B→DK strategies in LHCb (part II)

Cristina Lazzeroni (on behalf of the LHCb Collaboration)

LHC Flavour workshop

07/02/2006

Introduction

- Decays of B to $D^0(\overline{D^0})K$ involve $b \rightarrow c$ and $b \rightarrow u$ transitions sensitive to γ if a common final state is studied for both D^0 and $\overline{D^0}$
- LHCb will exploit a number of strategies to study such decays :
 - Gronau-London-Wyler-(Dunietz) ('GLW') B^0 and $\overline{B^0}$ decays
 - Atwood-Dunietz-Soni ('ADS')
 B[±] decays
 (see M.Patel talk yesterday)
 - Dalitz B^0/B^0 and B^{\pm} decays
- In this talk will focus on Dalitz and GLW
- The Dalitz analysis is sensitive to the same parameters as ADS, two methods are complementary

$B^+ \rightarrow D^0 K^+$

• γ is the weak phase between $b \rightarrow cus (\propto V_{cb})$ and $b \rightarrow ucs (\propto V_{ub})$

- γ can be extracted from the interference of these two processes in charged $B \rightarrow D^0 K$ decays with $D^0 / \overline{D^0}$ decaying to a common final state
 - r_B is the relative colour and CKM suppression between the two modes O(0.1) dilutes sensitivity to γ
 - δ is the strong phase difference invariant under CP

Measuring $\gamma : B^+ \rightarrow D^0(K^0\pi^+\pi^-)K^+$

Giri, Grossman, Soffer, Zupan (PRD 68, 054018 (2003))

- Use three body Cabibbo allowed decays of the $D^0/\overline{D^0}$
 - $BR(D^0 \rightarrow K^0 \pi^+ \pi^-) = (5.97 \pm 0.35)\%$
 - $BR(D^0 \rightarrow K^* \pi) = (3.9 \pm 0.3)\%, BR(D^0 \rightarrow K_s \rho) = (1.55^{+0.12}_{-0.16})\%...$
- Large strong phases between the intermediate resonances allow the extraction of r_B , δ and γ by studying the Dalitz distribution of events

$$A^{-} = f(m_{-}^{2}, m_{+}^{2}) + r_{B}e^{i(-\gamma+\delta)}f(m_{+}^{2}, m_{-}^{2})$$

$$A^{+} = f(m_{+}^{2}, m_{-}^{2}) + r_{B}e^{i(\gamma+\delta)}f(m_{-}^{2}, m_{+}^{2})$$
where
$$m_{\pm} = K_{S}^{0}\pi^{\pm} \text{ invariant mass}$$

$$f(m_{\pm}^{2}, m_{m}^{2}) \text{ Dalitz amplitudes}$$

$$m_{\pm}^{-} |f(m_{\pm}^{2}, m_{\pm}^{2})|^{2} + r_{B}^{2} |f(m_{\pm}^{2}, m_{\pm}^{2})|^{2} + 2r_{B}\Re(f(m_{\pm}^{2}, m_{-}^{2})f^{*}(m_{-}^{2}, m_{\pm}^{2})e^{i(-\gamma+\delta)})$$

$$m_{\pm}^{-}$$

Dalitz model

- B-factories use samples of O(100k) $D^{+*} \rightarrow D^{0}\pi^{+}$, $D^{0} \rightarrow K^{0}\pi^{+}\pi^{-}$ to measure amplitudes and phases vary model to estimate systematics
- At present not negligible error from model

Dalitz model

- B factories consider 16 resonances + non resonant component
- At present dominant systematic error of 11° from model uncertainties
- Scope for improvement:
 - Alternative fit to Dalitz plane with full partial wave analysis of non-resonant component
 - CLEO-C and B factories will improve statistics to measure the Dalitz plot
 - Use model independent binned technique loss of statistical power
 - CLEO-C correlated data could be used directly in a model independent binned treatment

At present typical event yields / experiment ~ 300

$B^+ \rightarrow D^0 (K^0 \pi^+ \pi^-) K^+$: Dalitz plot

Regions of the Dalitz plot with the largest interference are most sensitive to γ Need good understanding of Dalitz amplitudes •Use isobar model from Belle/Babar with: $f(m_{+}^{2}, m_{-}^{2}) = \sum_{j=1}^{N} a_{j} e^{i\alpha_{j}} A_{j}(m_{+}^{2}, m_{-}^{2}) + b e^{i\beta}$ Breit-Wigner + non-resonant • B simulated with $\gamma = 64.7^{\circ}$, $\delta = 150^{\circ}$,

 $r_{b} = 0.16$

Acceptance studies

- Selection tuned to maximise signal-to-background ratio
- Acceptance studied with phase space MC flat within statistics

Acceptance evaluation with isobar model in progress - first indication suggests it is similar

Dalitz: High Level Trigger selection

- In the present preliminary High Level Trigger algorithm tracks decaying downstream of the VELO are not used
- 70% of the events in the present offline Dalitz selection would not be reconstructed
- Work is therefore needed to extend the trigger to include these tracks

Background studies

- At present no background found in 50 MeV mass window of equivalent 46 x 10⁶ inclusive B and 80 x 10⁶ minimum bias
- Still limited background statistics, equivalent to a few minutes of LHCb running
 - Use B mass sidebands 10 times larger than standard, to study possible sources of background
- In enlarged sidebands 4 bb events are found
 - I partially reconstructed b, 3 b-combinatorics
 - worth further investigation
- Contribution in low-mass sidebands from tails of $B^0 \rightarrow D^0 (K^0 \pi^+ \pi^-) K^{*0}$ and from $B^+ \rightarrow D^{*0} K^+$ under investigation

Annual yield: $B^+ \rightarrow D^0 (K^0 \pi^+ \pi^-) K^+$

 Acceptance studied with phase space MC

 $\varepsilon_{tot} = 0.10\%$

(selection + L0L1 trigger = 5.8%)

- Luminosity = 2 fb^{-1}
- BR $(B^+ \rightarrow D^0(K_s \pi^+ \pi^-)K^+) = 7.5 \times 10^{-6}$
- Expected ~6000 events/year not including High Level Trigger efficiency (or > 1300 including it)

• 0.5 < B/S < 3.2 @ 90%CL

$B^+ \rightarrow D^0(K^0K^+K^-)K^+$

- Same method works for $D^0 \rightarrow K^0 K^+ K^$ decay
 - Reduced BR:

 $BR(D^0 \rightarrow K^0 K^+ K^-) = (1.03 \pm 0.10)\%$

- But less background because two more particle identification constraints from RICH should substantially reduce background also narrow phase space
- Acceptance evaluation in progress
- Dalitz model has fewer resonances (φ, a₀) but complex threshold effects (Babar hep-ex/0507026)
 - Separate study of sensitivity is necessary

GLW method - γ from $B^0 \rightarrow D^0 K^{*0}$

 Dunietz variant of Gronau-Wyler method makes use of interference between two colour-suppressed diagrams interfering via D⁰ mixing :

• Measuring the 6 decay rates $B^0 \rightarrow D^0(K\pi,\pi K,KK)K^{*0} + CP$ conjugates allows γ to be extracted without flavour tagging or proper time determination

GLW method - γ from $B^0 \rightarrow D^0 K^{*0}$

• LHCb expectations for 2 fb⁻¹ (γ =65°, Δ =0) :

Mode (+ cc)	Yield	S/B _{bb} (90%CL)
$B^0 ightarrow D^0 (K^+ \pi^-) K^{*0}$	3.4k	> 2
$B^0 ightarrow D^0 (K^- \pi^+) K^{*0}$	0.5k	> 0.3
$B^0 \rightarrow D^0_{CP} (K^+K^-) K^{*0}$	0.6k	> 0.3

 $\rightarrow \sigma(\gamma) \sim 8^{\circ}$ in one year

- Work ongoing to understand biases introduced by DCS amplitude in D-> $K\pi$
- Properly including this will be equivalent to full ADS treatment of B⁰ ->DK

Dalitz: $B^{0} \rightarrow D^{0}(K^{0} \pi^{+} \pi^{-}) K^{*0}(K^{+} \pi^{-})$

- Same method works as in charged B
 - BF Reduced by factor 10: $BF(B^0 \rightarrow D^0(K^0 \pi^+\pi^-)K^{*0})$ with $K^{*0} \rightarrow K^+\pi^ = 6.4x \ 10^{-7}$
 - Higher interference $(r_b \sim 1)$
- Dalitz model imported from Belle; amplitudes and phases of resonances taken from CLEO (hep-ex/0207067)

Acceptance studies

- Large statistical error, more detailed study in progress
- Expected yield < 0.1 B⁺ yield because of order of magnitude lower branching ratio and additional charged particle

B[±] Conclusions

- ADS method (from M.Patel talk):
 - Candidate for LHCb's most precise measurement of γ
 - Expected annual signal yields (Luminosity = 2 fb⁻¹):
 - $\bullet D(K\pi)K favoured \sim 60k \qquad B/S \sim 0.5$

suppressed $\sim 2k$ B/S ~ 0.5

- D(KK)K ...?
- D(Kπππ)K
- With our present understanding of the background a precision on γ of ~5° looks feasible with 2fb⁻¹ of data
- Dalitz method:
 - Expected annual signal yield ~6000 without High Level Trigger efficiency (to be compared to ~300 at B-factories)
 - 0.5 < B/S < 3.2 @90% CL
 - Result on the sensitivity to γ will be available within the time scale of this workshop

B⁰ Conclusions

- GLW method:
 - Expected annual signal yields (Luminosity = 2 fb⁻¹) :
 - $D(K^{+}\pi^{-})K^{*0} \sim 2.4k \quad B/S > 2$ $D(K^{-}\pi^{+})K^{*0} \sim 0.5k \quad B/S > 0.3$ $D^{0} (K^{+}K^{-})K^{*0} \quad 0.6k \quad B/S > 0.2$
 - $D^0_{CP}(K^+K^-)K^{*0}$ ~0.6k B/S>0.3
 - $\sigma(\gamma) \sim 8^{\circ}$ in one year
 - Work ongoing to understand biases introduced by DCS amplitude in $D->K\pi$
- Dalitz method:
 - Expected annual signal yield < 600 due to BR 10 times lower than the charged one and the presence of one more final state particle
 - Background rejection under investigation
 - Sensitivity to γ in progress

Outlook

- Possibility of including the K_S decaying outside the Vertex Detector in the High Level Trigger
- Dalitz model:
 - Refinement of the Dalitz model
 - Model-independent technique
 - Measure the resonance parameters ourselves
- Detailed studies of the acceptance over the Dalitz plot
- Further background investigation
- More results soon on the sensitivity to γ
- r_B and δ_B are the same for all charged (neutral) channels \rightarrow global fit

LHCb has a great potential to measure γ in a wide variety of channels!

