Lepton Flavour Violation in non-minimal SUGRA

Plan of talk:

Part 0. SUSY and LFV

Part I. Minimal LFV

Part II. Non-minimal LFV
The 6x6 charged slepton mass matrix in diagonal fermion mass basis:

\[
m_{E}^{2MNS} = \begin{pmatrix}
(m_{E}^{2})_{LL} + m_{e}^{2} - \frac{\cos 2\beta}{6}(M_{Z}^{2} + 2M_{W}^{2})\hat{1} & (m_{E}^{2})_{LR} - \tan \beta \mu m_{e} \\
(m_{E}^{2})_{LR} + m_{e}^{2} - \frac{\cos 2\beta}{3}M_{Z}^{2}\sin^{2}\theta_{W}\hat{1} & (m_{E}^{2})_{RR}
\end{pmatrix}
\]

Where:

\[
(m_{E}^{2})_{LL} = V_{EL}m_{L}^{2}V_{EL}^{\dagger} \quad \quad \quad (m_{E}^{2})_{RR} = V_{ER}m_{E}^{2}V_{ER}^{\dagger} \quad \quad \quad (m_{E}^{2})_{LR} = v_{L}^{*}V_{EL}\tilde{A}_{e}^{*}V_{ER}^{\dagger}
\]

Essential point is: off-diagonal slepton masses lead to LFV

\[\text{e.g. } \tau \rightarrow \mu \gamma\]

\[
\text{BR}(\tau \rightarrow \mu \gamma) \approx \frac{\alpha^{3}}{G_{F}^{2}} f_{32}(M_{2}, \mu, m_{\tilde{\nu}}) | m_{L_{32}}^{2} |^{2} \tan^{2} \beta
\]
Sources of off-diagonal slepton masses

1. Minimal LFV (RGE generated)
 • from running the GUT theory from the Planck mass to the GUT scale (due to Higgs triplets)
 • from running the see-saw MSSM from the Planck/GUT scale to low energies through right-handed neutrino scales

2. Non-minimal LFV (Primordial)
 • slepton masses are off-diagonal in the SCKM basis at the high energy scale due to non-minimal SUGRA effects

In general both sources will be present
(main message of this talk)
Part I. Minimal LFV: mSUGRA + see-saw

\[m_{L_j}^2 = m_0^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \delta m_{L_j}^2 \]

RG running

\[m_{L_{ij}}^2 = m_0^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[\frac{dm_{L}^2}{dt} \approx \left(\frac{dm_{L}^2}{dt} \right)_{Y^v=0} - \frac{(3m_0^2 + A_0^2)}{16\pi^2} \left[Y^v Y^{v^\dagger} \right] \]

Low energy slepton masses depend on Yukawas and \(M_i \)

mSUGRA prediction at \(M_U \)

Many analyses performed - here I discuss one based on sequential dominance

Steve King, CERN Flavour Workshop
Sequential dominance: a technically natural way of achieving a neutrino mass hierarchy with large mixing angles from type I see-saw mechanism

\[M_{RR} \approx \begin{pmatrix} Y & 0 & 0 \\ 0 & X & 0 \\ 0 & 0 & X' \end{pmatrix} \]

\[Y_{LR}^{\nu} = \begin{pmatrix} d & a & a' \\ e & b & b' \\ f & c & c' \end{pmatrix} \]

Sequential dominance of right-handed neutrinos

\[(d = 0) \]

\[\frac{|e^2|, |f^2|, |e f|}{Y} \gg \frac{|x y|}{X} \gg \frac{|x' y'|}{X'} \]

\[m_{tt} \approx \left(\frac{a^2}{X}, \frac{ab}{X}, \frac{ac}{X} \right) \cdot \left(\frac{b^2 + e^2}{X}, \frac{bc}{X}, \frac{ef}{X} \right) \]

Note that the large mixing angles are given by ratios of Yukawa couplings and are independent of the neutrino masses

\[m_1 \approx O\left(\frac{x' y'}{X'}\right) v_u^2 \]

\[m_2 \approx \frac{|a|^2}{X (s_{12}^2)^2} v_u^2 \]

\[m_3 \approx \frac{(|e|^2 + |f|^2)^2}{Y} v_u^2 \]

\[\tan \theta_{23}^{\nu} \approx \frac{|e|}{|f|} \]

\[\tan \theta_{12}^{\nu} \approx \frac{|a|}{c_{23}^\nu |b| \cos(\phi_b^\nu) - s_{23}^\nu |c| \cos(\phi_c^\nu)} \]

\[\theta_{13}^{\nu} \approx \frac{e^{i(\phi_2^\nu + \phi_a - \phi_e)} |a| (e^* b + f^* c) Y}{[|e|^2 + |f|^2]^{3/2} X} \]
LFV in mSUGRA + sequential dominance

Blazek, SFK

Parametrisation with dominant RH neutrino being the heaviest (heavy sequential dominance HSD)

\[M_{RR} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda^3 & 0 \\ 0 & 0 & 1 \end{pmatrix} 3.10^{14} \text{GeV} \]

\[Y^\nu = \begin{pmatrix} 0 \\ - a_{12} \lambda^2 \\ - a_{22} \lambda^2 \\ - a_{32} \lambda^2 \end{pmatrix} h_t \]

N.B. Yukawas in LR convention

Parametrisation with dominant RH neutrino being the lightest (light sequential dominance LSD)

\[M_{RR} = \begin{pmatrix} \lambda^6 & 0 & 0 \\ 0 & \lambda^3 & 0 \\ 0 & 0 & \gg 1 \end{pmatrix} 3.10^{14} \text{GeV} \]

\[Y^\nu = \begin{pmatrix} 0 & a_{12} \lambda^2 \\ \lambda^3 & a_{22} \lambda^2 \\ \lambda^3 & a_{32} \lambda^2 & 1 \end{pmatrix} h_t \]

\[\lambda = \frac{\Delta m_{21}^2}{\sqrt{\Delta m_{32}^2}} \approx 0.15 \]
Predictions for mSUGRA+HSD

\[\tan \beta = 50, \]
\[r = \frac{a_{32}}{a_{22}} = -1. \]

How good/bad is Leading Log Approximation?

Blazek, SFK
Predictions for mSUGRA+LSD

\[
\tan \beta = 50,
\]
\[
r = \frac{a_{32}}{a_{22}} = -1.
\]

How good/bad is Leading Log Approximation?

\[\tau \rightarrow \mu \gamma\] is a discriminator of HSD vs. LSD

Blazek, SFK
Part II. Non-minimal LFV

Is it reasonable to suppose that the sparticle mass matrices are universal at high energies?
The answer depends on the origin of both the Yukawas and the SUSY masses --- highly model dependent!

Basic framework we consider is string theory \rightarrow effective low energy SUGRA

We shall only consider here one specific example -- type I string theory with orthogonal intersecting D5 branes and gauge group: $(\text{Pati-Salam})^2 \otimes \text{U}(1)_{\text{Family}} \quad U(4)^{(1)}_{PS} \times U(4)^{(2)}_{PS} \rightarrow U(4)_{PS}$
Origin of Yukawas are vevs of GUT Higgs and flavons:

Yukawa matrix
\[Y_{ij} \sim F^i \overline{F}^j \left(\frac{HH}{M^2} \right)^{n_{ij}} \left(\frac{\theta}{M} \right)^{p_{ij}} \]

Majorana matrix
\[M_{ij} \sim \overline{F}^i \overline{F}^j \left(\frac{HH}{M} \right) \left(\frac{HH}{M^2} \right) \left(\frac{\theta}{M} \right)^{q_{ij}} \]

Origin of SUSY masses are F-term vevs of moduli, GUT Higgs and flavons:

\[\frac{< \theta >}{M} \sim \frac{< HH \bar{H} >}{M^2} \sim 0.1 \]

\[F_S = \sqrt{3} m_{3/2} (S + \bar{S}) X_S, \]
\[F_{T_i} = \sqrt{3} m_{3/2} (T_i + \bar{T}_i) X_{T_i}, \]
\[F_H = \sqrt{3} m_{3/2} H (S + \bar{S})^{1/2} X_H, \]
\[F_{\tilde{H}} = \sqrt{3} m_{3/2} \tilde{H} (T_3 + \bar{T}_3)^{1/2} X_{\tilde{H}}, \]
\[F_\theta = \sqrt{3} m_{3/2} \theta (S + \bar{S})^{1/4} (T_3 + \bar{T}_3)^{1/4} X_\theta \]
Three sources of non-minimal LFV

1. Non-minimal SUGRA
 --due to different families coupling to the moduli differently
 \[
 m_L^2 = m_{3/2}^2 \begin{bmatrix} a & \alpha \\ \alpha & b_L \end{bmatrix}
 \]
 \[
 a = 1 - \frac{3}{2} (X_3^2 + X_{T_3}^2)
 \]
 \[
 b_L = 1 - 3X_{T_3}^2
 \]

2. D-terms
 --due to broken U(1) gauge groups with family dependent charges
 \[
 m_{LL}^2 = m_L^2 - 1(3g_4^2)D_H^2 + \begin{pmatrix} q_{L1} \\ q_{L2} \\ q_{L3} \end{pmatrix} \begin{pmatrix} \tilde{\theta}^2 & D \theta^2 \\ D \theta^2 & \tilde{\theta}^2 \end{pmatrix} \begin{pmatrix} C_{5_s}^2 : 2g_F^2D_\theta^2 = 0 \\ C_{6_s}^2 : 2g_F^2D_\theta^2 = \frac{3}{2} \bar{m}_{3/2}(X_3^2 - X_{T_3}^2) \\ C_{2_s}^2 : 2g_F^2D_\theta^2 = -\frac{3}{2} \bar{m}_{3/2}(X_3^2 - X_{T_3}^2) \\ C_{3_s}^2 : 2g_F^2D_\theta^2 = -\frac{3}{2} \bar{m}_{3/2}(X_3^2 - X_{T_3}^2) \end{pmatrix}
 \]

3. Misaligned soft trilinears
 --due to field dependent Yukawa operators, generically $Y \sim \Phi^n$
 \[
 \Delta A = F_\Phi \partial_\Phi \ln Y = F_\Phi \partial_\Phi \ln \Phi^n = F_\Phi \frac{n}{\Phi} \\
 F_\Phi \propto m_{3/2} \Phi \rightarrow \Delta A \propto nm_{3/2}
 \]

05/02/2006
Steve King, CERN Flavour Workshop
Consider four benchmark points

(All benchmark points also include see-saw effects)

<table>
<thead>
<tr>
<th>Point</th>
<th>(X_S)</th>
<th>(X_T)</th>
<th>(X_H)</th>
<th>(X_H)</th>
<th>(X_\theta)</th>
<th>(X_{\bar{\theta}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.500</td>
<td>0.500</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>B</td>
<td>0.535</td>
<td>0.488</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>C</td>
<td>0.270</td>
<td>0.270</td>
<td>0.000</td>
<td>0.000</td>
<td>0.841</td>
<td>0.000</td>
</tr>
<tr>
<td>D</td>
<td>0.270</td>
<td>0.270</td>
<td>0.595</td>
<td>0.595</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

\[
Y^e(M_X) = \begin{bmatrix}
-1.246 \times 10^{-04} & 0.000 & 0.000 \\
1.537 \times 10^{-03} & 2.432 \times 10^{-02} & -3.649 \times 10^{-02} \\
-1.327 \times 10^{-04} & 3.133 \times 10^{-02} & 5.469 \times 10^{-01}
\end{bmatrix}
\]

\[
Y^\nu(M_X) = \begin{bmatrix}
2.159 \times 10^{-06} & 1.525 \times 10^{-03} & 0.000 \\
0.000 & 8.290 \times 10^{-04} & 3.923 \times 10^{-01} \\
0.000 & 5.050 \times 10^{-03} & 5.469 \times 10^{-01}
\end{bmatrix}
\]

\[
\frac{M_{RR}(M_X)}{M_{33}} = \begin{bmatrix}
3.508 \times 10^8 & 3.686 \times 10^9 & 3.345 \times 10^{11} \\
3.686 \times 10^9 & 8.313 \times 10^{10} & 5.886 \times 10^{12} \\
3.345 \times 10^{11} & 5.886 \times 10^{12} & 5.795 \times 10^{14}
\end{bmatrix}
\]
$\mu \rightarrow e\gamma$ in non-minimal SUGRA

Benchmark point A

Experimental limit

"mSUGRA"

Benchmark point B

... +D-terms

Experimental limit

"nmSUGRA"

Benchmark point C

Experimental limit

"mSUGRA" + non-aligned trilinears from flavons

Benchmark point D

Experimental limit

"mSUGRA" + non-aligned trilinears from GUT Higgs
$\mu \to e\gamma$ sensitivity to the Yukawas

(All plots for Benchmark point B with zero D-terms)

$Y_{12}^e = 0, Y_{13}^e = 0$

$Y_{12}^e = 0.0015, Y_{13}^e = 0$

$Y_{12}^e = 0, Y_{13}^e = 0.015$

$Y_{12}^e = 0.0015, Y_{13}^e = 0.015$

Experimental limit

"nmSUGRA"
$\tau \rightarrow \mu \gamma$ in non-minimal SUGRA

Benchmark point A

Benchmark point B

Benchmark point C

Benchmark point D

"mSUGRA" + non-aligned trilinears from flavons

"nmSUGRA" + D-terms

"mSUGRA" + non-aligned trilinears from GUT Higgs
Conclusions

• SUSY + see-saw mechanism generically leads to LFV due to RH neutrino masses + RG running

• Minimal LFV arises from mSUGRA + see-saw running - many analyses performed

• We discussed LFV from mSUGRA + sequential dominance (natural neutrino mass hierarchy)

• We saw that $\tau \rightarrow \mu \gamma$ is large (small) in HSD (LSD)

• We then discussed non-minimal LFV within string theory \rightarrow effective low energy SUGRA

• Example: Type I string theory with intersecting D5 branes and (Pati-Salam)$^2 \otimes U(1)$Family

• Identified three sources of non-min LFV: nmSUGRA, D-terms, misaligned trilinears

• We saw that nmSUGRA effects depend sensitively on the Yukawas

• D-term effects are extremely dangerous for $\mu \rightarrow e \gamma$ (but D-terms can be made zero)

• Misaligned trilinears are also very important for $\mu \rightarrow e \gamma$

• For $\tau \rightarrow \mu \gamma$ in HSD, where the rate is close to the experimental limit in mSUGRA, non-minimal LFV effects tend to lower the rate

• In particular D-terms can dramatically lower the rate for $\tau \rightarrow \mu \gamma$, or restore universality!