and its inverse) can
be generically written as

R = 1
r≠ ≠ r+

3
r≠ ≠1

≠r+ 1

4
, R≠1 =

3
1 1

r+ r≠

4
. (2.6)

Substituting Eq. (2.5) into Eq. (2.3) we get

Q2
d

dQ2

3
f+

f≠

4
=

5
R≈R≠1 + Q2

dR

dQ2
R≠1

63
f+

f≠

4
. (2.7)

In general, to make the equation diagonal, one has to pro-
vide a matrix R such that the matrix in squared brackets
in Eq. (2.7) is diagonal,

R≈R≠1 + Q2
dR

dQ2
R≠1 =

3
“+ 0
0 “≠

4
. (2.8)

Solving this problem in general is rather complicated.
However, we notice that at pure LL level the matrix
that diagonalizes ≈ has constant coe�cients, so we can
ignore the second term in squared brackets and simply
solve an eigenvalue problem. At NLL, a non-trivial depen-
dence on Q2 appears; however, the action of the derivative
with respect to Q2 further suppresses the second term in
squared brackets by –s—0, showing that it first contributes
at NNLL level. Therefore, when treating running coupling

e�ects perturbatively, we can ignore the derivative contri-
bution and simply focus on the eigenvalue problem, which
in particular leads to the following explicit form for R,

r± = “qg

“± ≠ “qq
, (2.9)

being “± the eigenvalues of ≈ . We anticipate that run-
ning coupling e�ects will eventually be resummed to all
orders in –s—0: when this counting is adopted, the deriva-
tive term is no longer subleading and the matrix R should
be corrected for it. We will come back to this point later
in Sect. 2.3 and in Sect. 3.2.

The eigenvalue “+ is chosen to be the largest eigen-
value at small-x, i.e. N ≥ 0, namely the one which
is enhanced at small N , while “≠ is finite in N = 0.
Consequently, f+ is the only eigenvector that contains
logarithmic enhancement and which is a�ected by high-
energy resummation. This holds for several factorization
schemes, including DIS and MS, and the so-called Q0MS
scheme which is particularly useful in small-x resumma-
tion [32,34,46,47]. The resummation of small-x logarithms
in the evolution is then encoded in the resummation of the
largest eigenvalue “+. The di�erence between the MS and
Q0MS factorization schemes influences the resummation
of “+ beyond the leading logarithmic accuracy, as well as
the resummation of “qg and of the coe�cient functions,
as we shall see in more detail in Sec. 3. The structure of
the resummation described in the remainder of the section
is rather general and it is valid for both MS and Q0MS
schemes. When presenting phenomenological results our
scheme of choice will be Q0MS, which is preferred from
an all-order viewpoint, because it gives more stable re-
sults [22]. It has to be noted that, when expanded to fixed-
order, the di�erence between the two schemes only starts
at relative O(–3

s): thus, all theoretical predictions that en-
ter current PDF fits are not sensitive to this choice.

High-energy resummation is achieved thanks to the
BFKL equation [7–12], which, in analogy with DGLAP,
we write as an evolution equation for the moments of the
parton density. Therefore, defining the M moments of f+

by

f+(x, M) =
⁄ Œ

≠Œ

dQ2

Q2

3
Q2

Q2
0

4≠M

f+(x, Q2), (2.10)

with Q0 some reference scale (the PDFs depend logarith-
mically on Q, so the value of Q0 is irrelevant), we have

≠x
d

dx
f+(x, M) = ‰(M, –s) f+(x, M), (2.11)

where ‰ is the BFKL kernel, currently known to NLO [12]
and to NNLO in the collinear approximation [47] (see
Ref. [48] for recent work beyond NLO accuracy). In the
small-x and high-Q2 limit, both the DGLAP and BFKL
equations are expected to hold, and consistency between
the solutions to both equations allows to resum to all or-
ders collinear contributions in the BFKL kernerl or, equiv-
alently, small-x contributions in the DGLAP anomalous
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 PARTON DENSITIES WITH SMALL-X RESUMMATION
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Figure 4.8. Comparison of the NNPDF3.1sx NNLO and NNLO+NLLx global fits at Q = 100 GeV. We
show the gluon PDF and the charm, up, and down quark PDFs, normalized to the central value of the
baseline NNLO fit.
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‣ resulting PDFs show interesting features 

‣ agreement at large x but they’re much steeper 
at low x
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 PERTURBATIVE STABILITY
‣ NNLO and NNLO+NLLx differ quite dramatically 

‣ one could question the reliability of the resummed procedure  

‣ what gives us confidence we’re not talking rubbish? 

‣ resummation cures perturbative instability of NNLO
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Figure 4.2. Comparison between the gluon (left) and quark singlet (right plot) PDFs in the NNPDF3.1sx
DIS-only fits using NLO, NNLO, and NNLO+NLLx theory at Q = 100 GeV, normalized to the central
value of the former.

Consider first the NLO+NLLx fit. Here the resummation has a moderate e↵ect: the resummed
gluon PDF is somewhat enhanced between x = 10�5 and x = 10�2, with the PDF uncertainty
bands only partially overlapping, whilst the shift in central values for the singlet is well within
the PDF uncertainties. This remains true down to the smallest values of x: even for values as
small as x ' 10�6 the shifts of the central value of the singlet and the gluon PDF due to the
resummation are less than 10%. This is a consequence of the fact that, as discussed in Sect. 2,
NLO theory is a reasonably good approximation to the fully resummed result at small-x, and
any di↵erences are such that can be reabsorbed into small changes in the gluon PDF.

The situation is rather di↵erent at NNLO+NLLx. In this case, we see that starting from
x . 10�3 the resummed gluons and quarks are systematically higher than in the baseline NNLO
fit, by an amount which ranges from 10% for x ⇠ 10�4 up to 20% for x ⇠ 10�5 (though note
that in this analysis there are no experimental constraints for x . 3⇥ 10�5). The shifts outside
central values are significantly outside the PDF uncertainty bands, yet result in an improvement
in the quality of the fit.

Note that we are performing these comparisons at the electroweak scale Q ⇠ 100 GeV,
where there are no DIS data and where the e↵ect of resummed evolution is combined with
the change of the fitted PDFs at low scales. This has the advantage of showing that several
observables at the LHC characterized by electroweak scales are likely to be sensitive to small-x
resummation through the PDFs, particularly when measurements can be performed at high
rapidities. Therefore, for such observables, the use of small-x resummed PDFs (and coe�cient
functions) is probably going to be necessary in order to obtain reliable theoretical predictions.

In Fig. 4.1 we observed that including resummation leads to a significantly larger shift in the
small-x quark singlet and gluon PDFs at NNLO than at NLO. This is so despite the fact that
from the point of view of small-x resummation the information added is the same in both cases,
and that the resummed splitting and coe�cient functions at small x are quite similar whichever
fixed-order calculation they are matched to. The explanation of this paradoxical result is that
fixed-order perturbation theory is unstable at small x due to the small-x logarithms, and while
this instability is quite small at NLO, due to accidental zeros in some of the coe�cients, it
is significant at NNLO, and would probably become very substantial at N3LO. In order to
better illustrate this e↵ect, and the way it is cured by resummation, in Fig. 4.2 we compare
the NLO, NNLO and NNLO+NLLx results for the gluon and singlet PDFs in the baseline
fits at Q = 100 GeV, normalized to the NLO prediction. We find that the NNLO results
are systematically below the NLO ones for x  10�2, and that the net e↵ect of adding NLLx
resummation to the NNLO fit is to bring it more in line with the NLO (and thus as well with
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 DOUBLE RESUMMATION: PARTONIC COEFFICIENT FUNCTIONS

‣ How to merge together small-x and large-x resummations? 

‣ Look at singularity structure in Mellin space!
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FIG. 1. All-order e↵ects on the Higgs cross section computed at N3LO, as a function of
p
s. The plot of the left shows the

impact of small-x resummation, while the one of the right of large-x resummation. The bands represent PDF uncertainties.

and at small-x [90, 91]. This opens up the possibility of
achieving fully consistent resummed results. While we
presently concentrate on the Higgs production cross sec-
tion, our technique is fully general and can be applied
to other important processes, such as the Drell-Yan pro-
cess or heavy-quark production. We leave further phe-
nomenological analyses to future work.

Let us start our discussion by introducing the factor-
ized Higgs production cross section
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where �0 is the lowest-order partonic cross section, Lij

are parton luminosities (convolutions of PDFs), Cij are
the perturbative partonic coe�cient functions, ⌧ = m2

H
/s

is the squared ratio between the Higgs mass and the col-
lider center-of-mass energy, and the sum runs over all
parton flavors. Henceforth, we suppress the dependence
on renormalization and factorization scales µR, µF. More-
over, because the Higgs couples to the gluon via a heavy-
flavor loop, (1) also implicitly depends on any heavy vir-
tual particle mass.

The general method to consistently combine large-
and small-x resummation of partonic coe�cient functions
Cij(x,↵s) was developed in [86]. The basic principle is
the definition of each resummation such that they do
not interfere with each other. This statement can be
made more precise by considering Mellin (N) moments
of (1). The key observation is that while in momen-
tum (x) space coe�cient functions are distributions, their
Mellin moments are analytic functions of the complex
variable N and therefore, they are (in principle) fully de-
termined by the knowledge of their singularities. Thus,
high-energy and threshold resummations are consistently

combined if they mutually respect their singularity struc-
ture. In [86], where an approximate N3LO result for Cij

was obtained by expanding both resummations to O(↵3
s),

the definition of the large-x logarithms from threshold re-
summation was improved in order to satisfy the desired
behavior, and later this improvement was extended to
all orders in [45], leading to the so-called  -soft resum-
mation scheme. Thanks to these developments, double-
resummed partonic coe�cient functions can be simply
written as the sum of three terms [92]

Cij(x,↵s) = Cfo
ij (x,↵s)+�C lx

ij (x,↵s)+�Csx
ij (x,↵s), (2)

where the first term is the fixed-order calculation, the
second one is the threshold-resummed  -soft contribu-
tion minus its expansion (to avoid double counting with
the fixed-order), and the third one is the resummation of
small-x contributions, again minus its expansion. Note
that not all partonic channels contribute to all terms
in (2). For instance, the qg contribution is power-
suppressed at threshold but it does exhibit logarithmic
enhancement at small x.
Our result brings together the highest possible accu-

racy in all three contributions. The fixed-order piece is
N3LO [18–22], supplemented with the correct small-x be-
havior, as implemented in the public code ggHiggs [49,
86, 93]. Threshold-enhanced contributions are accounted
for to next-to-next-to-next-to-leading logarithmic accu-
racy (N3LL) in the  -soft scheme, as implemented in
the public code TROLL [45, 49]. Finally, for high-energy
resummation we consider the resummation of the lead-
ing non-vanishing tower of logarithms (here LLx) to the
coe�cient functions [63, 84], which we have now imple-
mented in the code HELL [87, 88]. The technical details of
the implementation will be presented elsewhere [94]. Our
calculation keeps finite top-mass e↵ects where possible.
In particular, in the fixed-order part they are included

Re N

↵n
s ln2n N

↵n
s 

2n(N)
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‣ double-resummed results should respect singularity structure 
order-by-order Ball, Bonvini, Forte, SM, Ridolfi (2013)
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 DOUBLE RESUMMATION: PARTON DENSITIES

‣ ideally we would like to use double-resummed PDFs 

‣ we have to make a choice: small-x resummation strongly affects the 
NNLO gluon PDF, while threshold is a small correction 

‣ use small-x resummed PDFs for double resummation
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 DOUBLE RESUMMATION: RESULTS
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‣ faster convergence of perturbative expansion 

‣ reliable theoretical uncertainties using scale variations and 
subleading logs)  

‣ large effect at 100 TeV driven by small-x resummation of the gluon
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CONCLUSIONS & OUTLOOK

‣ Differential distributions: QT has always played a central role 

‣ joint QT and threshold resummation at NNLL 

‣ double QT and small-x resummation 

‣ triple resummation (?)
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SM (2016); Zhou et al. (2016)

Theeuwes and SM (2017);     
Forte, Muselli and Ridolfi (2017)

‣ consistent combined implementation of threshold and small-x 
resummation;  

‣ application to Higgs production: small correction to the N3LO at 
the LHC, which becomes larger as the c.o.m. energy grows; 

‣ (almost) entirely due to small-x resummation in PDFs.



THANK YOU!
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