Search for a light stop

Are Raklev, CERN & Univ. of Bergen

In collaboration with Sabine Kraml, CERN

[Kraml, Raklev, hep-ph/0512284]

Flavour in the era of the LHC, February 2006 - p.1/1

Content

- Introduction & motivation
 - Baryogenesis
 - Relic density
- A peculiar signature
- Case study
 - Isolating the signal
 - Measuring masses
- The importance of flavour
- Conclusions

Motivation

Scalar tops play a special role in the MSSM because of the large Yukawa coupling $\propto m_t$.

- Mixing of the left and right chiral states, $(\tilde{t}_L, \tilde{t}_R) \rightarrow (\tilde{t}_1, \tilde{t}_2)$, can give large mass splitting.
- Influence on RGE running; causing radiative EWSB.
- Influence on m_h through radiative corrections.

In the MSSM, the $ilde{t}_1$ is often the lightest squark.

Motivation

Scalar tops play a special role in the MSSM because of the large Yukawa coupling $\propto m_t$.

- Mixing of the left and right chiral states, $(\tilde{t}_L, \tilde{t}_R) \rightarrow (\tilde{t}_1, \tilde{t}_2)$, can give large mass splitting.
- Influence on RGE running; causing radiative EWSB.
- Influence on m_h through radiative corrections.

In the MSSM, the \tilde{t}_1 is often the lightest squark.

Many scenarios actually prefer a very light stop; \tilde{t}_1 can be the next-to-lightest supersymmetric partner (NLSP):

- Electroweak baryogenesis (EWBG).
- Dark matter relic density.

Baryogenesis

Sufficiently strong first order electroweak phase transition is needed to preserve generated baryon asymmetry; requires a light $\tilde{t}_1 \simeq \tilde{t}_R$.

Baryogenesis

Sufficiently strong first order electroweak phase transition is needed to preserve generated baryon asymmetry; requires a light $\tilde{t}_1 \simeq \tilde{t}_R$.

[Carena, Quiros, Wagner, hep-ph/9710401] [Balazs, Carena, Menon, Morrissey, Wagner, hep-ph/0412264]

Relic density

We fix the gaugino and higgsino spectrum with

```
M_1 = 110 \text{ GeV}, \quad \mu = 300 \text{ GeV}, \quad \tan \beta = 7,
```

and calculate Ωh^2 (micrOMEGAs 1.3.2), varying $m_{\tilde{t}_1}$ and $m_{\tilde{\tau}_1}$.

Relic density

 $M_1=110~{
m GeV},~~\mu=300~{
m GeV},~~ aneta=7$

Relic density

 $M_1=110~{
m GeV},~~\mu=300~{
m GeV},~~ aneta=7$

- Neutralino–stop coannihilation for $m_{ ilde{t}_1} m_{ ilde{\chi}_1^0} \lesssim 25$ GeV.
- Neutralino–stau coannihilation for $m_{ ilde{ au}_1} m_{ ilde{ au}_1^0} \lesssim 10$ GeV.
- Higgs funnel: $ilde{\chi}^0_1 ilde{\chi}^0_1 o A o b \overline{b}$ for $m_A \sim 250$ GeV.

Our 'toy' light stop scenario

 $egin{aligned} M_1 &= 110 \; ext{GeV}, \quad \mu = 300 \; ext{GeV}, \quad ext{tan} \, eta = 7 \ & ilde{t}_1 \simeq ilde{t}_R, \quad m_{ ilde{t}_1} = 150 \; ext{GeV} \ & ilde{m}_{ ilde{g}} = 660 \; ext{GeV} \ & ilde{m}_{ ilde{g}} = 660 \; ext{GeV} \ & ilde{m}_{ ilde{l}} \simeq 250 \; ext{GeV}, \quad m_{ ilde{q}} \gtrsim 1 \; ext{TeV} \end{aligned}$

Our 'toy' light stop scenario

 $egin{aligned} M_1 &= 110 \ {
m GeV}, \quad \mu = 300 \ {
m GeV}, \quad aneta = 7 \ & ilde t_1 \simeq ilde t_R, \quad m_{ ilde t_1} = 150 \ {
m GeV} \ & ilde m_{ ilde g} = 660 \ {
m GeV} \ & ilde m_{ ilde g} = 250 \ {
m GeV}, \quad m_{ ilde g} \gtrsim 1 \ {
m TeV} \end{aligned}$

To achieve agreement with relic density:

 $m_A\simeq 250~{
m GeV}~~{
m or}~~m_{ ilde{ au}_1}\simeq 112-113~{
m GeV}$

Our 'toy' light stop scenario

 $egin{aligned} M_1 &= 110 \; ext{GeV}, \quad \mu = 300 \; ext{GeV}, \quad ext{tan} \, eta = 7 \ & ilde{t}_1 \simeq ilde{t}_R, \quad m_{ ilde{t}_1} = 150 \; ext{GeV} \ & ilde{m}_{ ilde{g}} = 660 \; ext{GeV} \ & ilde{m}_{ ilde{g}} = 660 \; ext{GeV} \ & ilde{m}_{ ilde{t}} \simeq 250 \; ext{GeV}, \quad m_{ ilde{q}} \gtrsim 1 \; ext{TeV} \end{aligned}$

Largest SUSY (NLO) cross sections (PROSPINO 2):

 $\sigma(pp o ilde{t}_1 ilde{t}_1^*) = 280 ext{ pb}, \hspace{1em} \sigma(pp o ilde{g} ilde{g}) = 5.4 ext{ pb}$

A $ilde{t}_1$ NLSP with $m_{ ilde{t}_1} < m_W + m_{ ilde{\chi}_1^0}$ has $BR(ilde{t}_1 o c ilde{\chi}_1^0) pprox 1$

Tevatron reach for $ilde{t}_1 o c ilde{\chi}_1^0$

[Balazs, Carena, Wagner, hep-ph/0403224] [Demina, Lykken, Matchev, Nomerotski, hep-ph/9910275]

A peculiar signature

$$pp o ilde{g} ilde{g}, \hspace{1em} ilde{g} o t ilde{t}_1, \hspace{1em} ilde{t}_1 o c ilde{\chi}_1^0$$

Since the gluino is a Majorana particle, it can decay either into $t\tilde{t}_1^*$ or into $\bar{t}\tilde{t}_1$. Therefore, we get

$$ilde{g} ilde{g}
ightarrow t \overline{t}\, ilde{t}_1 ilde{t}_1^*, tt\, ilde{t}_1^* ilde{t}_1^*,\, \overline{tt}\, ilde{t}_1 ilde{t}_1$$

and hence like-sign tops in half of the gluino-to-stop decays!

Together with $t \rightarrow bW$ and the W decaying leptonically, we get a peculiar signature: 2b's + 2SS leptons + jets + E_T

A peculiar signature

$$pp o ilde{g} ilde{g}, \hspace{1em} ilde{g} o t ilde{t}_1, \hspace{1em} ilde{t}_1 o c ilde{\chi}_1^0$$

Since the gluino is a Majorana particle, it can decay either into $t\tilde{t}_1^*$ or into $\bar{t}\tilde{t}_1$. Therefore, we get

$$ilde{g} ilde{g}
ightarrow t \overline{t}\, ilde{t}_1 ilde{t}_1^*, tt\, ilde{t}_1^* ilde{t}_1^*,\, \overline{tt}\, ilde{t}_1 ilde{t}_1$$

and hence like-sign tops in half of the gluino-to-stop decays!

Together with $t \rightarrow bW$ and the W decaying leptonically, we get a peculiar signature:

Isolating the signature

NLO cross sections [pb]:

$\sigma(ilde{t}_1 ilde{t}_1)$	$\sigma(ilde{g} ilde{g})$	$\sigma(ilde{g} ilde{q})$	$\sigma(ilde q ilde q)$	$\sigma(ilde q ilde q^*)$	$\sigma(t\bar{t})$
280	5.39	4.98	0.666	0.281	737

Isolating the signature

NLO cross sections [pb]:

$\pmb{\sigma}(ilde{t}_1 ilde{t}_1)$	$\sigma(ilde{g} ilde{g})$	$\sigma(ilde{g} ilde{q})$	$\sigma(ilde q ilde q)$	$\sigma(ilde q ilde q^*)$	$\sigma(t\bar{t})$
280	5.39	4.98	0.666	0.281	737

We generate events equivalent to 30 fb^{-1} with PYHTIA 6.321 and simulate a generic LHC detector with AcerDET-1.0.

Cuts used:

- Require four jets, $p_T^{
 m jet} > 50$ GeV, two of which are *b*-tagged.
- Require two same-sign leptons, with $p_T^{\mathsf{lep}} > 20$ GeV.
- Require two comb. of leptons and *b*-jets with $m_{bl} < 160$ GeV.

Isolating the signature

NLO cross sections [pb]:

$\sigma(ilde{t}_1 ilde{t}_1)$	$\sigma(ilde{g} ilde{g})$	$\sigma(ilde{g} ilde{q})$	$\sigma(ilde q ilde q)$	$\sigma(ilde q ilde q^*)$	$\sigma(t\bar{t})$
280	5.39	4.98	0.666	0.281	737

We generate events equivalent to 30 fb^{-1} with PYHTIA 6.321 and simulate a generic LHC detector with AcerDET-1.0.

Cut	2lep 4jet	$m{p}_{m{T}}^{lep}$	$oldsymbol{p}_{oldsymbol{T}}^{jet}$	2 <i>b</i>		2 <i>t</i>	SS
$ ilde{g} ilde{g}$	10839	6317	4158	960	806	628	330
Backg.							
SUSY	1406	778	236	40	33	16	5
SM	25.3M	1.3M	35977	4809	1787	1653	12

With very little background, can we determine masses?

Difficult to find traditional endpoints of SM invariant masses.

Can however find analytical description of the shape of the invariant masses and do fits.

We can determine the value of m_{bc}^{max} , which relates the masses of the gluino, light stop and lightest neutralino.

$$(m_{bc}^{\max})^2 = rac{(m_t^2 - m_W^2)}{m_t^2} rac{(m_{ ilde{t}_1}^2 - m_{ ilde{\chi}_1^0}^2)}{m_{ ilde{t}_1}^2} rac{(m_1^2 + m_2^2)}{2}$$

where

$$m_1^2 = m_{ ilde{g}}^2 - m_t^2 - m_{ ilde{t}_1}^2$$
 and $m_2^4 = m_1^4 - 4m_t^2 m_{ ilde{t}_1}^2$

Taken together these two distributions give

 $m_{bc}^{\mathrm{max}} = 388.3 \pm 6.1$ GeV,

compared to the nominal value of $m_{bc}^{\text{max}} = 391.1 \text{ GeV}$.

The importance of flavour

Resulting m_{bc}^{max} vs. assumed *c*-tagging efficiency.

• Light stop interesting for both Baryogenesis and Dark Matter.

- Light stop interesting for both Baryogenesis and Dark Matter.
- Promising signature in like sign tops from gluinos.
 Low SM background.

- Light stop interesting for both Baryogenesis and Dark Matter.
- Promising signature in like sign tops from gluinos.
 Low SM background.
- Mass extraction more difficult due to systematics; but seems to be doable.

- Light stop interesting for both Baryogenesis and Dark Matter.
- Promising signature in like sign tops from gluinos.
 Low SM background.
- Mass extraction more difficult due to systematics; but seems to be doable.
- Robust discovery channel for light stop.

- Light stop interesting for both Baryogenesis and Dark Matter.
- Promising signature in like sign tops from gluinos. Low SM background.
- Mass extraction more difficult due to systematics; but seems to be doable.
- Robust discovery channel for light stop. 5 σ significance for $m_{\tilde{g}} \leq 900$ GeV. We have also tested $m_{\tilde{t}_1} = 120$ GeV and $m_{\tilde{b}_1} < m_{\tilde{g}}$, finding an only slightly worse signal to background ratio.

Covering the stop-coannihilation region

 p_T of *c*-jets for signal events in model with $m_{\tilde{t}_1} = 120$ GeV.

Effective mass

Distribution of effective mass M_{eff} :

$$M_{ ext{eff}} =
otag L_T + \sum_{m{i}} p_{T,m{i}}^{ ext{jet}}$$