

Herwig 7 Status and Prospects

on behalf of the Herwig 7 team

Andrzej Siodmok | Institute of Nuclear Physics PAN, Krakow, Poland (NCN, Poland Grant No. 2016/23/D/ST2/02605)

QCD@LHC, TU Dresden, 27/08/18

Outline

- Introduction
- Main building blocks:
 - Parton Shower (status and the recent progress)
 - Matching and Merging (status and the recent progress)
 - Underlying Event & Hadronization (status and the recent progress)
- Conclusions & Future Plans

2/29

What does Herwig stand for?

3/29

What does Herwig stand for?

Hadron Emission Reactions With Interfering Gluons

Herwig Evolution

HERWIG		HERWIG (Hadron Emission Reactions With Interfering Gluor), Fortran code, last version 6.521 (1992-2002) [Marchesini, Webber, Abbiendi, Corcella, Knowles, Moretti, Odagiri, Richardson, Sey- mour, Stanco]
	Herwig;++	Herwig++ (C++, improved physics, 2004): [Bähr, Gieseke, Gigg, Grellscheid, Hamilton, Latunde-Dada, Plätzer, Richardson, Sey- mour, Sherstnev, Tully, Webber] last version 2.7.1 (2014) [Bellm, Gieseke, Grellscheid, Papaefstathiou, Plätzer, Richardson, Rohr, Schuh, Sey- mour, AS, Wilcock, Zimmermann] intended to fully replace Fortran version
H7	Herwig	experimental and phenomenological evolution over time \Rightarrow precision as key goal Herwig 7.0 [Bellm, Gieseke, Grellscheid, Plätzer, Rauch, Reuschle, Richardson, Schichtel, Seymour, AS, Wilcock, Fischer, Harrendorf, Nail, Papaefstathiou, D. Rauch] τ (HERWIG) $\Rightarrow \tau$ (Herwig + +) \geq 15 years

5/29

Herwig 7

H7

- New major release Herwig++ 3.0 → Herwig 7.0
- Evolution of fHERWIG/Herwig++ subsumed as "7 > 6.5".
 "Better than fHERWIG in any aspect plus more".
- "NLO for all hard processes."

[J. Bellm et.al., Eur.Phys.J. C76 (2016), 196]

6/29

Features

H7

Main features of Herwig 7:

- Two parton-shower implementations
 - Angular-ordered shower
 - Dipole shower
- NLO matched to parton showers as new default
 - Matching/merging mechanism fully generic, fully automated
 - Two matching schemes implemented
 - subtractive (MC@NLO-type)
 - multiplicative (Powheg-type)
 - performed by Matchbox module

[work led by S. Plätzer with substantial contributions by J. Bellm, A. Wilcock, M. Rauch, C. Reuschle]

matrix elements in general from external providers via linked library

NLO merging with the dipole shower		[Bellm, Gieseke , Plätzer]
Spin correlations and QED radiation in angular-ordered show last missing feature from Fortran HERWIG	er	[Richardson, Webster]
Simulation of QED Radiation in Particle decays using the YFS	6 Formalism	[Hamilton, Richardson]
Parton-shower variations	[Bellm,	Nail, Plätzer, Schichtel, AS]
Parton-shower reweighting	[Bellm, Plätze	r, Richardson, AS, Webster]
Developments at the soft front	[Gieseke, Kirchga	eßer, Plätzer, Seymour, AS]
Third matching scheme: KrkNLO	[Jadach, Nail, Plac	czek, Sapeta, AS, Skrzypek]
Improved documentation, much more user-friendly input files		
Many many more for example Quark and Gluon Jets with H	erwig 7	[Reichelt, Richardson, AS]
	NLO merging with the dipole shower Spin correlations and QED radiation in angular-ordered show last missing feature from Fortran HERWIG Simulation of QED Radiation in Particle decays using the YFS Parton-shower variations Parton-shower reweighting Developments at the soft front Third matching scheme: KrkNLO Improved documentation, much more user-friendly input files Many many more for example Quark and Gluon Jets with H	NLO merging with the dipole shower Spin correlations and QED radiation in angular-ordered shower last missing feature from Fortran HERWIG Simulation of QED Radiation in Particle decays using the YFS Formalism Parton-shower variations (Bellm, Platze Developments at the soft front (Gieseke, Kirchga Third matching scheme: KrkNLO (Jadach, Nail, Platze Improved documentation, much more user-friendly input files Many many more for example Quark and Gluon Jets with Herwig 7

Structure

H7

Fully automated, so that users can choose their process and everything is set up for them!

Input

New-style input files

- common code fragments separated into snippets
- include with simple read <file> statement
- small complete input file example:

read Matchbox/PPCollider.in

cd /Herwig/MatrixElements/Matchbox set Factory:OrderInAlphaS 0 set Factory:OrderInAlphaEW 2 do Factory:Process p p -> e+ eread Matchbox/MadGraph-OpenLoops.in

read Matchbox/FiveFlavourScheme.in
read Matchbox/MCatNLO-DefaultShower.in

← collider setup

process setup

← amplitude provider

 $\leftarrow additional options \\ \leftarrow e.g. shower and matching$

do /Herwig/MatrixElements/Matchbox/Factory:ProductionMode
cd /Herwig/Generators
saverun LHC EventGenerator

Installation and Usage

Simple installation via bootstrap script

./herwig-bootstrap <installation directory>

by default also installs external matrix providers (GoSam, HJets++, MadGraph5_aMC@NLO, NJet, OpenLoops, VBFNLO) simultaneously

Simple running

```
Herwig build LHC.in
Herwig integrate LHC.run
Herwig run LHC.run
```

Iots of parallelization

```
grid adaption parallel with separate jobs (no IPC)
Herwig build LHC.in -z1
for i in 'seq 0 <maxjobs>'; do
<qsub> Herwig integrate LHC.run --jobid=$i; done
```

 parallel running on multi-core machines Herwig run -- jobs=8 LHC.run

```
live documentation via sphinx sites at
```

```
https://herwig.hepforge.org
```

Live documentation via sphinx sites at:

https://herwig.hepforge.org

Herwig 7 Tutorials

Bootstrap installation

To ensure a consistent and working setup, we highly recommend that you install Herwig and all its dependencies using the bootstrap script we provide.

Using the Herwig bootstrap script

Manual installation

Should the options provided by the bootstrap script be insufficient for your purposes, or if a manual installation is required for a different reason, we provide detailed instructions below:

- System Requirements
- Prerequisites of the Herwig program
- Manual installation of the Herwig program

Getting started

Your first run of Herwig. Look at a simple event and understand the event record. $% \left[{{{\rm{A}}_{{\rm{B}}}} \right]$

- The first run
 - Make yourself comfortable
 - First events
 - A first look at the output

Herwig 7 Tutorials

- Bootstrap installation
- Manual installation
- Getting started
- Event generation workflow
- Hard cross sections and matching
- Merging with the dipole shower
- Showers
- Multiple-Parton Interactions
- Beyond the Standard Model simulation
- Decays
- Contrib
- Frequently asked questions
- Advanced topics

Quick search

Parton-showers in Herwig 7: Status

- Angular-ordered
- Colour coherence by construction
- No full coverage of phase-space (fixed by Hard Matrix corrections)

- *p_T*-ordered
- Colour coherence
- Full phase space
- Catani-Seymour dipoles

Main parameters:

- $\alpha_s(M_Z)$.
- μ_{IR} the cut-off in the parton shower and μ_Q shower starting/veto scale.
- μ_S argument of α_S and PDF in the shower.
- kinematic reconstruction (formally subleading but important!)

[see D. Reichelt's talk]

Parton-shower Variations

[Bellm, Nail, Plätzer, Schichtel, AS Eur.Phys.J. C76 (2016) no.12, 665]

Two Parton Showers:

- Angular-ordered Parton Shower (PS)
- *p_T*-ordered Dipole Shower

Up/Down Variations of:

- μ_H argument of PDF, α_S in hard matrix element
- μ_S argument of PDF, α_S in the shower
- µ_Q shower starting/veto scale
- $\blacksquare\ \mu_{IR}$ shower cutoff

Parton-shower Variations: Profile scales

Figure: Profile Scales with $Q_{\perp} = 100 \text{ GeV}$

Power

Theta

HFact

$$\kappa(Q,q) = 1$$

 $\kappa(Q_{\perp}^2, q_{\perp}^2) = \theta(Q_{\perp}^2 - q_{\perp}^2)$

$$\kappa(Q_{\perp}^2,q_{\perp}^2) = \left(1+rac{q^2}{Q^2}
ight)^{-1}$$

 $\begin{array}{l} \mbox{Resummation} \\ \kappa(Q_{\perp}^2,q_{\perp}^2) = 1 \mbox{ below } (1-2\rho) \ Q_{\perp}, \\ 0 \mbox{ above } Q_{\perp}, \mbox{ and quadratically interpolating in between.} \end{array}$

Tuning vs. Variations

[Part of Les Houches proceedings, Bellm, Hoang, Lönnblad, Plätzer, Prestel, Samitz, AS]

To assess the effect of the correlation between infrared cut-offs and hadronization parameters with variations of α_s :

- **()** The central tune. This is simply chosen to be the default value. Its scale variation band (the envelope of the tune) is estimated by shifting $\alpha_s(M_z) \rightarrow \alpha_s(\{\frac{1}{c}, 1, \xi\}M_z) \rightarrow \alpha'_s(M_z)$, with
 - $\xi = 2$ without additional retuning for each $\alpha'_s(M_z)$ variation.
- ⁽²⁾ Two more tunes, called "retune" and the corresponding scale variation band, are obtained by the same $\alpha_s(M_z)$ variation as for "central" tune but this time we also retune to ALEPH data for each $\alpha'_s(M_z)$ variation.

For some observables it seems like the uncertainties shrink dramatically.

But there are also some surprises.

[See AS talk on Thursday and related talk by Andre Hoang]

16/29

Parton-Shower Reweighting

[Bellm, Plätzer, Richardson, AS, Webster, Phys.Rev. D94 (2016)]

excellent agreement between individual runs for different scales and reweighting

significant speed improvements: time in seconds for 10000 events

Shower	Hadron-	No			MPI					
	ization	MPI			Primary			All		
	& Decays	Direct	Reweight	Frac. Diff.	Direct	Reweight	Frac. Diff.	Direct	Reweight	Frac. Diff.
AO	Off	79.8	94.2	-0.18	384.4	249.1	0.35	416.7	375.1	0.09
	On	183.2	128.3	0.30	738.7	364.3	0.51	751.4	482.3	0.35
Dipole	Off	99.6	52.8	0.47	435.4	161.9	0.63	462.7	213.6	0.54
	On	271.8	108.2	0.60	831.7	286.6	0.65	859.2	340.1	0.60

Parton-showers in Herwig 7: Recent Developments

- Spin correlations in both the angular-ordered and dipole shower algorithms and between the PS and hard production and decay processes.

[P. Bichardson, S. Webster arXiv:1807.01955]

CMS data on the azimuthal separation of the leptons, in $pp \rightarrow tt$ events

Colour Rearrangement for Dipole Showers [J. Bellm Eur.Phys.J. C78 (2018) no.7, 601] Colour Matrix Element Corrections - full color structure for parton emissions in PS

Amplitude level PS evolution

IS. Plätzer, M. Siödahl, J. Thorén - see the Talk by Malin 1

[M. De Angelis, J. Forshaw, S. Plätzer, see talk by Matthew]

Matching and Merging: status

- NLO matched to parton showers as new default. Matching mechanism fully generic, fully automated for two showers and two matching schemes [subtractive (MC@NLO-type) multiplicative (Powheg-type)
 - performed by Matchbox module

[work led by S. Plätzer with substantial contributions by J. Bellm, A. Wilcock, M. Rauch, C. Reuschle]

- matrix elements in general from external providers via linked library
- Also a new matching method KrkNLO matched to the Dipole Shower is available in H7
 - Very simple. [Jadach, Nail, Placzek, Sapeta, AS, Skrzypek, Eur.Phys.J. C77 (2017) no.3, 164]
 - Price to pay: new pdf sets in MC scheme, we provide them based on standard MSbar sets.

So far implemented in Herwig for Z/H.

Matching and Merging: recent developments

NLO Merging to Parton Shower Combination of different jet multiplicities. Modified unitarized merging algorithm with the dipole shower

[Bellm, Gieseke, Plätzer EPJC 78 (2018)no.3,244] based on [Plätzer & Lönnblad, Prestel - 2012]

Example:

The uncertainty bands are produced by synchronized variation of the renormalization and factorization scale in the shower and ME calculation

Underlying event: - status (key components)

Based on electromagnetic form factor (radius of the proton free parameter)

Possibility of change of color structure (color reconnection)

The least understood part of modeling

Main parameters:

- μ^2 inverse hadron radius squared (parametrization of overlap function)
- ▶ p_t^{\min} transition scale between soft and hard components $\Rightarrow p_t^{\min} = p_{t,0}^{\min} \left(\frac{\sqrt{s}}{E_0}\right)^b$
- $\blacktriangleright p_{reco}$ colour reconnection

[Gieseke, Röhr, AS, EPJC C72 (2012)]

Underlying event: Recent Developments

Soft Physics

- Inclusion of diffractive topologies
- New soft peripheral MPI model
- The rapidity bump disappears

[S. Gieseke, F. Loshaj, P. Kirchgaeßer Eur.Phys.J. C78 (2018) no.2, 99]

Data Comparisons: Soft QCD

Underlying event@13TeV

This is prediction since the model was not tuned to 13 TeV data sets

A lot of progress in Soft Physics \rightarrow important to use up-to-date models and tunes! More is comming:

- Colour Reconnection from Soft Gluon Evolution [S. Gieseke, P. Kirchgaeßer, S. Plätzer, AS see Patrick's talk]
- Space-time Colour Reconnection

[Bellm, Blok, Duncan, Gieseke, Myska, AS]

Data Comparisons: Soft QCD Underlying Event

Collaborations starts to use H7. The first time in Measurement of event-shape

observables in $Z
ightarrow e^+ e^-$ by ATLAS

[Eur.Phys.J. C76, (2016), 375]

Transverse thrust \mathcal{T} distribution of charged particles for $Z \to e^+e^-$.

 $Z \rightarrow e^+ e^-$.

Summary & Outlook

Н7

Fully automated NLO plus parton-shower calculations by default

- Two matching algorithms
- Two parton showers
- NLO multi-jet merging
- Flexible, easy-to-use tool for both SM and BSM simulations
- Spin Correlations in Parton Shower Simulations

Further development:

- Parton Shower and Matching Uncertainties in Top Quark Pair Production with Herwig 7 very soon
- [K. Cormier, S. Plätzer, Ch. Reuschle, P. Richardson, S. Webster]
 more on NLO EW corrections (Recola together with an extension to mixed QCD+QED corrections in the Matchbox), QED radiation in the Dipole Shower...
- Matchbox), QED radiation in the Dipole Shower...
 Loop-induced processes
 Loop-induced processes
 Network on soft QCD: new colour re-connection models, ...
 fully exploit phenomenology potential (for example q/g discrimination
 (Reichelt, Richardson, AS Eur.Phys.J.
 C77 (2017) no.12, 876]),BSM [Richardson] and continue on uncertainties.
 Heavy Ion collisions via PISTA: Posterior Ion STAcking
 (see, J. Bellm, Ch. Bierlich arXiv:1807.01291)

• ...

H7

3-6 month fully funded studentships for current PhD students at one of the MCnet nodes. An excellent opportunity to really understand and improve the Monte Carlos you use!

Application rounds every 3 months.

MCnet projects Pythia+Vincia Herwig Sherpa MadGraph "Plugin" – Ariadne+HEJ CEDAR – Rivet+Professor +Contur+hepforge+...

Thank you for your attention!

Comparison with a recent resummation results

"A case study of quark-gluon discrimination at NNLL0 in comparison to parton showers" [J. Mo, F.Tackmann, W. Waalewijn, 1708.00867]

Thrust - similar to general angularity (1,2) but not restricted to particles in a jet.

$$T = \max_{\hat{t}} \frac{\sum_{i} |\hat{t} \cdot \vec{p_i}|}{\sum_{i} |\vec{p_i}|}, \quad \tau = 1 - T$$

Gluons, parton level, Q = 125 GeV

Gluons, hadron level, Q = 125 GeV

"This highlights the substantial improvement in the description of gluon jets in the latest version of Herwig"

[D. Reichelt, P. Richardson, AS, Eur.Phys.J. C77 (2017) no.12, 876]

18