The see-saw mechanism, neutrino Yukawa couplings, LFV decays and leptogenesis *

Yasutaka Takanishi SISSA, Trieste, Italy

6.-8. February 2006

Overview:

- MSSM + right-handed Majorana neutrinos (MSSMRN)
- Ansätze
- Lepton flavour violating processes in MSSMRN
- Parameterisation of Dirac Yukawa (def. of CP phases)
- Renormalisation group evolution effects
- Results
- Lepton flavour violation decays and thermal leptogenesis
- Conclusion

^{*}S. T. Petcov, T. Shindou, Y. T., Nucl. Phys. B 738 (2006) 219 [arXiv:hep-ph/0508243];

S. T. Petcov, W. Rodejohann, T. Shindou, Y. T., arXiv:hep-ph/0510404, to be published in Nucl. Phys. B

MSSM + right-handed Majorana Neutrinos

The superpotential with three right-handed Majorana neutrinos:

$$\mathscr{W} = \sum_{i,j=1,2,3} (Y_e)_{ij} \epsilon_{\alpha\beta} H^{\alpha}_d E^c_i L^{\beta}_j + (Y_d)_{ij} \epsilon_{\alpha\beta} H^{\alpha}_d D^c_i Q^{\beta}_j$$
$$+ (Y_u)_{ij} \epsilon_{\alpha\beta} H^{\alpha}_u U^c_i Q^{\beta}_j + \mu \epsilon_{\alpha\beta} H^{\alpha}_1 H^{\beta}_2$$
$$+ (V_u)_{ij} \epsilon_{\alpha\beta} H^{\alpha}_u V^c_i Q^{\beta}_j + \frac{1}{2} (M_u)_{ij} N^c_i N^c_j$$

$$+(Y_{
u})_{ij}\epsilon_{lphaeta}H^{lpha}_{u}N^{c}_{i}L^{eta}_{j}+rac{1}{2}(M_{R})_{ij}N^{c}_{i}N^{c}_{j},$$

where

- L_i : the chiral multiplet of a $SU(2)_L$ doublet lepton
- E_i^c : a $SU(2)_L$ singlet charged lepton
- N_i^c a right-handed Majorana neutrino
- H_d and H_u two Higgs doublets with opposite hypercharge
- Q, U and D chiral multiplets of quarks of a $SU(2)_L$ doublet and two singlets with different $U(1)_Y$ charges.
- $\epsilon_{\alpha\beta}$ is an anti-symmetric tensor with $\epsilon_{12} = 1$.

Using see-saw mechanism (ignoring left-handed Majorana term) effective neutrino mass matrix becomes:

$$\begin{aligned} M_{\text{eff}} &\approx & M_{\nu}^{\mathsf{T}} M_{R}^{-1} M_{\nu} \\ &= & v_{u}^{2} \sin^{2} \beta Y_{\nu}^{\mathsf{T}} M_{R}^{-1} Y_{\nu} \end{aligned}$$

This mass matrix is diagonalised by a single unitary matrix by

$$egin{array}{rcl} M_{ ext{eff}}^{ ext{diag}} &= ext{diag}(m_1,m_2,m_3) \ &= ext{$U_{ ext{eff}}^{ extsf{T}}$ $M_{ ext{eff}}$ $U_{ ext{eff}}$ } \end{array}$$

$$U_{\rm MNS} = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{13}s_{23}c_{12}e^{i\delta} & c_{23}c_{12} - s_{13}s_{23}s_{12}e^{i\delta} & c_{13}s_{23} \\ s_{23}s_{12} - s_{13}c_{23}c_{12}e^{i\delta} & -s_{23}c_{12} - s_{13}c_{23}s_{12}e^{i\delta} & c_{13}c_{23} \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha}{2}} & 0 \\ 0 & 0 & e^{i\frac{\beta}{M}} \end{pmatrix} ,$$

where $c_{ij} = \cos \theta_{ij}$, $s_{ij} = \sin \theta_{ij}$, the angles $\theta_{ij} = [0, \pi/2]$, $\delta = [0, 2\pi]$ is the Dirac CP-violating phase and α and β_M are two Majorana CP-violation phases.

Our Assumptions

• Gauge unification at GUT scale ($\sim 2.3 \times 10^{16} \text{ GeV}$)

 $g_1 = g_2 = g_3 \sim 0.71$

- All fermion masses and mixing angles are positive defined quantities. (Values from PDG)
- $\Delta m_{21}^2 = 8.0 \times 10^{-5} \text{eV}^2$, $\sin^2 \theta_{12} = 0.31$ at M_Z .
- $|\Delta m_{31}^2| = 2.2 \times 10^{-3} \text{eV}^2$, $\sin^2 2\theta_{23} = 1.0$ at M_Z .
- The first- and third-generation mixing angle in the neutrino sector at M_Z : $\tan \theta_{13} = 0.0$.
- soft SUSY breaking
- mSUGRA at GUT scale

Gauginos: $M_1 = M_2 = M_3$ Scalers: $(m_{\tilde{L}}^2)_{ij}$ etc. $= \delta_{ij}m_0^2$ and $m_{H_u}^2 = m_{H_d}^2 = m_0^2$

• Y_d and Y_e are diagonal at GUT scale

Lepton Flavour Violation processes

The soft SUSY breaking Lagrangian – lepton part – is a source of lepton flavour violation

$$-\mathscr{L}_{\text{soft}} = (m_{\widetilde{L}}^2)_{ij}\widetilde{L}_i^{\dagger}\widetilde{L}_j + (m_{\widetilde{e}}^2)_{ij}\widetilde{e}_{Ri}^*\widetilde{e}_{Rj} + (m_{\widetilde{\nu}}^2)_{ij}\widetilde{\nu}_{Ri}^*\widetilde{\nu}_{Rj} + \left((A_e)_{ij}H_d\widetilde{e}_{Ri}^*\widetilde{L}_j + (A_\nu)_{ij}H_u\widetilde{\nu}_{Ri}^*\widetilde{L}_j + h.c. \right) \,.$$

We assume that soft SUSY breaking matrices are diagonal and universal in flavour at GUT scale, but they are affected by renormalisation via Yukawa and gauge interactions \rightarrow the LFV in the Yukawa couplings will induce LFV in the slepton mass matrix at low energy.

The Renormaisation equation for the left-handed slepton mass matrix is

$$\begin{split} \mu \frac{d}{d\mu} \left(m_{\widetilde{L}}^2 \right)_{ji} &= \left. \mu \frac{d}{d\mu} \left(m_{\widetilde{L}}^2 \right)_{ji} \right|_{\text{MSSM}} \\ &+ \frac{1}{16\pi^2} \left[\left(m_{\widetilde{L}}^2 Y_{\nu}^{\dagger} Y_{\nu} + Y_{\nu}^{\dagger} Y_{\nu} m_{\widetilde{L}}^2 \right)_{ji} \\ &+ 2 \left(Y_{\nu}^{\dagger} m_{\widetilde{\nu}}^2 Y_{\nu} + \widetilde{m}_{H_u}^2 Y_{\nu}^{\dagger} Y_{\nu} + A_{\nu}^{\dagger} A_{\nu} \right)_{ji} \right] \end{split}$$

where the first term does not violate the lepton flavour, while the second one does.

Yasutaka Takanishi

Flavour in the era of the LHC, CERN

- (a) slepton-neutralino interaction
- (b) sneutrino-chargino interaction

An approximation for the additional contribution to the off-diagonal element of the slepton mass matrix:

$$(\Delta m_{\tilde{L}}^2)_{ji} \approx -\frac{\ln(M_{\rm GUT}/M_R)}{16\pi^2} \left(6m_0^2 + 2A_0^2\right) \left(Y_{\nu}^{\dagger}Y_{\nu}\right)_{ji} \tan^2\beta$$

Note: These calculations have been performed without employing the reading-log and the mass insertion approximations., *i.e.*, full one-loop calculations.

Parametrisation of Dirac neutrion Yukawa

We parametrise the Dirac neutrino Yukawa coupling constant using a complex orthogonal matrix, R which satisfies $R^{\mathsf{T}}R = 1$

$$Y_
u(M_R) = rac{1}{v_u} \sqrt{D_N(M_R)} \; R \; \sqrt{D_
u(M_R)} \; U^\dagger(M_R) \; ,$$

in the Y_e and Y_{ν} diagonal basis. Here

$$\sqrt{M_R} = \operatorname{diag}(\sqrt{M_1}, \sqrt{M_2}, \sqrt{M_3}), \ \sqrt{D_{\nu}} = \operatorname{diag}(\sqrt{m_1}, \sqrt{m_2}, \sqrt{m_3}).$$

We use in our study $R = Oe^{iA}$, where O is a real orthogonal matrix, and A is a real antisymmetric matrix, $A^{\mathsf{T}} = -A$, that is

$$A = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} ,$$

where a, b, c are real parameters.

Note: Y_{ν} is expressed by an "artificial" orthogonal matrix R which is defined at the scale of M_R , therefore all quantities – ν -masses, ν -mixing angles – should evaluate in that scale with help of renormalisation group equations.

The renormalisation group evolution effects

For simplicity we have consider further assumptions.

- Neutrino mass spectrum is normal hierarchical $m_1 < m_2 < m_3$
- The right-handed Majorana Yukawa coupling constants are one at GUT scale: degenerate M_R : $M_{R1} = M_{R2} = M_{R3}$.

We summarise the important results here (roughly speaking...):

- The corrections can become significant for relatively large $\tan \beta$.
- The mixing angles are stable for *normal hierarchical* neutrino mass spectrum.
- For $m_1 \gtrsim 0.05$ eV, the RG running effects can change significantly the mixing angles. The corrections are relatively small even for large $\tan \beta$ if $m_1 \lesssim 0.05$ eV.
- The neutrino mixing angles depend strongly on the Majorana phase α .
- The RG running effects depend weakly on the Majorana phase β_M .
- Mass squared differences depend strongly on m_1 in the interval $m_1 \gtrsim 0.05$ eV, and on α for $m_1 \gtrsim 0.10$ eV.

The dependence of $\tan^2 \theta_{12}$, $\tan^2 \theta_{23}$ and of $\sin \theta_{13}$, evaluated at M_R , on the lightest neutrino mass m_1 for $\tan \beta = 10$. M_R is fixed as $M_R = 2 \times 10^{13}$ GeV.

The dependence of $\tan^2 \theta_{12}$, $\tan^2 \theta_{23}$ and of $\sin \theta_{13}$, evaluated at M_R , on the lightest neutrino mass m_1 for $\tan \beta = 50$. M_R is fixed as $M_R = 2 \times 10^{13}$ GeV.

The light neutrino mass differences at the scale M_R as a functions of m_1 for $\alpha = 0, \pi$ and $\tan \beta = 10, 50$: (a) $\Delta m_A^2(M_R) \equiv m_3^2(M_R) - m_1^2(M_R)$ (b) $\Delta m_{\odot}^2(M_R) \equiv m_2^2(M_R) - m_1^2(M_R)$.

The branching ratios of the LFV decay $\mu \to e + \gamma$ versus m_1 in the case of $\mathbf{R} = \mathbf{1}$ for $\alpha = 0, \ \pi/2, \ \pi. \ \tan \beta = \mathbf{10}$ (left) and $\tan \beta = \mathbf{50}$ (right).

Yasutaka Takanishi

Flavour in the era of the LHC, CERN

 $\mathbf{R} \neq 1$ case

The branching ratios of the LFV decay $\mu \to e + \gamma$ versus m_1 in the case of complex matrix $\mathbf{R} \neq \mathbf{1}$ for $\alpha = 0, \pi/2, \pi$. $\tan \beta = \mathbf{10}$ (left) and $\tan \beta = \mathbf{50}$ (right). The three constants a, b, c are assumed to be $-0.1 \leq a, b, c \leq 0.1$.

Lepton flavour violation decays and Leptogenesis

The cosmological aspect of the connection see-saw mechanism and low energy neutrino physics; baryon asymmetry of the Universe via the leptogenesis mechanism.

$$Y_B = (6.15 \pm 0.25) \times 10^{-10}$$

The right-handed Neutrino masses are $M_1 \ll M_2 \ll M_3$, (natural!) the baryon asymmetry is given by

$$Y_B \simeq -10^{-2} \,\kappa \,\epsilon_1 \;,$$

where ϵ_1 is the CP-violating asymmetry in the decay of N_1 (mass M_1), and κ is a dilution factor.

The CP-violating decay asymmetry ϵ_1 :

$$\epsilon_1 \simeq \frac{1}{8\pi (Y_{\nu}Y_{\nu}^{\dagger})_{11}} \sum_{i=2,3} \operatorname{Im}\left[\left\{ (Y_{\nu}Y_{\nu}^{\dagger})_{1i}\right\}^2 \right] f(x_i) ,$$

where $x_i = M_i^2/M_1^2$ and $f(x_i)$ is defined by

$$f(x_i) \equiv -\sqrt{x_i} \ln\left(1 + \frac{1}{x_i}\right) - \frac{2\sqrt{x_i}}{x_i - 1}.$$

Yasutaka Takanishi

Flavour in the era of the LHC, CERN

The correlation between the predicted baryon asymmetry Y_B and $Br(\mu \rightarrow e + \gamma)$ in the case of inverted hierarchical light neutrino mass spectrum and for $M_1 = 7.0 \times 10^{12}$ GeV and $M_2 = 4.0 \times 10^{13}$ GeV. The values of SUSY parameters are $m_0 = m_{1/2} = 250$ GeV, $A_0 = -100$ GeV and $\tan \beta = 5$.

The correlation between the predicted baryon asymmetry Y_B and $Br(\mu \rightarrow e + \gamma)$ in the case of quasi-degenerate light neutrino mass spectrum and $M_1 = 3.0 \times 10^{13}$ GeV, $M_2 = 1.2 \times 10^{14}$ GeV, $M_2 = 4.8 \times 10^{14}$ GeV. The values of SUSY parameters are $m_0 = 300$ GeV, $m_{1/2} = 1400$ GeV, $A_0 = 0$ and $\tan \beta = 5$.

Conclusion

- We have calculated lepton flavour violating processes using full RGEs including non-renormalisable RGE for the $M_{\rm eff}$ under many assumptions (too much restrictive!)
- We considered the effects of Majorana CP-violation phases in $U_{\rm MNS}$, and of the RG "running" of light neutrino masses and mixing angles from M_Z to the right-handed Majorana neutrino mass scale M_R . These quantities can run but not so significantly (some of cases, we should say a lot.)
- Furthermore, we find that the effects of the CP-violation phases in the Dirac neutrino Yukawa coupling can change by few orders of magnitude the predicted rates of the LFV decays $\mu \rightarrow e + \gamma \ etc.$ So we really need very carful treatments for phases!

 Satisfying the combined constraints from the existing upper limit on Br(μ → e + γ) etc. and the requirement of successful thermal leptogenesis proves to be a powerful tool to test the viability of supersymmetric theories with see-saw mechanism and soft flavour-universal SUSY breaking scenario.