B-to-light meson formfactor and recent progress on Kaon distribution amplitude

Roman Zwicky
IPPP (Durham University)

Contents

1. Formfactors $F^{B \rightarrow P, V}$ from LCSR

Q extrapolation
e comparison lattice QCD

Contents

1. Formfactors $F^{B \rightarrow P, V}$ from LCSR
e extrapolation
a comparison lattice QCD
2. Main source of $S U(3)$ breaking beyond the static decay constants $\frac{f_{K}}{f_{\pi}}$?

$$
\frac{F^{B \rightarrow K}}{F^{B \rightarrow \pi}}=\frac{f_{K}}{f_{\pi}}\left(1+c_{1} a_{1}\right)+\ldots
$$

e coefficient $c_{1} \sim O(1)$
e a_{1} Gegenbauer moment of Kaon Distribution Amplitude, most important dynamical SU(3)-breaking parameter

Contents

1. Formfactors $F^{B \rightarrow P, V}$ from LCSR
e extrapolation
e comparison lattice QCD
2. Main source of $S U(3)$ breaking beyond the static decay constants $\frac{f_{K}}{f_{\pi}}$?

$$
\frac{F^{B \rightarrow K}}{F^{B \rightarrow \pi}}=\frac{f_{K}}{f_{\pi}}\left(1+c_{1} a_{1}\right)+\ldots
$$

e coefficient $c_{1} \sim O(1)$
e a_{1} Gegenbauer moment of Kaon Distribution Amplitude, most important dynamical $\mathrm{SU}(3)$-breaking parameter
3. For example in $B \rightarrow K^{*} \gamma$ vs. $B \rightarrow \rho \gamma$ (Belle,Babar coming)

$$
\frac{T_{1}^{B \rightarrow K^{*}}}{T_{1}^{B \rightarrow \rho}} \leftrightarrow \frac{\left|V_{\mathrm{ts}}\right|}{\left|V_{\mathrm{td}}\right|}
$$

Def. Formfactors, $B \rightarrow$ light \mathbf{P}-scalar and vector

e For (V-A) currents:

$$
\begin{aligned}
\langle\pi| \bar{u} \gamma_{\mu} b|B\rangle & =\left(p_{B}+p_{\pi}\right)_{\mu} f_{+}\left(q^{2}\right)+q_{\mu} f_{-}\left(q^{2}\right) \\
\langle\rho| \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) b|B\rangle & =\left(p_{B}+p\right)_{\mu}\left(e^{*} q\right) \frac{A_{2}\left(q^{2}\right)}{m_{B}+m_{\rho}}-i e_{\mu}^{*}\left(m_{B}+m_{\rho}\right) A_{1}\left(q^{2}\right) \\
& +i \frac{q_{\mu}}{q^{2}}\left(e^{*} q\right)\left(A_{3}-A_{0}\right)\left(q^{2}\right)+\epsilon_{\mu \nu \rho \sigma} e^{* \nu} p_{B}^{\rho} p^{\sigma} \frac{2 V\left(q^{2}\right)}{m_{B}+m_{\rho}}
\end{aligned}
$$

Q For tensor currents (penguin operators):

$$
\begin{aligned}
\langle\pi| \bar{u} \sigma_{\mu \nu} q^{\nu} b|B\rangle & =\frac{i}{m_{B}+m_{\pi}}\left(q^{2}\left(p+p_{B}\right)_{\mu}-\left(m_{B}^{2}-m_{\pi}^{2}\right) q_{\mu}\right) f_{T}\left(q^{2}\right) \\
\langle\rho| \bar{u} \sigma_{\mu \nu} q^{\nu}\left(1+\gamma_{5}\right) b|B\rangle & =\left(e_{\mu}^{*}\left(m_{B}^{2}-m_{\rho}\right)^{2}-\left(e^{*} q\right)\left(p_{B}+p\right)_{\mu}\right) T_{2}\left(q^{2}\right) \\
& +\left(e^{*} q\right)\left(q-\frac{q^{2}\left(p_{B}+p\right)}{m_{B}^{2}-m_{\rho}^{2}}\right)_{\mu} T_{3}\left(q^{2}\right)+i \epsilon_{\mu \nu \rho \sigma} e^{* \nu} p_{B}^{\rho} p^{\sigma} 2 T_{1}\left(q^{2}\right)
\end{aligned}
$$

- Semileptonic decays e.g. $B \rightarrow \pi(e \nu)\left|V_{\mathrm{ub}}\right|, B \rightarrow K^{*} l^{+} l^{-}, B \rightarrow K^{*} \gamma$
- enter BBNS-factorization approach to non-leptonic B-decays etc

Light-Cone Sum Rules (LCSR)

Q ... emerged ~1990 as a Synthesis of
QCD Sum Rules and Hadron Distribution Amplitudes in order to deal with " 3 -particle hadronic physics" e.g. $B \rightarrow \pi(l \nu)$

Light-Cone Sum Rules (LCSR)

Q ... emerged ~ 1990 as a Synthesis of
QCD Sum Rules and Hadron Distribution Amplitudes in order to deal with "3-particle hadronic physics" e.g. $B \rightarrow \pi(l \nu)$

Q Physics: Allow to express hadronic data (e.g. $f_{+}^{B \rightarrow \pi}$) expressed in terms of
A. fundamental QCD-parameters e.g. $\left(\alpha_{s}, m_{b}, \ldots\right)$
B. universal hadronic parameters e.g. $\left(f_{\pi}, \phi_{\pi}(D A), \ldots\right)$

Light-Cone Sum Rules (LCSR)

Q ... emerged ~ 1990 as a Synthesis of
QCD Sum Rules and Hadron Distribution Amplitudes in order to deal with "3-particle hadronic physics" e.g. $B \rightarrow \pi(l \nu)$

Q Physics: Allow to express hadronic data (e.g. $f_{+}^{B \rightarrow \pi}$) expressed in terms of
A. fundamental QCD-parameters e.g. $\left(\alpha_{s}, m_{b}, \ldots\right)$
B. universal hadronic parameters e.g. $\left(f_{\pi}, \phi_{\pi}(D A), \ldots\right)$

Method: Choose suitable correlation function and evaluate in two ways

$$
\text { e.g. } \quad \Pi_{\mu}\left(q, p_{B}\right)=i \int_{x} e^{i q x}\langle\pi(p)| V_{\mu}(x) J_{B}(0)|0\rangle
$$

1. Hadronic: dispersion relation, separate lowest resonance (Residue \sim hadr. data)
2. Quarks: perform a Light-Cone OPE
3. Estimate remaining dispersive-integral by analytically cont. of LC-OPE (semi-global Quark-Hadron-Duality)
4. Numerical improvement through Borel transformation.

Exemplified for $f_{+}^{B \rightarrow \pi}$ in equations

$\square 0$

$$
\# \frac{f_{B} f_{+}^{B \rightarrow \pi}}{q^{2}-m_{B}^{2}}+\frac{1}{\pi} \int_{s_{0}} \frac{\operatorname{Im}\left[\Pi_{+}^{\mathrm{LC}}(s, q)\right]}{s-p_{B}^{2}}=\sum_{i \in \mathrm{twist}} T_{H}^{i} \otimes \phi^{i} \equiv \Pi_{+}^{\mathrm{LC}}\left(q, p_{B}\right)
$$

A. T_{H} pert. calculable kernel (exp.in $\alpha_{s} /$ analogue Wilson Coeff. OPE)
B. ϕ universal π-Distribution Amplitude (analogue of matrix element in OPE)
C. twist $=$ dim-spin of operator or DA;
D. valid for $\left(q^{2}, p_{B}^{2}\right)<m_{b}^{2}-O\left(\Lambda m_{b}\right) \sim 14 \mathrm{GeV}^{2}, \frac{3}{5}$ physical interval

Note: rôle of m_{b} numerical not parametrical (not $\frac{1}{m_{b}}$-expansion) Therefore applicable for $F^{D \rightarrow P, V}$ c.f. Khodjamirian et al 00 (Although smaller rel. Interval)

Exemplified for $f_{+}^{B \rightarrow \pi}$ in equations

Q

$$
\# \frac{f_{B} f_{+}^{B \rightarrow \pi}}{q^{2}-m_{B}^{2}}+\frac{1}{\pi} \int_{s_{0}} \frac{\operatorname{Im}\left[\Pi_{+}^{\mathrm{LC}}(s, q)\right]}{s-p_{B}^{2}}=\sum_{i \in \mathrm{twist}} T_{H}^{i} \otimes \phi^{i} \equiv \Pi_{+}^{\mathrm{LC}}\left(q, p_{B}\right)
$$

A. T_{H} pert. calculable kernel (exp.in $\alpha_{s} /$ analogue Wilson Coeff. OPE)
B. ϕ universal π-Distribution Amplitude (analogue of matrix element in OPE)
C. twist $=$ dim-spin of operator or DA;
D. valid for $\left(q^{2}, p_{B}^{2}\right)<m_{b}^{2}-O\left(\Lambda m_{b}\right) \sim 14 \mathrm{GeV}^{2}, \frac{3}{5}$ physical interval

Note: rôle of m_{b} numerical not parametrical (not $\frac{1}{m_{b}}$-expansion) Therefore applicable for $F^{D \rightarrow P, V}$ c.f. Khodjamirian et al 00 (Although smaller rel. Interval)

Q Eliminate f_{B} in $\left(f_{B} f_{+}^{B \rightarrow \pi}\right)_{S R}$ by the corresponding sum rule to same accuracy

$$
f_{+}=\frac{\left(f_{+} f_{B}\right)_{\mathrm{SR}}}{\left(f_{B}\right)_{\mathrm{SR}}}
$$

Important: cancellation of uncertainties in ratio (e.g. α_{s})

Calculations LCSR

Q Chernyak, Zhitnitsky, Belayev, Braun, Khodjamirian, Yakolev, Weinzierl Rückl, Winhart,Ball,RZ ...
have calculated these formfactors at various stages up to various orders

Calculations LCSR

Q Chernyak, Zhitnitsky, Belayev, Braun, Khodjamirian, Yakolev, Weinzierl Rückl, Winhart,Ball,RZ ...
have calculated these formfactors at various stages up to various orders
Q Most up to date including twist-2, twist-3 radiative corrections $O\left(\alpha_{s}\right)$ P.Ball,R.Z. hep-ph/0406232 hep-ph/0412079 PRD71

Calculations LCSR

a Chernyak, Zhitnitsky, Belayev, Braun, Khodjamirian, Yakolev, Weinzierl Rückl, Winhart,Ball,RZ ..
have calculated these formfactors at various stages up to various orders
e Most up to date including twist-2, twist-3 radiative corrections $O\left(\alpha_{s}\right)$ P.Ball,R.Z. hep-ph/0406232 hep-ph/0412079 PRD71

Q The important $f_{+}^{B \rightarrow \pi}$ formfactor is found

$$
f_{+}^{B \rightarrow \pi}(0)=0.258 \pm 0.031
$$

e LCSR calculation available/valid for $0<q^{2}<14 \mathrm{GeV}^{2}$, discuss extension later
a Soft IR-divergencies cancel non-trivially for radiative corrections as required by consistency of factorization ansatz
a twist-3 important because chirally enhanced (as in BBNS)

Uncertainty \& possible improvements

e hadronic input parameters (mainly leading π-DA $\sim 8 \%$ possible)
e QHD (incorporated in variation of Borel parameter) $\sim 4 \%$ difficult, gain confidence through consistency checks
e $\alpha_{s} / \mu_{\text {IR }}$ rather small (due to cancellation in ratio)
Q higher twist ? t-2 $\sim 60 \%, t-3 \sim 30 \%, t-4 \sim 1 \%$ looks fine To be done: Test renormalon model for t-4 Braun, Gardi .. 04
e $\mathrm{SU}(3)$ additional uncertainty: prior to $04-06 \sim 8 \%$ now $\sim 3 \%$ due to progress from QCD sum rules determinations of a_{1}

Fits and extension \& consistency checks (comparison with latitice)

G1 Make calculation accessible \rightarrow fit for $0<q^{2}<14 \mathrm{GeV}^{2}$, any Ansatz fine

Fits and extension \& consistency checks (comparison with lattice)

G1 Make calculation accessible \rightarrow fit for $0<q^{2}<14 \mathrm{GeV}^{2}$, any Ansatz fine
G2 By choosing physical fit-ansatz, may aim at extending to entire physical domain

Fits and extension \& consistency checks (comparison with latitie)

G1 Make calculation accessible \rightarrow fit for $0<q^{2}<14 \mathrm{GeV}^{2}$, any Ansatz fine
G2 By choosing physical fit-ansatz, may aim at extending to entire physical domain
e formfactor obeys a dispersion relation,

$$
f_{+}\left(q^{2}\right)=\frac{r_{1}}{1-q^{2} / m_{B^{*}}^{2}}+\int_{\left(m_{B}+\Delta\right)^{2}}^{\infty} d t \frac{\rho(t)}{t-q^{2}}
$$

Res. $r_{1}=\frac{g_{B B^{*} \pi} f_{B^{*}}}{2 m_{B^{*}}} \sim 0.8 \pm 0.2, f_{B} \sim f_{B^{*}}, g_{B B^{*} \pi} \mathrm{HQ}$-scaling $g_{D D^{*} \pi}$ (CLEO-01)

Fits and extension \& consistency checks (comparison with latitie)

G1 Make calculation accessible \rightarrow fit for $0<q^{2}<14 \mathrm{GeV}^{2}$, any Ansatz fine
G2 By choosing physical fit-ansatz, may aim at extending to entire physical domain
e formfactor obeys a dispersion relation,

$$
f_{+}\left(q^{2}\right)=\frac{r_{1}}{1-q^{2} / m_{B^{*}}^{2}}+\int_{\left(m_{B}+\Delta\right)^{2}}^{\infty} d t \frac{\rho(t)}{t-q^{2}}
$$

Res. $r_{1}=\frac{g_{B B^{*} \pi} f_{B^{*}}}{2 m_{B^{*}}} \sim 0.8 \pm 0.2, f_{B} \sim f_{B^{*}}, g_{B B^{*} \pi} \mathrm{HQ}$-scaling $g_{D D^{*} \pi}$ (CLEO-01)
Q Assume rem.- \int neglected $\mathrm{VMD} \Rightarrow r_{1} \equiv f_{+}(0)=0.26$ excluded

Fits and extension \& consistency checks (comparison with hatitice)

G1 Make calculation accessible \rightarrow fit for $0<q^{2}<14 \mathrm{GeV}^{2}$, any Ansatz fine
G2 By choosing physical fit-ansatz, may aim at extending to entire physical domain
e formfactor obeys a dispersion relation,

$$
f_{+}\left(q^{2}\right)=\frac{r_{1}}{1-q^{2} / m_{B^{*}}^{2}}+\int_{\left(m_{B}+\Delta\right)^{2}}^{\infty} d t \frac{\rho(t)}{t-q^{2}}
$$

Res. $r_{1}=\frac{g_{B B^{*} \pi} f_{B^{*}}}{2 m_{B^{*}}} \sim 0.8 \pm 0.2, f_{B} \sim f_{B^{*}}, g_{B B^{*} \pi} \mathrm{HQ}$-scaling $g_{D D^{*} \pi}$ (CLEO-01)
Q Assume rem.- \int neglected $\mathrm{VMD} \Rightarrow r_{1} \equiv f_{+}(0)=0.26$ excluded
e Assume rem.- \int estimated by effective pole/ Becirevic \& Kaidalov 99

$$
f_{+}\left(q^{2}\right)=\frac{r_{1}}{1-q^{2} / m_{B^{*}}^{2}}+\frac{r_{2}}{1-q^{2} / m_{X}^{2}}
$$

Fits and extension $\&$ consistency checks (comparison with lattice)

G1 Make calculation accessible \rightarrow fit for $0<q^{2}<14 \mathrm{GeV}^{2}$, any Ansatz fine
G2 By choosing physical fit-ansatz, may aim at extending to entire physical domain
e formfactor obeys a dispersion relation,

$$
f_{+}\left(q^{2}\right)=\frac{r_{1}}{1-q^{2} / m_{B^{*}}^{2}}+\int_{\left(m_{B}+\Delta\right)^{2}}^{\infty} d t \frac{\rho(t)}{t-q^{2}}
$$

Res. $r_{1}=\frac{g_{B B^{*} \pi} f_{B^{*}}}{2 m_{B^{*}}} \sim 0.8 \pm 0.2, f_{B} \sim f_{B^{*}}, g_{B B^{*} \pi} \mathrm{HQ}$-scaling $g_{D D^{*} \pi}$ (CLEO-01)
Q Assume rem.- \int neglected $\mathrm{VMD} \Rightarrow r_{1} \equiv f_{+}(0)=0.26$ excluded
e Assume rem.- \int estimated by effective pole/ Becirevic \& Kaidalov 99

$$
f_{+}\left(q^{2}\right)=\frac{r_{1}}{1-q^{2} / m_{B^{*}}^{2}}+\frac{r_{2}}{1-q^{2} / m_{X}^{2}}
$$

G1 Fits $f_{+}\left(q^{2}\right)$ in $0<q^{2}<14 \mathrm{GeV}^{2}$ extremely well!

Fits and extension $\boldsymbol{\&}$ consistency checks ${ }_{\text {(comparison with lattice) }}$

G1 Make calculation accessible \rightarrow fit for $0<q^{2}<14 \mathrm{GeV}^{2}$, any Ansatz fine
G2 By choosing physical fit-ansatz, may aim at extending to entire physical domain
e formfactor obeys a dispersion relation,

$$
f_{+}\left(q^{2}\right)=\frac{r_{1}}{1-q^{2} / m_{B^{*}}^{2}}+\int_{\left(m_{B}+\Delta\right)^{2}}^{\infty} d t \frac{\rho(t)}{t-q^{2}}
$$

Res. $r_{1}=\frac{g_{B B^{*} \pi} f_{B^{*}}}{2 m_{B^{*}}} \sim 0.8 \pm 0.2, f_{B} \sim f_{B^{*}}, g_{B B^{*} \pi} \mathrm{HQ}$-scaling $g_{D D^{*} \pi}$ (CLEO-01)
Q Assume rem.- \int neglected $\mathrm{VMD} \Rightarrow r_{1} \equiv f_{+}(0)=0.26$ excluded
e Assume rem.- \int estimated by effective pole/ Becirevic \& Kaidalov 99

$$
f_{+}\left(q^{2}\right)=\frac{r_{1}}{1-q^{2} / m_{B^{*}}^{2}}+\frac{r_{2}}{1-q^{2} / m_{X}^{2}}
$$

G1 Fits $f_{+}\left(q^{2}\right)$ in $0<q^{2}<14 \mathrm{GeV}^{2}$ extremely well!
G2 Fit of $r_{1} \simeq 0.75$ (stable), soft-pion point $f_{0}\left(m_{B}^{2}\right)=\frac{f_{B}}{f_{\pi}}$ get $f_{B} \sim 200 \mathrm{MeV}$ (stable)

Comparison with lattice

Q Early calc. quark models (BSW) $f_{+}(0)$ and then assumed VMD
e LCSR FF $q^{2}<14 \mathrm{GeV}^{2}$
e Lattice FF $q^{2}>16 \mathrm{GeV}^{2}$ (Idea moving frame (HPQCD) go to lower q^{2})

GeV^{2}	LCSR 04	FNAL 04	HPQCD 06	Abada et al 00
$f_{+}(0)$	0.26 ± 0.03	0.23	0.26	0.27
$f_{+}(16)$	0.9	0.8 ± 0.1	0.71 ± 0.06	0.87 ± 0.1

e FNAL staggered fermions unquenched, Wilsonian HQ action
e HPQCD staggered fermions unquenched, NRQCD
e Abada et al quenched, Improved Wilson action
Q Note: Lattice community become cautious quoting $B \rightarrow \rho$ etc, because ρ unstable particle, LCSR only calculation there!
e $F^{D \rightarrow \pi, K}$ from LCSR Khodjamirian et al 00 also good agreement with LQCD

Distribution Amplitude (DA) (Focus on Kaon)

Meson Distribution Amplitudes (DA)

Q Relevant for exclusive QCD processes at large momentum transfer, semileptonic heavy-light, BBNS $B \rightarrow \pi \pi(K), F_{\pi}\left(q^{2}\right), F_{\gamma \gamma^{*} \pi}$ etc

Meson Distribution Amplitudes (DA)

Q Relevant for exclusive QCD processes at large momentum transfer, semileptonic heavy-light, BBNS $B \rightarrow \pi \pi(K), F_{\pi}\left(q^{2}\right), F_{\gamma \gamma^{*} \pi}$ etc
e Most important DA \leftrightarrow minimal number of constituent (partons)

$$
\langle K(p)| \bar{s}(x) \gamma_{\mu} \gamma_{5} q(0)|0\rangle=i f_{K} p_{\mu} \int_{0}^{1} d u e^{i u p x} \phi_{K}(u)+O\left(x^{2}, m_{K}^{2}\right)
$$

called leading twist $=\operatorname{dim}-$ spin $=2,(1-u)$: mom. fraction of s-quark in meson Analogous def. for $K^{*, \|}$ and $K^{*, \perp}$

Meson Distribution Amplitudes (DA)

Q Relevant for exclusive QCD processes at large momentum transfer, semileptonic heavy-light, BBNS $B \rightarrow \pi \pi(K), F_{\pi}\left(q^{2}\right), F_{\gamma \gamma^{*} \pi}$ etc
e Most important DA \leftrightarrow minimal number of constituent (partons)

$$
\langle K(p)| \bar{s}(x) \gamma_{\mu} \gamma_{5} q(0)|0\rangle=i f_{K} p_{\mu} \int_{0}^{1} d u e^{i u p x} \phi_{K}(u)+O\left(x^{2}, m_{K}^{2}\right)
$$

called leading twist $=$ dim - spin $=2,(1-u)$: mom. fraction of s-quark in meson Analogous def. for $K^{*, \|}$ and $K^{*, \perp}$

Q Higher twist corrections:
a higher Fock states $(\langle K| \bar{s} \sigma \cdot G q|0\rangle)$
e deviation from the light-cone $\left(O\left(x^{2}, m_{\pi}^{2}\right)\right)$
e other comb. of "good" and "bad" LC-states (Kogut \& Soper) $\left(\langle\pi| \bar{s} \gamma_{5} q|0\rangle\right)$

Meson Distribution Amplitudes (DA)

Q Relevant for exclusive QCD processes at large momentum transfer, semileptonic heavy-light, BBNS $B \rightarrow \pi \pi(K), F_{\pi}\left(q^{2}\right), F_{\gamma \gamma^{*} \pi}$ etc
e Most important DA \leftrightarrow minimal number of constituent (partons)

$$
\langle K(p)| \bar{s}(x) \gamma_{\mu} \gamma_{5} q(0)|0\rangle=i f_{K} p_{\mu} \int_{0}^{1} d u e^{i u p x} \phi_{K}(u)+O\left(x^{2}, m_{K}^{2}\right)
$$

called leading twist $=$ dim - spin $=2,(1-u)$: mom. fraction of s-quark in meson Analogous def. for $K^{*, \|}$ and $K^{*, \perp}$

Q Higher twist corrections:
e higher Fock states $(\langle K| \bar{s} \sigma \cdot G q|0\rangle)$
e deviation from the light-cone $\left(O\left(x^{2}, m_{\pi}^{2}\right)\right)$
a other comb. of "good" and "bad" LC-states (Kogut \& Soper) ($\left.\langle\pi| \bar{s} \gamma_{5} q|0\rangle\right)$
e Distribution amplitudes identified (use QCD e.o.m) up to twist 4 Ball et al 98 Update on twist-3,4 parameters forthcoming including SU(3) for Pseudoscalar Ball, Braun,Lenz 06 later Vectors Jones et al 06

Focus leading twist-2 DA

e Expand in Eigenfunctions of LO BL-ER Kernel V_{0}

$$
\phi_{K}(u, \mu)=6 u \bar{u}\left(1+\sum_{n \geq 1} a_{n}(\mu, K) C_{n}^{3 / 2}(2 u-1)\right)
$$

Q a_{n} Gegenbauer moments (determination difficult)
Q $a_{\text {odd }}=0$ G-parity inv. particles (for π not K)
e anomalous dimension $\gamma_{n+1}>\gamma_{n}$ "conformal hierarchy"
a Alternative reasoning $S L(2, R)$ collinear subgroup of conformal group $S O(4,2)$ Gegenbauer C_{n} are representations with conformal spin $j=2+n$

How to deal information?

1. Truncation, let's say for decay $\mathcal{A}_{X \rightarrow K Y}$

$$
\mathcal{A}=f^{(0)}+f^{(1)} a_{1}+f^{(2)} a_{2}+\ldots
$$

A. determinations of a_{n} indicate $a_{0} \equiv 1>\left|a_{1,2}\right|>\left|a_{3,4}\right|$.. (Ok conformal hierarchy)
B. if kernel T_{H} is smooth then $\left|f^{(0)}\right|>\left|f^{(1,2)}\right|>\left|f^{(3,4)}\right|$ (Analogy with partial wave expansion $\left(S O(3), Y_{\operatorname{lm}}\right) \sim\left(S L(2, R), C_{n}\right)$ $C_{n} \mathrm{n}$-nodes and are washed out upon convolution with smooth kernel)

How to deal information?

1. Truncation, let's say for decay $\mathcal{A}_{X \rightarrow K Y}$

$$
\mathcal{A}=f^{(0)}+f^{(1)} a_{1}+f^{(2)} a_{2}+\ldots
$$

A. determinations of a_{n} indicate $a_{0} \equiv 1>\left|a_{1,2}\right|>\left|a_{3,4}\right|$.. (Ok conformal hierarchy)
B. if kernel T_{H} is smooth then $\left|f^{(0)}\right|>\left|f^{(1,2)}\right|>\left|f^{(3,4)}\right|$ (Analogy with partial wave expansion $\left(S O(3), Y_{\operatorname{lm}}\right) \sim\left(S L(2, R), C_{n}\right)$ $C_{n} \mathrm{n}$-nodes and are washed out upon convolution with smooth kernel)
2. Model satisfying theoretical and experimental constraints Ball, Tallbot 05
A. From $\gamma^{*} \gamma \pi$ CLEO, theory $\Delta=\int d u \phi_{\pi}(u) / u \sim 1.2 \pm 0.2$
B. Using LO-rng $a_{n}(\mu)=a_{n}\left(\mu_{0}\right)(L)^{\gamma_{n} /\left(2 \beta_{0}\right)}$

Motivated: $a_{n}(a, b)=\frac{N_{\Delta}}{(n / b+1)^{a}}$, can be summed exactly

How to deal information?

1. Truncation, let's say for decay $\mathcal{A}_{X \rightarrow K Y}$

$$
\mathcal{A}=f^{(0)}+f^{(1)} a_{1}+f^{(2)} a_{2}+\ldots
$$

A. determinations of a_{n} indicate $a_{0} \equiv 1>\left|a_{1,2}\right|>\left|a_{3,4}\right|$.. (Ok conformal hierarchy)
B. if kernel T_{H} is smooth then $\left|f^{(0)}\right|>\left|f^{(1,2)}\right|>\left|f^{(3,4)}\right|$ (Analogy with partial wave expansion $\left(S O(3), Y_{\operatorname{lm}}\right) \sim\left(S L(2, R), C_{n}\right)$ C_{n} n-nodes and are washed out upon convolution with smooth kernel)
2. Model satisfying theoretical and experimental constraints Ball, Talbot 05
A. From $\gamma^{*} \gamma \pi$ CLEO, theory $\Delta=\int d u \phi_{\pi}(u) / u \sim 1.2 \pm 0.2$
B. Using LO-rng $a_{n}(\mu)=a_{n}\left(\mu_{0}\right)(L)^{\gamma_{n} /\left(2 \beta_{0}\right)}$

Motivated: $a_{n}(a, b)=\frac{N_{\Delta}}{(n / b+1)^{a}}$, can be summed exactly
\rightarrow Decide process by process to whether to resort to 1 . or 2. depending on smoothness of kernel and or endpoint sensitivity
a $B \rightarrow$ light FF from LCSR no big change
Q $B \rightarrow \pi \pi(K)$, branching ratios and CP-asymmetries in BBNS approach, more relevant not enough to account for experimental discrepancy Ball, Tallbot05

Determination of Gegenbauer moments a_{1}, a_{2}, \ldots

Q Fit to an observable, be careful other hadr. uncert. do not contaminate Examples for $a_{2}^{\pi}: F_{\gamma \gamma^{*}, \pi}, F_{\pi}^{\mathrm{em}}, F^{B \rightarrow \pi}$-shape
More spectral data (bins) would be useful e.g. $B \rightarrow \pi e \nu$ others

Determination of Gegenbauer moments a_{1}, a_{2}, \ldots

Q Fit to an observable, be careful other hadr. uncert. do not contaminate
Examples for $a_{2}^{\pi}: F_{\gamma \gamma^{*}, \pi}, F_{\pi}^{\mathrm{em}}, F^{B \rightarrow \pi}$-shape
More spectral data (bins) would be useful e.g. $B \rightarrow \pi e \nu$ others
Q Direct calculation from the matrix elements

$$
\langle 0| \bar{s} z_{\mu} \gamma^{\mu} \gamma_{5}(i z \stackrel{\leftrightarrow}{D})^{n} q|K(p)\rangle=(z p)^{n+1} f_{K} 2 \int_{0}^{1} d u(2 u-1)^{n} \phi_{K}(u) \equiv N \cdot M_{n}
$$

$$
\begin{array}{ll}
M_{0}=1 & M_{2}=\frac{1}{5}+\frac{12}{35} a_{2} \\
M_{1}=a_{1} & M_{4}=\frac{3}{35}+\frac{8}{35} a_{2}+\frac{8}{77} a_{4}
\end{array}
$$

e In QCD sum rules (pioneered by Chernyak \& Zhitnitsky ~1980)
Noticed that only first few moments give stable sum rules, $n>4$ not useful

- Lattice worked on it ~ 90 got contradicting results

New start UKQCD QCDSF second moment available, first moment on the way !! Also here higher moments difficult (derivatives)

Determination of Gegenbauer moments a_{1}, a_{2}, \ldots

Q Fit to an observable, be careful other hadr. uncert. do not contaminate
Examples for $a_{2}^{\pi}: F_{\gamma \gamma^{*}, \pi}, F_{\pi}^{\mathrm{em}}, F^{B \rightarrow \pi}$-shape
More spectral data (bins) would be useful e.g. $B \rightarrow \pi e \nu$ others
a Direct calculation from the matrix elements

$$
\langle 0| \bar{s} z_{\mu} \gamma^{\mu} \gamma_{5}(i z \stackrel{\leftrightarrow}{D})^{n} q|K(p)\rangle=(z p)^{n+1} f_{K} 2 \int_{0}^{1} d u(2 u-1)^{n} \phi_{K}(u) \equiv N \cdot M_{n}
$$

$$
\begin{array}{ll}
M_{0}=1 & M_{2}=\frac{1}{5}+\frac{12}{35} a_{2} \\
M_{1}=a_{1} & M_{4}=\frac{3}{35}+\frac{8}{35} a_{2}+\frac{8}{77} a_{4}
\end{array}
$$

e In QCD sum rules (pioneered by Chernyak \& Zhitnitsky ~1980)
Noticed that only first few moments give stable sum rules, $n>4$ not useful

- Lattice worked on it ~ 90 got contradicting results

New start UKQCD QCDSF second moment available, first moment on the way !! Also here higher moments difficult (derivatives)

Q New methods from exact operator relations for first moment $\left(a_{1}\right) \ldots$

Overview of calculations for a_{1}

a_{1} obtained from correlation function of the type

$$
i \int_{x}\langle 0| T \bar{q}(i z \stackrel{\leftrightarrow}{D}) \Gamma_{1} s(x) \bar{s} \Gamma_{2} q(0)|0\rangle
$$

Note: $a_{1}>0$ higher average momentum of s-quark as suggested by Constituent quark-model

Type	$a_{1}(K)\left(\mu_{0}\right)$	$a_{1}^{\\|}\left(K^{*}\right)\left(\mu_{0}\right)$	$a_{1}^{\perp}\left(K^{*}\right)\left(\mu_{0}\right)$	Authors	Remarks
ND	0.17	0.19	0.2	Chernyak \& Zhit. 84	sign mistake
ND	-0.18	-0.4	-0.34	Ball Boglione 03	NLO, unstable
D	0.05 ± 0.02	-	-	Khodjamiran et al 04	-
OPR	0.1 ± 0.12	0.1 ± 0.07	-	Braun Lenz 04	neglect $O\left(m_{s}^{2}\right)$
D	0.06 ± 0.03	0.03 ± 0.02	0.04 ± 0.03	Ball RZ 05	confirm 04, extend
OPR	0.07 ± 0.18	0.01 ± 0.05	0.09 ± 0.07	Ball RZ 06	incl $O\left(m_{s}^{2}\right)$

a ND: spectral-fct non-positive def. (cancellations, contamination higher states)! which turns out to be the case \Rightarrow not consider anymore
e D: pos. def. work fine are the best OPR: New method can't compete yet ...

New operator relations of the type:

$$
\begin{gathered}
M_{1} \equiv \\
\frac{3}{5} a_{1}^{\|}\left(K^{*}\right)=-\frac{f_{K}^{\perp}}{f_{K}^{\|}} \frac{m_{s}-m_{q}}{m_{K^{*}}}+2 \frac{m_{s}^{2}-m_{q}^{2}}{m_{K^{*}}^{2}}-4 \kappa_{4}^{\|}\left(K^{*}\right) \\
\langle 0| \bar{q}\left(g G_{\alpha \mu}\right) i \gamma^{\mu} s\left|K^{*}(q)\right\rangle=e^{\alpha} f_{K}^{\|} m_{K^{*}}^{3} \kappa_{4}^{\|}\left(K^{*}\right)
\end{gathered}
$$

1. From $O_{\mu \nu}=\frac{1}{2} \bar{q} \gamma_{\mu} \gamma_{5} i \overleftrightarrow{D}_{\nu} s+\ldots$ with $O_{\mu}^{\mu}=0$ playing role of energy momentum tensor by Braun \& Lenz 04 for $a_{1}(K)$ and $a_{1}^{\|}\left(K^{*}\right)$

from operator relations

New operator relations of the type:

$$
\begin{gathered}
M_{1} \equiv \\
\frac{3}{5} a_{1}^{\|}\left(K^{*}\right)=-\frac{f_{K}^{\perp}}{f_{K}^{\|}} \frac{m_{s}-m_{q}}{m_{K^{*}}}+2 \frac{m_{s}^{2}-m_{q}^{2}}{m_{K^{*}}^{2}}-4 \kappa_{4}^{\|}\left(K^{*}\right) \\
\langle 0| \bar{q}\left(g G_{\alpha \mu}\right) i \gamma^{\mu} s\left|K^{*}(q)\right\rangle=e^{\alpha} f_{K}^{\|} m_{K^{*}}^{3} \kappa_{4}^{\|}\left(K^{*}\right)
\end{gathered}
$$

1. From $O_{\mu \nu}=\frac{1}{2} \bar{q} \gamma_{\mu} \gamma_{5} i \overleftrightarrow{D}_{\nu} s+\ldots$ with $O_{\mu}^{\mu}=0$ playing role of energy momentum tensor by Braun \& Lenz 04 for $a_{1}(K)$ and $a_{1}^{\|}\left(K^{*}\right)$
2. From the QCD equation of motion those relations were rederived plus a relation for $a_{1}^{\perp}\left(K^{*}\right)$ (Difficult other method) by Ball \& RZ 06

New operator relations of the type:

$$
\begin{gathered}
M_{1} \equiv \\
\frac{3}{5} a_{1}^{\|}\left(K^{*}\right)=-\frac{f_{K}^{\perp}}{f_{K}^{\|}} \frac{m_{s}-m_{q}}{m_{K^{*}}}+2 \frac{m_{s}^{2}-m_{q}^{2}}{m_{K^{*}}^{2}}-4 \kappa_{4}^{\|}\left(K^{*}\right) \\
\langle 0| \bar{q}\left(g G_{\alpha \mu}\right) i \gamma^{\mu} s\left|K^{*}(q)\right\rangle=e^{\alpha} f_{K}^{\|} m_{K^{*}}^{3} \kappa_{4}^{\|}\left(K^{*}\right)
\end{gathered}
$$

1. From $O_{\mu \nu}=\frac{1}{2} \bar{q} \gamma_{\mu} \gamma_{5} i \overleftrightarrow{D}_{\nu} s+\ldots$ with $O_{\mu}^{\mu}=0$ playing role of energy momentum tensor by Braun \& Lenz 04 for $a_{1}(K)$ and $a_{1}^{\|}\left(K^{*}\right)$
2. From the QCD equation of motion those relations were rederived plus a relation for $a_{1}^{\perp}\left(K^{*}\right)$ (Difficult other method) by Ball \& RZ 06

Q The $\kappa_{4}^{\prime} s$ are estimated via several QCD Sum Rules, not very stable sensitive to $m_{s}, \alpha_{s},\langle\bar{s} s\rangle /\langle\bar{q} q\rangle$
e $\kappa_{4}^{\prime} s$ could of course also be estimated from Lattice! Why not? Overall Precision?

Q Therefore for phenomenology one should use the values from the diagonal sum rules

$$
a_{1}(K)=0.06 \pm 0.03, \quad a_{1}^{\|}\left(K^{*}\right)=0.03 \pm 0.02 \quad a_{1}^{\perp}\left(K^{*}\right)=0.04 \pm 0.03
$$

Khodjamirian et al PRD70, Ball RZ JHEP 06 in press

Q $a_{2}(K)$?

1. $a_{2}(K) \sim a_{2}(\pi), \mathrm{SU}(3)$ sufficiently good there
2. Many determinations .. Sum Rules, Lattice, other approaches, fit to exp. data etc Small overview appear in Ball, Braun, Lenz $a_{2} \sim 0.2$
The topic of another talk!

Application: Tensorratio $\frac{T_{1}^{B-K^{*}}}{T_{1}^{B-\beta}}$

$B \rightarrow K^{*} \gamma$ vs. $B \rightarrow \rho \gamma$

(work in preparation, so don't expect too many details...)
Q measured by Belle 05, Babar forthcoming
e constrain $\left|V_{t s} / V_{t d}\right|$ from $B\left(B \rightarrow K^{*} \gamma\right) / B(B \rightarrow \rho \gamma)$: more accurate than constraint from B mixing?

Q in QCD factorization (Bosch et al Beneke et al Neubert et al):

$$
\begin{aligned}
\langle V \gamma| Q_{i}|B\rangle= & T_{i}^{I} F\left(B \rightarrow V_{\perp}\right)+\int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{B}(\omega) \int_{0}^{1} d u \phi_{V_{\perp}}(u) T_{i}^{I I}(\omega, u) \\
& +O\left(\frac{\Lambda}{m_{b}}\right)+O\left(\frac{\Lambda^{2}}{m_{s}^{2}}\right)
\end{aligned}
$$

e need $\operatorname{SU}(3)$ breaking in
(a) ratio of form factors $F\left(B \rightarrow K_{\perp}^{*}\right) / F\left(B \rightarrow \rho_{\perp}\right)$
(b) distribution amplitudes $\phi_{K_{\perp}^{*}, \rho_{\perp}}$
e $\operatorname{SU}(3)$ breaking in distribution amplitude ϕ_{\perp} : known Ball RZ 06(a)
e $\operatorname{SU}(3)$ breaking in form factors: under way Ball RZ 06(b)
The dependence of the formfactors on $a_{1}\left(K^{*}\right)$ are given in Ball RZ PRD7105(b) and the update of the preliminary ratio is

$$
\xi=\frac{T_{1}^{B \rightarrow K^{*}(0)}}{T_{1}^{B \rightarrow \rho}(0)}=1.16 \pm 0.1_{\text {param }} \pm 0.005_{a_{1}^{\|}} \pm 0.035_{a_{1}^{\perp}}=1.16 \pm 0.1 \pm 0.04_{a_{1}}
$$

e old values $\xi=1.25 \pm 0.1_{\text {param }} \pm 0.02_{a_{1}^{\|}} \pm 0.13_{a_{1}^{\perp}}$
a have to work further on $0.1_{\text {param }}$
Q could do with some $1 / m_{b}$ effects? e.g. long-distance photon-emission (under way)
From Bosch \& Buchalla 04:

$$
R_{0} \equiv \frac{B\left(B^{0} \rightarrow \rho^{0} \gamma\right)+B\left(\bar{B}^{0} \rightarrow \rho^{0} \gamma\right)}{B\left(B^{0} \rightarrow K^{*} \gamma\right)+B\left(\bar{B}^{0} \rightarrow \bar{K}^{*} \gamma\right)}=\frac{K}{2|\xi|^{2}}\left|V_{t d} / V_{t s}\right|^{2}(1+\Delta)
$$

where K kinematical factor, $|\Delta|<0.4$ contains subleading WA \& penguins

Conclusions

A1 The $F^{B(d, s) \rightarrow P, V}\left(q^{2}\right)$ can be calculated for $0<q^{2}<\sim 14 \mathrm{GeV}^{2}$ from LCSR Lattice provides $F^{B_{d, s} \rightarrow P}$ so far for $q^{2}>16 \mathrm{GeV}^{2}$ complementarity!

A2 LCSR only source for vector formfactors. Other methods would be nice. Ingenious lattice people will hopefully come up with something

A3 Two-pole param. fits the LCSR-well and survives consistency tests.
A4 good numerical agreement with Lattice-QCD (comp. upon extrapol.)

B1 After confusion considerable progress on leading Kaon DA - Gegenbauer moment a_{1}
B2 Progress on Kaon DA immediate impact on $B \rightarrow K^{*} \gamma$ vs. $B \rightarrow \rho \gamma$

C1 Experimentalists: Would be useful to get more bins! In order to check and test expansions and models of DA (relevant for exclusive physics)

Thanks for your attention!

Backup slide

Physics

Q Comparison with Meson $\rightarrow \pi$

$f_{+}^{B \rightarrow \pi}(0)$	$f_{+}^{D \rightarrow \pi(0)}$	$f_{+}^{K \rightarrow \pi}(0)$	$f_{+}^{\pi \rightarrow \pi}(0)$
0.26	0.65	0.96	1.00

the larger the recoil the less likely π-boundstate can form

Physics

e Comparison with Meson $\rightarrow \pi$

$f_{+}^{B \rightarrow \pi}(0)$	$f_{+}^{D \rightarrow \pi}(0)$	$f_{+}^{K \rightarrow \pi}(0)$	$f_{+}^{\pi \rightarrow \pi}(0)$
0.26	0.65	0.96	1.00

the larger the recoil the less likely π-boundstate can form

Higher twist DA. More unknown parameters?

Q Structure of DA known up to twist-4 (Ball,Braun,Koike,Filyanov,Tanaka).
Quick overview for π (counting):

Twist	2	3	4	
numb.DA	1	3	6	10
param.NLO j	$1(2)$	5	12	18

e j conformal spin (Gegenbauer expansion). 18 Non-pert. parameters !

- paramters

1. Norm. of matrix elements (Analogue of $f_{\pi} a_{0} \equiv f_{\pi}$)
2. NL-conf. spin (analogue of a_{2})

Q The number of parameters reduce to 5 upon use of (exact) QCD e.o.m. !!

$$
\text { e.g. } \begin{aligned}
\frac{\partial}{\partial x_{\mu}} \bar{q}_{1}(x) \gamma_{\mu}\left(\gamma_{5}\right) q_{2}(-x) & =-i \int_{-1}^{1} d v v \bar{q}_{1}(x) x_{\alpha} g G^{\alpha \mu}(v x) \gamma_{\mu}\left(\gamma_{5}\right) q_{2}(-x) \\
& +\left(m_{1} \pm m_{2}\right) \bar{q}_{1}(x) i\left(\gamma_{5}\right) q_{2}(-x)
\end{aligned}
$$

Higher twist DA. More unknown parameters?

Q Structure of DA known up to twist-4 (Ball,Braun,Koike,Filyanov,Tanaka).
Quick overview for π (counting):

Twist	2	3	4	
numb.DA	1	3	6	10
param.NLO j	$1(2)$	5	12	18

e j conformal spin (Gegenbauer expansion). 18 Non-pert. parameters !

- paramters

1. Norm. of matrix elements (Analogue of $f_{\pi} a_{0} \equiv f_{\pi}$)
2. NL-conf. spin (analogue of a_{2})

Q The number of parameters reduce to 5 upon use of (exact) QCD e.o.m. !!

$$
\text { e.g. } \begin{aligned}
\frac{\partial}{\partial x_{\mu}} \bar{q}_{1}(x) \gamma_{\mu}\left(\gamma_{5}\right) q_{2}(-x) & =-i \int_{-1}^{1} d v v \bar{q}_{1}(x) x_{\alpha} g G^{\alpha \mu}(v x) \gamma_{\mu}\left(\gamma_{5}\right) q_{2}(-x) \\
& +\left(m_{1} \pm m_{2}\right) \bar{q}_{1}(x) i\left(\gamma_{5}\right) q_{2}(-x)
\end{aligned}
$$

