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General algorithm I

The cross section for emitting n soft gluons:

σ0 = Tr(Vµ,QH(Q)V†µ,Q) ≡ Tr A0(µ)

dσ1 = Tr(Vµ,E1
Dµ1 VE1,QH(Q)V†E1,Q

D†1µV†µ,E1
) dΠ1

≡ Tr A1(µ) dΠ1

etc.

=|M〉 =

=|M〉 〈M| H

Dµi =
∑
j

TjEi

pµj

pj · qi
; Va,b = exp

(
−
∫ b

a

dE

E
Γ

)

Γ =
αs

π

∑
i<j

(
−Ti · Tj

){∫ dΩk

4π
ωij (k̂)− iπδ̃ij

}

ωij (k̂) = E2
k

pi · pj
(pi · k)(pj · k)

dΠi = −
αs

π

dEi

Ei

dΩi

4π
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General algorithm II

dσn = Tr(An(µ))dΠn

� In principle, µ is equal to 0.

� But µ is equal to Q0 if the observable is fully inclusive for E < Q0.

Example A1

V VD H V† D† V†

An(E) = VE ,EnDµn An−1(En)D†nµV†E ,Enθ(E ≤ En)

� Recurrence relation gives each extra emission.

Σ(µ) =
∑
n

∫
dσnun(q1, q2, . . . , qn)

where un(q1, q2, . . . , qn) is the measurement function.

Matthew De Angelis (University of Manchester) Soft logarithms beyond Leading Colour QCD@LHC, August 30, 2018 5 / 24



Table of Contents

1 The general algorithm

2 Colour evolution
Colour flow basis
Working in a non-orthogonal colour basis
Real emissions
Virtual corrections
Subleading contributions

3 Monte-Carlo implementation
Program structure
Random level swap

4 Conclusions

Matthew De Angelis (University of Manchester) Soft logarithms beyond Leading Colour QCD@LHC, August 30, 2018 6 / 24



Colour flow basis I

� Some key results concerning the colour flow basis

Some block

The basis tensors are labelled by permuations, σ, of the colour indices

|σ〉 =

∣∣∣∣ 1 · · · n
σ(1) · · · σ(n)

〉
= δα1

ᾱσ(1)
· · · δαn

ᾱσ(n)

where α (ᾱ) are the fundamental (anti-fundamental) indices assigned to the colour (anti-colour)
legs. There are n! colour flows, corresponding to n! basis tensors. The inner products of these
basis tensors are given by

〈σ|τ〉 = δα1
ᾱσ(1)

· · · δαn
ᾱσ(n)

δ
ᾱτ(1)
α1 · · · δ

ᾱτ(n)
αn = N

n−#transpositions(σ,τ)
c

where #transpositions(σ, τ) is the number of transpositions by which σ and τ differ.
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Colour flow basis II

Example

=

1

2

3

4

= α + β

1

1̄

2

2̄

1

1̄
2

2̄

1
2

3
4

1

|M〉 = α

∣∣∣∣1 2
2̄ 1̄

〉
+ β

∣∣∣∣1 2
1̄ 2̄

〉
= α

∣∣2 1
〉

+ β
∣∣1 2

〉
i ci c̄i λi λi
1 1 0

√
TR 0

2 0 1̄ 0
√
TR

3 2 0
√
TR 0

4 0 2̄ 0
√
TR

� A colour (anti-colour) index, ci (c̄i ) is assigned to each external leg i of a scattering
amplitude.

� Colour index labels are counted from 1 and ci (c̄i ) = 0 indicates that i only carries
anti-colour (colour).

� All momenta of the amplitude are taken to be outgoing.

The binary variables λi and λ̄i can be summarised as λi =
√
TR , λ̄i = 0 for a quark, λi = 0,

λ̄i =
√
TR for a antiquark and λi = λ̄i =

√
TR for a gluon, where in QCD TR = 1/2.
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Non-orthognal colour bases

We want to compute
Tr(O) = Tr([τ |O |σ] 〈σ|τ〉) (1)

where O =
∑
σ,τ [τ |O |σ] |τ〉〈σ| =

∑
σ,τ Oτσ |τ〉〈σ|.

Introduce dual basis vectors since basis is non-orthonormal∑
σ

|σ〉 [σ| = I; [σ|τ〉 = δστ

As our operator, O, can be written as a chain of operators, R, which represent evolution
operators (be them real or virtual), one can write

R |α〉 = CαR |β〉 ; CαR = [β|R|α〉 ; [τ |O
′
R |σ3] = [τ |O

′
|σ2]Cσ2

R

In this way, we can recursively strip off evolution operators leaving behind reduced matrix
elements and c-number factors.

|σ3〉
1

1̄
2

3
3̄

2

1̄

1

2̄
2̄

1

1̄

2

2̄

1

3̄
3
1̄
2

2̄

σ3 = (312) σ2 = (21) σ1 = (12) τ1 = (21) τ2 = (21) τ3 = (231)

[σ3|D |σ2〉 [σ2|V |σ1〉 [σ1|H |τ1] 〈τ1|V † |τ2] 〈τ2|D† |τ3] 〈τ3|

Figure 1: One contribution to the A1 operator
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Real emissions I

Ti = λi tci − λ̄i t̄c̄i −
1

Nc
(λi − λ̄i ) s

Operator tci

tα

∣∣∣∣ 1 · · · α · · · n
σ(1) · · · σ(α) · · · σ(n)

〉
=

∣∣∣∣ 1 · · · α · · · n n + 1
σ(1) · · · n + 1 · · · σ(n) σ(α)

〉 n+ 1
n+ 1
cici

Operator s

s

∣∣∣∣ 1 · · · · · · n
σ(1) · · · · · · σ(n)

〉
=

∣∣∣∣ 1 · · · · · · n n + 1
σ(1) · · · · · · σ(n) n + 1

〉 n+ 1
n+ 1
cici

where t̄ᾱ |σ〉 = tσ−1(ᾱ) |σ〉 for the inversion permutation σ−1 for which α = σ−1(σ(α)).
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Real emissions II

T |σn〉 · · · · · · 〈τn|T = |σn+1〉 · · · · · · · · · 〈τn+1|
If σn and τn differ by n transpositons, then

� s |σn〉 and s |τn〉 will still differ by n transpositions. This is also true for tα |σn〉 and tβ |τn〉,
if σ(α) = τ(β).

� tα |σn〉 and s |τn〉 will differ by n + 1 transpositions

� tα |σn〉 and tβ |τn〉 will differ by n + 2 transpositions if σ(α) 6= τ(β)

Note that we cannot reduce the number of transpositions between σn and τn using real emissions
and there is a factor of 1/Nc associated with each s operator.

[σ|Ti A Tj |τ ] =
{(
− λi λ̄jδciσ−1(c̄n)δc̄jτ(cn) − (i , σ ↔ j , τ)

)
+ λiλjδciσ−1(c̄n)δcjτ−1(c̄n) + λ̄i λ̄jδc̄iσ(cn)δc̄jτ(cn)(
−

1

Nc

(
λiδciσ−1(c̄n) − λ̄iδc̄iσ(cn)

)
(λj − λ̄j )δcnτ−1(c̄n) − (i , σ ↔ j , τ)

)
+

1

N2
c

(λi − λ̄i )(λj − λ̄j )δcnσ−1(c̄n)δcnτ−1(c̄n)

}
× [τ\n|A|σ\n] .
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Virtual corrections I

The products of the colour-line operators, colour reconnectors, are

� s · t = t · s = I

� s · s = Nc I

� t · t = Nc I if ci = σ−1(c̄j ) or a tensor with one transposition relative to σ.

s · s = = Nc t · s = =

t · t = = = Ncor
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Virtual corrections II

[τ | Γ |σ〉 = NcδτσΓσ + Σστ +
1

Nc
δτσρ

where Γ is the anomalous dimension matrix which contains all Ti · Tj [Plätzer, Eur. Phys. JC

(2014) 74, arXiv: 1312.2448] . The off-diagonal elements in the matrix representation of Ti · Tj are
non-zero only if σ and τ differ by at most one transposition.

[τ |Ti · Tj |σ〉 = −Ncδτσ

(
λi λ̄j δci ,σ−1(c̄j )

+ λj λ̄i δcj ,σ−1(c̄i )
+

1

N2
c

(λi − λ̄i )(λj − λ̄j )
)

+
∑
(ab)

δτ(ab),σ

(
λiλjδ(ab),(ci cj )

+ λ̄i λ̄jδ(ab),(σ−1(c̄i )σ
−1(c̄j ))

−λi λ̄jδ(ab),(ci ,σ
−1(c̄j )) − λj λ̄iδ(ab),(cj ,σ

−1(c̄i ))

)
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Subleading contributions I

The main challenge is to compute the Sudakov matrix elements as this involves the
exponentiation of a possibly large colour matrix [Plätzer, Eur. Phys. JC (2014) 74] :

[τ | exp (Γ) |σ〉 =
∞∑
l=0

(−1)l

N l
c

∑
σ0,...,σl

δτσ0δσlσ ×
(

l−1∏
α=0

Σσα,σα+1

)
× R({σ0, . . . , σl}) (2)

� Define succesive summations at (next-to)d -leading colour (Nd LC) by truncating the sum
over l at l = d .

Example of d = 1

[τ | exp (Γ) |σ〉|NLC = δτσe
(−NcΓ′σ) −

1

Nc
Στσ

e(−NcΓ′τ ) − e(−NcΓ′σ)

Γ′τ − Γ′σ
; Γ′σ = Γσ(1− ρ/N2

c )

� If σ = τ , the R functions revert to their degenerate form:

R({σ, σ}) = −Nce
−NcΓ′σ

� Note that as we treat the real emissions, scalar product matrix and the diagonal part of the
anomalous dimension matrix without any approximation, and Nd LC approximation involves
at most d swaps for each Sudakov operator, this is much more than Nd LC for observables.
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Subleading contributions II

1

Γ

Σ

ρ1

Γ2

Γ3

ΣΓ

ΣΓ2

Σ2Γ

Σ2

ρΓ2

ρΓ

Σ3

ρΣΓ

ρΣ

ρ21

ρ2Γ

ρ2Σ

ρ31

ρΣ2

(0 flips)× 1× (αsN)n

(1 flip)× αs × (αsN)n

(0 flips)× αsN
−1 × (αsN)n

(t[...]t|0 flips)
r

(t[...]t|0 flips)
r−1 t[...]s|1 flip ×N−1

(t[...]t|0 flips)
r

(t[...]t|0 flips)
r−1 t[...]s|1 flip ×N−1

(t[...]t|0 flips)
r−1 s[...]s|0 flips ×N−2

(0 flips)× α2
s × (αsN)n (t[...]t|0 flips)

r

(t[...]t|0 flips)
r−1 t[...]t|2 flips × 1

virtuals reals

α0
s α1

s α2
s α3

s

N3

N2

N1

N0

N−1

N−2

N−3

(2 flips)× α2
s × (αsN)n (t[...]t|0 flips)

r−1 t[...]t|2 flips
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Subleading contributions III

Subleading colour contributions arise from the hard scattering matrix, from the 1/Nc and 1/N2
c

terms in both the real emission and virtual evolution operators and from scalar product matrix.

� Pure 1/Nc corrections can only originate from interference contributions in the hard
process matrix; we will ignore subleading colour contributions from this source here.

� The leading colour contributions from the virtual evolution operator come from Γ, so

are all enhanced by powers of αsNc , and owing to the fact that the leading contribution is
diagonal, can easily be accounted to all orders in an exponential. This evolution does not
change the colour structure in the amplitude or its conjugate.

� Subleading colour contributions (suppressed by 1/N2
c ) due to real emissions come from

three sources: two flips - t[. . .]t, one flip and a factor of 1/Nc - e.g t[. . .]s, zero flips and a
factor of 1/N2

c - s[. . .]s.

� An insertion of a perturbation, Σ, comes with a factor of (αsNc )/Nc and induces a flip.

This can also undo flips induced by real emissions of the type s[. . .]t. Whilst we rid
ourselves of a factor of 1/Nc , the s introduces another.

� A similar reasoning applies to a single ρ perturbation, which contributes at same order.

� With two Σ insertions, we can have a net zero or two flips. Zero flips contributes a

(αsNc )2/N2
c correction, whereas two flips contributes if it compensates a t[. . .]t two-flip

real emission.

Grey contributions lead to factors of (αsNc )2/N4
c and are beyond NLC.
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Program structure I

We can Monte Carlo over the intermediate colour states (based heavily on CVolver code [Plätzer,

Eur. Phys. JC (2014) 74] ) [Work in progress: De Angelis, Forshaw and Plätzer] :

Select initial kine-

matics and colour

flows, τ1 and σ1

Compute the corre-

sponding hard scattering

matrix [τ1|H |σ1]

Set hard scale

of process, Q

Emit?
Set lower evolution

scale to the cutoff

Determine the

emission scale

Choose two new colour

flows for the Sudakov

operators that act on the

amplitude and conjugate

Multiply matrix element by

the Sudakov matrix ele-

ments e.g [σ2|Ti · Tj |σ1〉

At cutoff?

Choose two new colour

flows for the emission

operators that act on the

amplitude and conjugate

Choose the real emission

degrees of freedom

Multiply matrix element

by the emission matrix

elements, e.g [σ3|Ti |σ2〉

Multiply by the scalar

product matrix 〈σm|τm〉Return event

no

yes

no

yes
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Program structure II

� We choose the new colour flows from the set of all possible colour flows that can be
accessed after the action of a Sudakov or emission operator. The main challenge is to
account for the independent colour evolution in the amplitude and the conjugate amplitude.

� For emissions, the next pair of chosen colour states, σn and τn, differ by n, n + 1 or n + 2
transpositions, where n = #(σn−1, τn−1).

� For virtuals, choose a number of flips to make, p, from a (1/Nc )p distribution up to d in
an attempt to prevent #(σn, τn) from becomming too large.
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Random level swap

� How to select σn+1 from σn such that the number of transpositions between the two,
#(σn+1, σn), equals L?

For example, n = 5, L = 2 and σ = |12345〉:

3 2 1

4 3 2344

1 2 3

100 0 21

σ

12345

12345

12345
12345

12345

12345

� The sum over all permutations of basis tensors in Eq. 2 is also computationally
troublesome.
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Results I

� We can calculate many distributions at once.

� Using primed definition, Γ′σ .

0.1

1

10

0.01 0.1 1

CVolver 0.x

λ = 10−3

solid – d = 1

dotted – d = 0

Σ
(ρ

)

ρ

dijet veto, δ = π/4

n = 0
n = 1
n = 2
n = 3
n ≤ 6
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Results II

� d = 0|Nmax is effectively what a state-of-the-art parton shower can achieve.

0.1

1

10

0.01 0.1 1

CVolver 0.x

λ = 10−3

solid – d = 1

dotted – d = 0|Nmax

Σ
(ρ

)

ρ

dijet veto, δ = π/4

n = 0
n = 1
n = 2
n = 3
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Conclusions

� Iterative form of the algorithm is well suited to a Monte Carlo implementation.

� Colour flow basis facilitates numerical implementation to arbitrary order colour expansion.

� Currently handling soft gluons in e+e− but the framework is ready to accomodate a
fully-fledged parton shower.

� Want to go beyond the purely soft limit in the LLA and include hard-collinear emissions,
NLL soft emissions and go beyond e+e−.
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Thanks for listening!
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