

Hadronic Uncertainties in Charmless Two-Body *B*-Decays

Thorsten Feldmann

(Fachbereich Physik, Universität Siegen)

- CERN LHC/Flavour-Workshop - 6.-8. Februar 2006

Charmless
B Decays
Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Q: What do we mean by hadronic uncertainties?

A: Strong-interaction effects that cannot be calculated perturbatively, as a short-distance QCD sub-process!

Q: How to disentangle?

A: Factorization

$$\langle \pi\pi|H_{ ext{eff}}^{\Delta B=1}|B
angle = \sum$$
 [pert. function] \otimes [hadronic quantities]

Q: Why is naive factorization incomplete?

$$\langle \pi \pi | H_{\text{eff}}^{\Delta B=1} | B \rangle = \sum_{i} C_{i}(\mu) \underbrace{\langle \pi_{1} | J_{1}^{i} | B \rangle}_{\uparrow} \underbrace{\langle \pi_{2} | J_{2}^{i} | 0 \rangle}_{\downarrow}$$

Vilson coeff. form factor decay constan

A: No QCD cross-talk between $|\pi_2\rangle$ and other hadrons, \Rightarrow r.h.s. depends on factorization scale μ .

B Decays
Th. Feldmann

Charmless

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Q: What do we mean by hadronic uncertainties?

A: Strong-interaction effects that cannot be calculated perturbatively, as a short-distance QCD sub-process!

Q: How to disentangle?

A: Factorization:

$$\langle \pi\pi|H_{\mathrm{eff}}^{\Delta B=1}|B
angle =\sum$$
 [pert. function] \otimes [hadronic quantities]

$$\langle \pi \pi | \mathcal{H}_{\text{eff}}^{\Delta B=1} | B \rangle = \sum_{i} \underbrace{C_{i}(\mu)}_{\uparrow} \underbrace{\langle \pi_{1} | J_{1}^{i} | B \rangle}_{\downarrow} \underbrace{\langle \pi_{2} | J_{2}^{i} | 0 \rangle}_{\downarrow}$$

Wilson coeff. form factor decay constant

4□ ト 4回 ト 4 亘 ト 4 亘 ト り 9 0 0 0

A: No QCD cross-talk between $|\pi_2\rangle$ and other hadrons, \Rightarrow r.h.s. depends on factorization scale μ .

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Q: What do we mean by hadronic uncertainties?

A: Strong-interaction effects that cannot be calculated perturbatively, as a short-distance QCD sub-process!

Q: How to disentangle?

A: Factorization:

$$\langle \pi\pi|H_{\mathrm{eff}}^{\Delta B=1}|B
angle =\sum$$
 [pert. function] \otimes [hadronic quantities]

Q: Why is naive factorization incomplete?

$$\langle \pi\pi|H_{ ext{eff}}^{\Delta B=1}|B
angle = \sum_{i} \frac{C_i(\mu)}{\uparrow} \underbrace{\langle \pi_1|J_1^i|B
angle}_{ ext{form factor}} \underbrace{\langle \pi_2|J_2^i|0
angle}_{ ext{wilson coeff.}}$$

A: No QCD cross-talk between $|\pi_2\rangle$ and other hadrons, \Rightarrow r.h.s. depends on factorization scale μ .

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Corrections to naive factorization

4 kinds of external momentum configurations

► heavy *b* quark: $p_b \simeq m_b (1, 0_\perp, 0)$

▶ soft spectators: $p_s \simeq (0,0_{\perp},0)$

• collinear pion₁: $p_{c1} \simeq m_b/2(1, 0_{\perp}, +1)$

▶ collinear pion₂: $p_{c2} \simeq m_b/2 (1, 0_{\perp}, -1)$

(in B rest frame)

Interactions lead to the following internal modes:

	heavy	soft	coll ₁	coll ₂
heavy	_	heavy	hard	hard
soft	heavy	soft	hard-coll ₁	hard-coll ₂
coll ₁	hard	hard-coll ₁	coll ₁	hard
coll ₂	hard	hard-coll ₂	hard	coll ₂

where

- hard modes have invariant mass of order m_b
- ▶ hard-collinear modes have invariant mass $\sim \sqrt{\Lambda m_b}$

Q: Are hard and hard-collinear interactions factorizable?

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

QCD-improved factorization (BBNS)

Are hard and hard-collinear interactions factorizable?

Not always, but at leading power in Λ/m_b expansion:

- Starting point: naive factorization, requires:
 - ▶ $B \rightarrow \pi_1$ form factor: $F_+^{B \rightarrow \pi}(0)$ (already includes non-factorizable hard-collinear, dynamics!)
 - \blacktriangleright π_2 decay constant:

Charmless **B** Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

QCD-improved factorization (BBNS)

Q: Are hard and hard-collinear interactions factorizable?

A: Not always, but at leading power in Λ/m_b expansion:

- hard vertex correction $\rightarrow T_{\rm I}(\nu; \mu, \mu_0)$
 - ▶ depends on factorization scale μ matches $C_i(\mu)$
 - \blacktriangleright depends on momentum fraction ν of collinear quark in π_2

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

QCD-improved factorization (BBNS)

Q: Are hard and hard-collinear interactions factorizable?

A: Not always, but at leading power in Λ/m_b expansion:

- hard-collinear spectator correction $\to T_{\rm II}(u, v, \omega; \mu, \mu_0)$
 - \blacktriangleright depends on factorization scale μ
 - depends on momenta of collinear quarks and soft spectators
 - ⇒ Also needs LCDA for *B*-meson:

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Soft-collinear effective theory

Q: What is the difference between QCD-improved factorization and SCET?

A: NONE! They are equivalent!

	QCD-F	SCET
factorization:	diagrammatic (method of regions) [Beneke/Smirnov 98]	perturbative matching (fields and operators)
resummation of Sudakov logs:	"by hand" [Korchemsky/Sterman 94] (not in BBNS 99)	renormalization group [Bauer et al. 2001]

A: still, SCET makes power-counting, emergence of approximative symmetries etc. more transparent . . .

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Soft-collinear effective theory

Q: What is the difference between QCD-improved factorization and SCET?

A: NONE! They are equivalent!

	QCD-F	SCET
factorization:	diagrammatic (method of regions) [Beneke/Smirnov 98]	perturbative matching (fields and operators)
resummation of Sudakov logs:	"by hand" [Korchemsky/Sterman 94] (not in BBNS 99)	renormalization group [Bauer et al. 2001]

A: still, SCET makes power-counting, emergence of approximative symmetries etc. more transparent . . .

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Soft-collinear effective phenomenology

Q: What is the difference between

► BBNS

[Beneke/Buchalla/Neubert/Sachrajda 1999+]

and BPRS ?

[Bauer/Pirjol/Rothstein/Stewart 2004+]

A: Different assumptions about non-perturbative input:

	BBNS	BPRS
factorization formula:	reasonable values ± generous errors (form factor and LCDAs)	fit $T_{\rm I}$ and $T_{\rm II}$ to data (called ζ and ζ_J , real)
"charming penguins": [Ciuchini 97]	short-distance, (incl. in hard functions)	"charm-loop" left as phenomenological fit parameter (Δ^P)
non-factorizable power-corrections:	rough estimate of annihilation and sub-leading hard-scattering effects $(X_A \text{ and } X_H)$	assumptions about systematic uncertainties

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

perturbative QCD approach (pQCD)

Charmless B Decays

Th. Feldmann

Q: What is the difference between

QCD Factorization

▶ and pQCD ?

[Keum/Li/Sanda]

A: non-factorizable terms in QCDF

→ perturbatively calculated in pQCD (systematics?)

- pQCD requires additional IR-regularization
 - exponentiation of Sudakov logarithms into form factor in transverse space
 - sensitive to endpoint behaviour of hadronic wave functions (model-dependent!)
 - neglect of higher Fock states
 - does not contain naive factorization as limiting case
- \Rightarrow non-factorizable effects and strong interaction phases are counted as $\mathcal{O}(1)$ in pQCD

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Q: Is there a model-independent approach to $B \to \pi\pi$?

A: Yes, use isospin symmetry!

- neglect sub-leading electroweak penguins
- ▶ isospin amplitudes, 5 independent real parameters

T(ree), $e^{i\theta_P} P$ (enguin), $e^{i\theta_C} C$ (olour suppressed tree)

- ► broken by photon radiation from charged hadrons (→ experimental issue, see talk by E. Barbiero from Nov.05 and [Baracchini/Isidori 05])
- Q: Can $B \to \pi\pi$ data tell us WHICH assumptions about hadronic effects (e.g. in BBNS or BPRS) are justified?
- A: No! Very different assumptions about (possibly large) non-factorizable effects can accomodate (present) experimental data. [see, for instance TF/Hurth 2004]

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Q: Is there a model-independent approach to $B \to \pi\pi$?

A: Yes, use isospin symmetry!

- neglect sub-leading electroweak penguins
- isospin amplitudes, 5 independent real parameters

T(ree), $e^{i\theta_P} P$ (enguin), $e^{i\theta_C} C$ (olour suppressed tree)

- ▶ broken by photon radiation from charged hadrons (→ experimental issue, see talk by E. Barbiero from Nov.05 and [Baracchini/Isidori 05])
- **Q:** Can $B \to \pi\pi$ data tell us WHICH assumptions about hadronic effects (e.g. in BBNS or BPRS) are justified?
- A: No! Very different assumptions about (possibly large) non-factorizable effects can accomodate (present) experimental data.

 [see, for instance TF/Hurth 2004]

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Sub-leading effects in SCET

▶ $SU(3)_F$ relations for $B \to \pi\pi$, πK and $B_s \to KK$

Q: How large are corrections to symmetry limit?

A: Factorizable $SU(3)_F$ corrections can be estimated $(f_K/f_\pi \text{ and } F^{B\to K}/F^{B\to \pi})$

Q: What about <u>non-factorizable</u> SU(3)_F corrections?

A: Probably not larger than 30%

Needs experimental input (Tevatron, LHC) / cross-check with non-perturbative methods (see below)

Q: Can one use isospin-symmetry in $B \to \pi K$?

A: Different situation than in $B \to \pi\pi$ because of different CKM structure:

- short-distance isospin violation included via EW penguins from SM or NP
- long-distance contributions from non-factorizable QED effects:
 WARNING! — Expansion parameter enhanced, if non-factorizable power corrections are numerically important

$$rac{lpha_{
m QED}}{lpha_{
m D}} \longrightarrow lpha_{
m QED} \ln rac{\Lambda}{m_b} \sim rac{lpha_{
m QED}}{lpha_{
m S}}$$

"π-K puzzle"

(somewhat too large deviations between charged and neutral decay modes)

may partly be solved by QED corrections! [TF/Hurth 04] ...deserves further studies ...

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

No input from lattice (cannot simulate fast pions)

Charmless
B Decays
Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Uni Siegen

Non-factorizable effects from light-cone sum rules:

- Replace soft and/or collinear final states by appropriate interpolating currents
- Dispersion relation for correlation function
- **.** . . .
- result in terms of sum-rule parameters and form factors, decay constants, LCDAs, condensates, quark masses ...

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Uni Siegen

Charmless
B Decays
Th. Feldmann

- ▶ Input to factorization formula from LCSRs:
 - form factor:

$$\begin{array}{lcl} F_+^{B\to\pi}(0) & = & 0.26\pm0.03 \\ & \frac{F_+^{B\to K}(0)}{F_-^{B\to\pi}(0)} & = & 1.2-1.5 & \text{LCSR in QCD } [\to \text{talk by R. Zwicky}] \\ \xi_{\text{soft}}^{B\to\pi} \equiv \zeta & = & 0.27_{-0.12}^{+0.09} \\ & \zeta_J & \ll & \zeta & \text{LCSR in SCET } [\text{DeFazio/TF/Hurth 05}] \end{array}$$

Non-perturbative Methods

Factorization

Symmetries

summary.tmp
Sub-leading
effects in SCET

▶ inverse moment of pion LCDA:

$$\langle u^{-1}
angle_\pi=3.3\pm0.3$$
 (at $\mu=$ 1 GeV)

▶ inverse moment of the *B*-meson LCDA:

$$\langle \omega^{-1} \rangle_B = (2.15 \pm 0.50) \text{ GeV}^{-1}$$
 (at $\mu = 1 \text{ GeV}$)

Braun/Ivanov/Korchemsky 03, see also Lee/Neubert 05]

▶ Estimate of non-factorizable corrections in $B \to \pi\pi$:

[Khodjamirian et al. hep-ph/0509049] [preliminary results from M. Melcher (work in preparation)]

$$\mathcal{A}(\bar{B}_d^0 o \pi^+\pi^-) = (\text{naive}) imes \left\{ \lambda_{\it{U}}(c_1 + c_2/3) + \sum\limits_{\it{k},\it{T}} \lambda_{\it{k}} \tilde{c}_{\it{k}} r_{\it{k},\it{T}}^{(\pi\pi)}
ight\}$$

From LCSRs in QCD (finite m_b):

"emission topologies":

$$10^2 \times r_{E}^{(\pi\pi)} = \left(1.8^{+0.5}_{-0.7}\right)_{1/m_b} + \left[\left(-1.9^{+0.5}_{-0.1}\right) + i\left(-3.6^{+1.0}_{-0.4}\right)\right]_{\alpha_s}$$

"charming penguin":

$$10^2 \times r_{P_G}^{(\pi\pi)} = -0.18^{+0.06}_{-0.68} + i \left(-0.80^{+0.17}_{-0.08} \right)$$

Non-factorizable effects, including FSI phases, small (?)

Charmless **B** Decays

Th. Feldmann

Factorization

Symmetries Non-perturbative

Methods

summary.tmp

▶ $SU(3)_F$ breaking in $B \to \pi K$ from LCSR:

[Khodjamirian/Mannel/Melcher hep-ph/0407226]

- in terms of m_s , $\langle \bar{s}s \rangle$ and a_1^K (kaon DA)
- ▶ typical $SU(3)_F$ relation: (emission topology only)

$$A(B^- \to \pi^- \bar{K}^0) + \sqrt{2}A(B^- \to \pi^0 K^-)$$

$$= \sqrt{2} \left(\frac{V_{us}}{V_{ud}}\right) A(B^- \to \pi^- \pi^0) \{1 + \delta_{SU(3)}\}$$

► Estimate: $\delta_{SU(3)} = (0.215^{+0.019}_{-0.016}) + (-0.009^{+0.009}_{-0.010})i$ (consistent with naive expectation)

Charmless
B Decays
Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

summary.tmp

- hadronic uncertainties as input to QCD factorization
- ▶ non-factorizable hadronic uncertainties at $\mathcal{O}(1/m_b)$
- symmetry constraints
- non-perturbative effects estimated via LCSRs (in QCD or in SCET)
- phenomenological situation not completely satisfactory
 - depends on particular channel/observable
 - may partly be improved by NNLO effects in QCDF

 $[\to \text{talk by S. Jäger}]$

more experimental feedback may help, too!

Q: Can we do better?

A: It may be worth looking at sub-leading effects from the SCET perspective . . . [see also TF/Hurth 04]

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

summary.tmp

- hadronic uncertainties as input to QCD factorization
- ▶ non-factorizable hadronic uncertainties at $\mathcal{O}(1/m_b)$
- symmetry constraints
- non-perturbative effects estimated via LCSRs (in QCD or in SCET)
- phenomenological situation not completely satisfactory
 - depends on particular channel/observable
 - may partly be improved by NNLO effects in QCDF

 $[\to \text{talk by S. Jäger}]$

more experimental feedback may help, too!

Q: Can we do better?

A: It may be worth looking at sub-leading effects from the SCET perspective . . . [see also TF/Hurth 04]

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Q: How do the leading (non-local) operators look like?

A: (schematically, using light-cone gauge)

 $(\bar{\xi}_L^{hc2} \, \Gamma \, \xi_L^{hc2}) \, (\bar{\xi}_L^{hc1} \, {\color{red} h_v})$

 $(\bar{\xi}_L^{hc2} \, \Gamma \, \xi_L^{hc2}) \, (\bar{\xi}_L^{hc1} \, \not\!\! A_{hc1}^\perp \, \not\!\! h_v)$

QCD-factorizable

[see also Chay/Kim, Bauer et al.]

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Q: What, if one changes the chirality of light quarks?

A: same kind of diagrams, ...

$$(\bar{\xi}_{L}^{hc2} \Gamma \, \xi_{R}^{hc2}) (\bar{\xi}_{R}^{hc1} \, h_{v})$$

- different hard-matching coefficient functions
- \rightarrow chirally enhanced power corrections $\sim m_\pi^2/(2m_q m_b)$ (X_H in BBNS)

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Q: What about different colour projection?

A: requires additional soft gluon radiation

$$(\bar{\xi}_{L}^{hc2} \Gamma T^{A} \xi_{L}^{hc2}) (\bar{\xi}_{L}^{hc1} T^{A} h_{v})$$
 $A_{s} = 0$
 C_{2}
 C_{3}
 C_{4}
 C_{3}
 C_{4}
 C_{5}
 C_{6}
 C_{7}
 C_{1}
 C_{1}

$$(\bar{\xi}_L^{hc2}\Gamma T^A \xi_L^{hc2}) (\bar{\xi}_L^{hc1} A_{hc1}^{\perp} T^A h_v)$$

- sensitive to higher Fock states with additional soft gluon
- → power corrections to "colour-suppressed tree"

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

- change isospin projection of light quark pair
 - \rightarrow power corrections to "penguin" amplitude

$$(\bar{\xi}_L^{hc2} \Gamma \xi_L^{hc2})_{I=0} (\bar{\xi}_L^{hc1} h_{\nu})$$

- Sensitive to higher Fock states with additional $q\bar{q}$ pairs.
- ► Count $\sqrt{\Lambda m_b} \sim m_c \ll m_b$ \Rightarrow (I = 0) can also be $c\bar{c}$ \Rightarrow charm and light-quark loops on the same footing!

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Q: What about annihilation of soft spectator quark?

A: requires additional $q\bar{q}$ pair

$$(\bar{\xi}_L^{hc2} \Gamma T^A \xi_L^{hc2})_{I=0} (\bar{\xi}_L^{hc1} T^A h_v)$$

$$(\bar{\xi}_L^{hc2}\Gamma T^A \xi_L^{hc2})_{l=0} (\bar{\xi}_L^{hc1} A_{hc1}^{\perp} T^A h_v)$$

- Sensitive to higher Fock states with additional $q\bar{q}$ pairs.
- → soft contribution to annihilation (power-suppressed)

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp

Q: Are there operators with more than 4 quarks?

A: Yes, via pair production from hard gluons . . .

$$(\bar{\xi}^{hc2}\Gamma\xi^{hc2})(\bar{\xi}^{hc1}\Gamma'\xi^{hc1})(\bar{q}_s\Gamma''h_v)$$

 \rightarrow hard contribution to annihilation (X_A in BBNS)

Charmless B Decays

Th. Feldmann

Factorization

Symmetries

Non-perturbative Methods

summary.tmp