Charged Lepton LFV Decays, Majorana CP-Violating Phases, Leptogenesis and $(\beta\beta)_{0\nu}$ -Decay

S. T. Petcov

SISSA/INFN, Trieste, Italy, and INRNE, Bulgarian Academy of Sciences, Sofia, Bulgaria

> Flavor in the Era of the LHC CERN February 6 - 8, 2006

The Role of LFV Decays: $\mu \rightarrow e + \gamma$

For $M_1 \ll M_2 \ll M_3$, $M_3 \gtrsim 5 \times 10^{15}$) GeV,

 $M_{SUSY} \sim (100 - 600)$ GeV (LHC), e.g.,

 $m_0 = m_{1/2} = 250 \text{ GeV}, \quad A_0 = a_0 m_0 = -100 \text{ GeV},$

 $BR(\mu \rightarrow e + \gamma) < 1.2 \times 10^{-11}$ implies:

terms $\sim M_3$ in $|(\mathbf{Y}_{\nu}^{\dagger}L\mathbf{Y}_{\nu})_{21}|$ – suppressed.

One possible solution - the form of \mathbf{R} .

IH (QD) spectrum:

$$\mathbf{R} \simeq \begin{pmatrix} \cos \omega & \sin \omega & 0\\ -\sin \omega & \cos \omega & 0\\ 0 & 0 & 1 \end{pmatrix} . \tag{1}$$

The terms $\sim M_2$ in $|(\mathbf{Y}_{\nu}^{\dagger}L\mathbf{Y}_{\nu})_{21}| - \text{dominant}$.

Leptogenesis, IH spectrum: $M_1 \gtrsim 7 \times 10^{12}$ GeV, ω -complex. $M_2 \gtrsim 5 \times 10^{13}$ GeV: predicted $BR(\mu \rightarrow e + \gamma) \gg 10^{-11}$ Two possibilities:

• $M_{SUSY} \sim (600 - 2000)$ GeV, $(m_{1/2} \gg m_0, \text{ e.g}, m_0 = 300$ GeV, $m_{1/2} = 1400$ GeV, $a_0m_0 = 0)$

• $M_{SUSY} \sim (100-600)$ GeV, but $\mathbf{Y}_{\nu 21} = 0$, or $\mathbf{Y}_{\nu 22} = 0$

A. $Y_{\nu 21} = 0$:

$$an \omega = e^{-i lpha/2} \, an heta_{12}.$$

B. $\mathbf{Y}_{\nu 22} \cong \mathbf{0}$, neglecting s_{13} :

$$\tan \omega = -e^{-i\alpha/2} \cot \theta_{12}.$$

Leptogenesis: ω -complex; thus $\alpha \neq 0, \pi$, CP-violating values

B. $Y_{\nu 22} = 0$, including s_{13} :

$$\tan \omega = -\frac{c_{12} - s_{12}s_{13}e^{-i\delta}}{s_{12} + c_{12}s_{13}e^{-i\delta}} e^{-i\alpha/2}$$

IH spectrum:

$$|\langle m \rangle| \cong \sqrt{\Delta m_{13}^2} \left| \cos^2 \theta_{12} + e^{i\alpha} \sin^2 \theta_{12} \right|$$

S.T. Petcov, T. Shindou and Y. Takanishi, 2006

Figure 1: $B(\mu \to e\gamma)$ for $s_{13} = 0$ as a function of Y_B . The SUSY parameters are fixed as $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan \beta = 5$.

Figure 2: $B(\tau \to \mu \gamma)$ for $s_{13} = 0$ as a function of Y_B . The mass of next lightest heavy neutrino is taken as $M_2/M_1 = 10$, and the SUSY parameters are fixed as $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan \beta = 5$.

Figure 3: The correlation between $\mu \to e\gamma$ and $\tau \to \mu\gamma$. $M_2/M_1 = 10$, $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan\beta = 5$ are taken. The constraint on Y_B , $5.0 \times 10^{-10} \le Y_B \le 7.0 \times 10^{-10}$ is taken into account.

Figure 4: $B(\mu \to e\gamma)$ for $M_1 = 1.0 \times 10^{13}$ GeV and $M_2/M_1 = 10$. The Dirac CP phase is taken as $\delta = 0$ and the SUSY parameters are fixed as $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan \beta = 5$.

Figure 5: $B(\mu \rightarrow e\gamma)$ for $M_1 = 1.0 \times 10^{13}$ GeV and $M_2/M_1 = 10$. $|s_{13}| = 0.1$ is considered and the SUSY parameters are taken as $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan \beta = 5$.

Figure 6: Predicted values of Y_B and $B(\mu \to e\gamma)$ for $s_{13} = 0$. The SUSY parameters are fixed as $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan \beta = 5$.

Figure 7: Y_B and $B(\mu \to e\gamma)$ for $M_1 = 1.0 \times 10^{13}$ GeV and $M_2/M_1 = 10$. The Dirac CP phase is fixed as $\delta = 0$. The fixed SUSY parameters are considered: $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan \beta = 5$.

Figure 8: Y_B and $B(\mu \rightarrow e\gamma)$ for $M_1 = 1.0 \times 10^{13} \text{GeV}$ and $M_2/M_1 = 10$. $|s_{13}| = 0.1$ is taken and the SUSY parameters are fixed as $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan \beta = 5$.

Figure 9: $B(\mu \rightarrow e\gamma)$ for $s_{13} = 0$ as a function of Y_B . The SUSY parameters are fixed as $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan \beta = 5$.

Figure 10: $B(\tau \to \mu \gamma)$ for $s_{13} = 0$ as a function of Y_B . The mass of next lightest heavy neutrino is taken as $M_2/M_1 = 10$, and the SUSY parameters are fixed as $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan \beta = 5$.

Figure 11: The correlation between $\mu \to e\gamma$ and $\tau \to \mu\gamma$. $M_2/M_1 = 10$, $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan\beta = 5$ are taken. The constraint on Y_B , $5.0 \times 10^{-10} \le Y_B \le 7.0 \times 10^{-10}$ is taken into account.

Figure 12: Predicted values of Y_B and $B(\mu \rightarrow e\gamma)$ for $s_{13} = 0$. The SUSY parameters are fixed as $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan \beta = 5$.

Figure 13: Y_B and $B(\mu \to e\gamma)$ for $M_1 = 1.0 \times 10^{13}$ GeV and $M_2/M_1 = 10$. The Dirac CP phase is fixed as $\delta = 0$. The fixed SUSY parameters are considered: $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan \beta = 5$.

Figure 14: Y_B and $B(\mu \rightarrow e\gamma)$ for $M_1 = 1.0 \times 10^{13}$ GeV and $M_2/M_1 = 10$. $|s_{13}| = 0.1$ is taken and the SUSY parameters are fixed as $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan \beta = 5$.