B-to-light meson formfactor and recent progress on Kaon distribution amplitude

Roman Zwicky

IPPP (Durham University)

Roman Zwicky LHCb 6th Feb 06

Contents

- 1. Formfactors $F^{B \rightarrow P,V}$ from LCSR
 - extrapolation
 - comparison lattice QCD

Contents

- 1. Formfactors $F^{B \rightarrow P,V}$ from LCSR
 - extrapolation
 - comparison lattice QCD
- 2. Main source of SU(3) breaking beyond the static decay constants $\frac{f_K}{f_{\pi}}$?

$$\frac{F^{B \to K}}{F^{B \to \pi}} = \frac{f_K}{f_\pi} (1 + c_1 a_1) + \dots$$

• coefficient
$$c_1 \sim O(1)$$

a1 Gegenbauer moment of Kaon Distribution Amplitude, most important dynamical SU(3)-breaking parameter

Contents

- 1. Formfactors $F^{B \rightarrow P,V}$ from LCSR
 - extrapolation
 - comparison lattice QCD
- 2. Main source of SU(3) breaking beyond the static decay constants $\frac{f_K}{f_{\pi}}$?

$$\frac{F^{B \to K}}{F^{B \to \pi}} = \frac{f_K}{f_\pi} (1 + c_1 a_1) + \dots$$

- coefficient $c_1 \sim O(1)$
- a1 Gegenbauer moment of Kaon Distribution Amplitude, most important dynamical SU(3)-breaking parameter
- 3. For example in $B \to K^* \gamma$ vs. $B \to \rho \gamma$ (Belle,Babar coming)

$$\frac{T_1^{B \to K^*}}{T_1^{B \to \rho}} \leftrightarrow \frac{|V_{\rm ts}|}{|V_{\rm td}|}$$

Def. Formfactors, $B \rightarrow$ light P-scalar and vector

• For (V-A) currents:

$$\langle \pi | \bar{u} \gamma_{\mu} b | B \rangle = (p_{B} + p_{\pi})_{\mu} f_{+}(q^{2}) + q_{\mu} f_{-}(q^{2})$$

$$\langle \rho | \bar{u} \gamma_{\mu} (1 - \gamma_{5}) b | B \rangle = (p_{B} + p)_{\mu} (e^{*}q) \frac{A_{2}(q^{2})}{m_{B} + m_{\rho}} - ie^{*}_{\mu} (m_{B} + m_{\rho}) A_{1}(q^{2})$$

$$+ i \frac{q_{\mu}}{q^{2}} (e^{*}q) (A_{3} - A_{0})(q^{2}) + \epsilon_{\mu\nu\rho\sigma} e^{*\nu} p^{\rho}_{B} p^{\sigma} \frac{2V(q^{2})}{m_{B} + m_{\rho}}$$

For tensor currents (penguin operators):

$$\langle \pi | \bar{u} \sigma_{\mu\nu} q^{\nu} b | B \rangle = \frac{i}{m_B + m_\pi} (q^2 (p + p_B)_\mu - (m_B^2 - m_\pi^2) q_\mu) f_T(q^2)$$

$$\langle \rho | \bar{u} \sigma_{\mu\nu} q^{\nu} (1 + \gamma_5) b | B \rangle = (e^*_\mu (m_B^2 - m_\rho)^2 - (e^* q) (p_B + p)_\mu) T_2(q^2)$$

$$+ (e^* q) (q - \frac{q^2 (p_B + p)}{m_B^2 - m_\rho^2})_\mu T_3(q^2) + i\epsilon_{\mu\nu\rho\sigma} e^{*\nu} p^{\rho}_B p^{\sigma} 2T_1(q^2)$$

- Semileptonic decays e.g. $B \to \pi(e\nu) |V_{\rm ub}|, B \to K^* l^+ l^-, B \to K^* \gamma$

- enter BBNS-factorization approach to non-leptonic B-decays etc

Roman Zwicky LHCb 6th Feb 06

Light-Cone Sum Rules (LCSR)

 \blacksquare ... emerged ~ 1990 as a Synthesis of

QCD Sum Rules and Hadron Distribution Amplitudes in order to deal with "3-particle hadronic physics" e.g. $B \rightarrow \pi(l\nu)$

Light-Cone Sum Rules (LCSR)

• . . . emerged \sim 1990 as a Synthesis of

QCD Sum Rules and Hadron Distribution Amplitudes in order to deal with "3-particle hadronic physics" e.g. $B \rightarrow \pi(l\nu)$

- Physics: Allow to express hadronic data (e.g. $f_+^{B\to\pi}$) expressed in terms of
 - A. fundamental QCD-parameters e.g. (α_s, m_b, \ldots)
 - B. universal hadronic parameters e.g. $(f_{\pi}, \phi_{\pi}(DA), ...)$

Light-Cone Sum Rules (LCSR)

• . . . emerged \sim 1990 as a Synthesis of

QCD Sum Rules and Hadron Distribution Amplitudes in order to deal with "3-particle hadronic physics" e.g. $B \rightarrow \pi(l\nu)$

- Physics: Allow to express hadronic data (e.g. $f_+^{B\to\pi}$) expressed in terms of
 - A. fundamental QCD-parameters e.g. (α_s, m_b, \ldots)
 - B. universal hadronic parameters e.g. $(f_{\pi}, \phi_{\pi}(DA), \dots)$

Method: Choose suitable correlation function and evaluate in two ways

e.g.
$$\Pi_{\mu}(q, p_B) = i \int_{x} e^{iqx} \langle \pi(p) | V_{\mu}(x) J_B(0) | 0 \rangle$$

- 1. Hadronic: dispersion relation, separate lowest resonance (Residue \sim hadr. data)
- 2. Quarks: perform a Light-Cone OPE
- 3. Estimate remaining dispersive-integral by analytically cont. of LC-OPE (semi-global Quark-Hadron-Duality)
- 4. Numerical improvement through Borel transformation.

Exemplified for $f_+^{B \to \pi}$ in equations ...

$$\# \frac{f_B f_+^{B \to \pi}}{q^2 - m_B^2} + \frac{1}{\pi} \int_{s_0} \frac{\text{Im}[\Pi_+^{\text{LC}}(s, q)]}{s - p_B^2} = \sum_{i \in \text{twist}} T_H^i \otimes \phi^i \equiv \Pi_+^{\text{LC}}(q, p_B)$$

A. T_H pert. calculable kernel (exp.in α_s / analogue Wilson Coeff. OPE)

- B. ϕ universal π -Distribution Amplitude (analogue of matrix element in OPE)
- C. twist = dim-spin of operator or DA;
- D. valid for $(q^2, p_B^2) < m_b^2 O(\Lambda m_b) \sim 14 \text{GeV}^2$, $\frac{3}{5}$ physical interval
- Note: rôle of m_b numerical not parametrical (not $\frac{1}{m_b}$ -expansion) Therefore applicable for $F^{D \rightarrow P,V}$ c.f. Khodjamirian et al 00 (Although smaller rel. Interval)

Exemplified for $f_+^{B \to \pi}$ in equations ...

$$\# \frac{f_B f_+^B \to \pi}{q^2 - m_B^2} + \frac{1}{\pi} \int_{s_0} \frac{\text{Im}[\Pi_+^{\text{LC}}(s, q)]}{s - p_B^2} = \sum_{i \in \text{twist}} T_H^i \otimes \phi^i \equiv \Pi_+^{\text{LC}}(q, p_B)$$

A. T_H pert. calculable kernel (exp.in α_s / analogue Wilson Coeff. OPE)

- B. ϕ universal π -Distribution Amplitude (analogue of matrix element in OPE)
- C. twist = dim-spin of operator or DA;
- D. valid for $(q^2, p_B^2) < m_b^2 O(\Lambda m_b) \sim 14 \text{GeV}^2$, $\frac{3}{5}$ physical interval
- Note: rôle of m_b numerical not parametrical (not $\frac{1}{m_b}$ -expansion) Therefore applicable for $F^{D \rightarrow P,V}$ c.f. Khodjamirian et al 00 (Although smaller rel. Interval)
- Eliminate f_B in $(f_B f_+^B \rightarrow \pi)_{SR}$ by the corresponding sum rule to same accuracy

$$f_{+} = \frac{(f_{+}f_{B})_{\mathrm{SR}}}{(f_{B})_{\mathrm{SR}}}$$

Important: cancellation of uncertainties in ratio (e.g. α_s)

Calculations LCSR

Chernyak, Zhitnitsky, Belayev, Braun, Khodjamirian, Yakolev, Weinzierl Rückl, Winhart, Ball, RZ ...

have calculated these formfactors at various stages up to various orders

Calculations LCSR

Chernyak, Zhitnitsky, Belayev, Braun, Khodjamirian, Yakolev, Weinzierl Rückl, Winhart, Ball, RZ ...

have calculated these formfactors at various stages up to various orders

• Most up to date including twist-2, twist-3 radiative corrections $O(\alpha_s)$ P.Ball,R.Z. hep-ph/0406232 hep-ph/0412079 PRD71

Calculations LCSR

Chernyak, Zhitnitsky, Belayev, Braun, Khodjamirian, Yakolev, Weinzierl Rückl, Winhart, Ball, RZ ...

have calculated these formfactors at various stages up to various orders

- Most up to date including twist-2, twist-3 radiative corrections $O(\alpha_s)$ P.Ball,R.Z. hep-ph/0406232 hep-ph/0412079 PRD71
- The important $f_{+}^{B \to \pi}$ formfactor is found

$$f_{\pm}^{B\to\pi}(0) = 0.258 \pm 0.031$$

- LCSR calculation available/valid for $0 < q^2 < 14 \text{GeV}^2$, discuss extension later
- Soft IR-divergencies cancel non-trivially for radiative corrections as required by consistency of factorization ansatz
- Let twist-3 important because chirally enhanced (as in BBNS)

Uncertainty & possible improvements

- hadronic input parameters (mainly leading π -DA $\sim 8\%$ possible)
- QHD (incorporated in variation of Borel parameter) $\sim 4\%$ difficult, gain confidence through consistency checks
- $\alpha_s/\mu_{\rm IR}$ rather small (due to cancellation in ratio)
- higher twist ? t-2 \sim 60%, t-3 \sim 30%, t-4 \sim 1% looks fine To be done: Test renormalon model for t-4 Braun, Gardi .. 04
- SU(3) additional uncertainty: prior to 04-06 $\sim 8\%$ now $\sim 3\%$ due to progress from QCD sum rules determinations of a_1

G1 Make calculation accessible \rightarrow fit for $0 < q^2 < 14 {\rm GeV^2}$, any Ansatz fine

- G1 Make calculation accessible \rightarrow fit for $0 < q^2 < 14 GeV^2$, any Ansatz fine
- G2 By choosing physical fit-ansatz, may aim at extending to entire physical domain

- G1 Make calculation accessible \rightarrow fit for $0 < q^2 < 14 {\rm GeV^2},$ any Ansatz fine
- G2 By choosing physical fit-ansatz, may aim at extending to entire physical domain
- formfactor obeys a dispersion relation,

$$f_{+}(q^{2}) = \frac{r_{1}}{1 - q^{2}/m_{B^{*}}^{2}} + \int_{(m_{B} + \Delta)^{2}}^{\infty} dt \, \frac{\rho(t)}{t - q^{2}}$$

Res.
$$r_1 = \frac{g_{BB^*\pi}f_{B^*}}{2m_{B^*}} \sim 0.8 \pm 0.2$$
 , $f_B \sim f_{B^*}$, $g_{BB^*\pi}$ HQ-scaling $g_{DD^*\pi}$ (CLEO-01)

- G1 Make calculation accessible \rightarrow fit for $0 < q^2 < 14 GeV^2$, any Ansatz fine
- G2 By choosing physical fit-ansatz, may aim at extending to entire physical domain
- formfactor obeys a dispersion relation,

$$f_{+}(q^{2}) = \frac{r_{1}}{1 - q^{2}/m_{B^{*}}^{2}} + \int_{(m_{B} + \Delta)^{2}}^{\infty} dt \, \frac{\rho(t)}{t - q^{2}}$$

Res.
$$r_1 = \frac{g_{BB^*\pi}f_{B^*}}{2m_{B^*}} \sim 0.8 \pm 0.2$$
 , $f_B \sim f_{B^*}$, $g_{BB^*\pi}$ HQ-scaling $g_{DD^*\pi}$ (CLEO-01)

• Assume rem.- \int neglected VMD $\Rightarrow r_1 \equiv f_+(0) = 0.26$ excluded

- G1 Make calculation accessible \rightarrow fit for $0 < q^2 < 14 GeV^2$, any Ansatz fine
- G2 By choosing physical fit-ansatz, may aim at extending to entire physical domain
- formfactor obeys a dispersion relation,

$$f_{+}(q^{2}) = \frac{r_{1}}{1 - q^{2}/m_{B^{*}}^{2}} + \int_{(m_{B} + \Delta)^{2}}^{\infty} dt \, \frac{\rho(t)}{t - q^{2}}$$

Res.
$$r_1 = \frac{g_{BB^*\pi}f_{B^*}}{2m_{B^*}} \sim 0.8 \pm 0.2$$
 , $f_B \sim f_{B^*}$, $g_{BB^*\pi}$ HQ-scaling $g_{DD^*\pi}$ (CLEO-01)

- Assume rem.- \int neglected VMD $\Rightarrow r_1 \equiv f_+(0) = 0.26$ excluded
- Assume rem.- \int estimated by effective pole/ Becirevic & Kaidalov 99

$$f_{+}(q^{2}) = \frac{r_{1}}{1 - q^{2}/m_{B^{*}}^{2}} + \frac{r_{2}}{1 - q^{2}/m_{X}^{2}}$$

- G1 Make calculation accessible \rightarrow fit for $0 < q^2 < 14 GeV^2$, any Ansatz fine
- G2 By choosing physical fit-ansatz, may aim at extending to entire physical domain
- formfactor obeys a dispersion relation,

$$f_{+}(q^{2}) = \frac{r_{1}}{1 - q^{2}/m_{B^{*}}^{2}} + \int_{(m_{B} + \Delta)^{2}}^{\infty} dt \, \frac{\rho(t)}{t - q^{2}}$$

Res.
$$r_1 = \frac{g_{BB^*\pi}f_{B^*}}{2m_{B^*}} \sim 0.8 \pm 0.2$$
 , $f_B \sim f_{B^*}$, $g_{BB^*\pi}$ HQ-scaling $g_{DD^*\pi}$ (CLEO-01)

- Assume rem.- \int neglected VMD $\Rightarrow r_1 \equiv f_+(0) = 0.26$ excluded
- Assume rem.- \int estimated by effective pole/ Becirevic & Kaidalov 99

$$f_{+}(q^{2}) = \frac{r_{1}}{1 - q^{2}/m_{B^{*}}^{2}} + \frac{r_{2}}{1 - q^{2}/m_{X}^{2}}$$

G1 Fits
$$f_+(q^2)$$
 in $0 < q^2 < 14 \text{GeV}^2$ extremely well !

- G1 Make calculation accessible \rightarrow fit for $0 < q^2 < 14 GeV^2$, any Ansatz fine
- G2 By choosing physical fit-ansatz, may aim at extending to entire physical domain
- formfactor obeys a dispersion relation,

$$f_{+}(q^{2}) = \frac{r_{1}}{1 - q^{2}/m_{B^{*}}^{2}} + \int_{(m_{B} + \Delta)^{2}}^{\infty} dt \, \frac{\rho(t)}{t - q^{2}}$$

Res. $r_1 = \frac{g_{BB^*\pi}f_{B^*}}{2m_{B^*}} \sim 0.8 \pm 0.2$, $f_B \sim f_{B^*}$, $g_{BB^*\pi}$ HQ-scaling $g_{DD^*\pi}$ (CLEO-01)

- Assume rem.- \int neglected VMD $\Rightarrow r_1 \equiv f_+(0) = 0.26$ excluded
- Assume rem.- \int estimated by effective pole/ Becirevic & Kaidalov 99

$$f_{+}(q^{2}) = \frac{r_{1}}{1 - q^{2}/m_{B^{*}}^{2}} + \frac{r_{2}}{1 - q^{2}/m_{X}^{2}}$$

G1 Fits $f_+(q^2)$ in $0 < q^2 < 14 \text{GeV}^2$ extremely well !

G2 Fit of $r_1 \simeq 0.75$ (stable), soft-pion point $f_0(m_B^2) = \frac{f_B}{f_\pi}$ get $f_B \sim 200 \text{MeV}$ (stable)

Roman Zwicky LHCb 6th Feb 06

Comparison with lattice

- Early calc. quark models (BSW) $f_+(0)$ and then assumed VMD
- LCSR FF $q^2 < 14 \text{GeV}^2$
- Lattice FF $q^2 > 16 \text{GeV}^2$ (Idea moving frame (HPQCD) go to lower q^2)

${ m GeV^2}$	LCSR 04	FNAL 04	HPQCD 06	Abada et al 00
$f_{+}(0)$	0.26 ± 0.03	0.23	0.26	0.27
$f_{+}(16)$	0.9	0.8 ± 0.1	0.71 ± 0.06	0.87 ± 0.1

- FNAL staggered fermions unquenched, Wilsonian HQ action
- HPQCD staggered fermions unquenched, NRQCD
- Abada et al quenched, Improved Wilson action
- Note: Lattice community become cautious quoting $B \rightarrow \rho$ etc, because ρ unstable particle, LCSR only calculation there!
- $F^{D \to \pi, K}$ from LCSR Khodjamirian et al 00 also good agreement with LQCD

Distribution Amplitude (DA) (Focus on Kaon)

• Relevant for exclusive QCD processes at large momentum transfer, semileptonic heavy-light, BBNS $B \to \pi \pi(K)$, $F_{\pi}(q^2)$, $F_{\gamma\gamma^*\pi}$ etc

- Relevant for exclusive QCD processes at large momentum transfer, semileptonic heavy-light, BBNS $B \to \pi\pi(K)$, $F_{\pi}(q^2)$, $F_{\gamma\gamma^*\pi}$ etc
- ▲ Most important DA ↔ minimal number of constituent (partons)

$$\langle K(p)|\bar{s}(x)\gamma_{\mu}\gamma_{5}q(0)|0\rangle = if_{K}p_{\mu}\int_{0}^{1}due^{iupx}\phi_{K}(u) + O(x^{2},m_{K}^{2})$$

called leading twist = dim - spin = 2 , (1 - u): mom. fraction of s-quark in meson Analogous def. for $K^{*,\parallel}$ and $K^{*,\perp}$

- Relevant for exclusive QCD processes at large momentum transfer, semileptonic heavy-light, BBNS $B \to \pi\pi(K)$, $F_{\pi}(q^2)$, $F_{\gamma\gamma^*\pi}$ etc
- ▲ Most important DA ↔ minimal number of constituent (partons)

$$\langle K(p)|\bar{s}(x)\gamma_{\mu}\gamma_{5}q(0)|0\rangle = if_{K}p_{\mu}\int_{0}^{1}due^{iupx}\phi_{K}(u) + O(x^{2},m_{K}^{2})$$

called leading twist = dim - spin = 2 , (1 - u): mom. fraction of s-quark in meson Analogous def. for $K^{*,\parallel}$ and $K^{*,\perp}$

- Higher twist corrections:
 - higher Fock states $(\langle K | \bar{s} \sigma \cdot Gq | 0 \rangle)$
 - deviation from the light-cone ($O(x^2, m_{\pi}^2)$)
 - other comb. of "good" and "bad" LC-states (Kogut & Soper) ($\langle \pi | \bar{s} \gamma_5 q | 0 \rangle$)

- Relevant for exclusive QCD processes at large momentum transfer, semileptonic heavy-light, BBNS $B \to \pi \pi(K)$, $F_{\pi}(q^2)$, $F_{\gamma\gamma^*\pi}$ etc
- ▲ Most important DA ↔ minimal number of constituent (partons)

$$\langle K(p)|\bar{s}(x)\gamma_{\mu}\gamma_{5}q(0)|0\rangle = if_{K}p_{\mu}\int_{0}^{1}due^{iupx}\phi_{K}(u) + O(x^{2},m_{K}^{2})$$

called leading twist = dim - spin = 2 , (1 - u): mom. fraction of s-quark in meson Analogous def. for $K^{*,\parallel}$ and $K^{*,\perp}$

- Higher twist corrections:
 - higher Fock states $(\langle K | \bar{s} \sigma \cdot Gq | 0 \rangle)$
 - deviation from the light-cone ($O(x^2, m_{\pi}^2)$)
 - other comb. of "good" and "bad" LC-states (Kogut & Soper) ($\langle \pi | \bar{s} \gamma_5 q | 0 \rangle$)
- Distribution amplitudes identified (use QCD e.o.m) up to twist 4 Ball et al 98 Update on twist-3,4 parameters forthcoming including SU(3) for Pseudoscalar Ball,Braun,Lenz 06 later Vectors Jones et al 06

Focus leading twist-2 DA

• Expand in Eigenfunctions of LO BL-ER Kernel V_0

$$\phi_K(u,\mu) = 6u\bar{u}(1 + \sum_{n>1} a_n(\mu, K)C_n^{3/2}(2u-1))$$

- an Gegenbauer moments (determination difficult)
- $a_{odd} = 0$ G-parity inv. particles (for π not K)
- anomalous dimension $\gamma_{n+1} > \gamma_n$ "conformal hierarchy"
- Alternative reasoning SL(2, R) collinear subgroup of conformal group SO(4, 2)Gegenbauer C_n are representations with conformal spin j = 2 + n

How to deal information ?

1. Truncation , let's say for decay $\mathcal{A}_{X \to KY}$

$$\mathcal{A} = f^{(0)} + f^{(1)}a_1 + f^{(2)}a_2 + \dots$$

- A. determinations of a_n indicate $a_0 \equiv 1 > |a_{1,2}| > |a_{3,4}|$. (Ok conformal hierarchy)
- B. if kernel T_H is smooth then $|f^{(0)}| > |f^{(1,2)}| > |f^{(3,4)}|$ (Analogy with partial wave expansion $(SO(3), Y_{lm}) \sim (SL(2, R), C_n)$ C_n n-nodes and are washed out upon convolution with smooth kernel)

How to deal information ?

1. Truncation , let's say for decay $\mathcal{A}_{X \to KY}$

$$\mathcal{A} = f^{(0)} + f^{(1)}a_1 + f^{(2)}a_2 + \dots$$

- A. determinations of a_n indicate $a_0 \equiv 1 > |a_{1,2}| > |a_{3,4}|$. (Ok conformal hierarchy)
- B. if kernel T_H is smooth then $|f^{(0)}| > |f^{(1,2)}| > |f^{(3,4)}|$ (Analogy with partial wave expansion $(SO(3), Y_{lm}) \sim (SL(2, R), C_n)$ C_n n-nodes and are washed out upon convolution with smooth kernel)
- 2. Model satisfying theoretical and experimental constraints Ball, Talbot 05
 - A. From $\gamma^* \gamma \pi$ CLEO, theory $\Delta = \int du \phi_{\pi}(u)/u \sim 1.2 \pm 0.2$
 - B. Using LO-rng $a_n(\mu) = a_n(\mu_0)(L)^{\gamma_n/(2\beta_0)}$

Motivated: $a_n(a,b) = \frac{N_{\Delta}}{(n/b+1)^a}$, can be summed exactly

How to deal information ?

1. Truncation , let's say for decay $\mathcal{A}_{X \to KY}$

$$\mathcal{A} = f^{(0)} + f^{(1)}a_1 + f^{(2)}a_2 + \dots$$

- A. determinations of a_n indicate $a_0 \equiv 1 > |a_{1,2}| > |a_{3,4}|$. (Ok conformal hierarchy)
- B. if kernel T_H is smooth then $|f^{(0)}| > |f^{(1,2)}| > |f^{(3,4)}|$ (Analogy with partial wave expansion $(SO(3), Y_{lm}) \sim (SL(2, R), C_n)$ C_n n-nodes and are washed out upon convolution with smooth kernel)
- 2. Model satisfying theoretical and experimental constraints Ball, Talbot 05
 - A. From $\gamma^* \gamma \pi$ CLEO, theory $\Delta = \int du \phi_{\pi}(u)/u \sim 1.2 \pm 0.2$
 - B. Using LO-rng $a_n(\mu) = a_n(\mu_0)(L)^{\gamma_n/(2\beta_0)}$

Motivated: $a_n(a,b) = \frac{N_{\Delta}}{(n/b+1)^a}$, can be summed exactly

- → Decide process by process to whether to resort to 1. or 2. depending on smoothness of kernel and or endpoint sensitivity
 - $B \rightarrow \text{light FF from LCSR no big change}$
 - $B \to \pi \pi(K)$, branching ratios and CP-asymmetries in BBNS approach, more relevant not enough to account for experimental discrepancy Ball,Talbot05

Determination of Gegenbauer moments a_1, a_2, \ldots

• Fit to an observable, be careful other hadr. uncert. do not contaminate Examples for a_2^{π} : $F_{\gamma\gamma^*,\pi}$, F_{π}^{em} , $F^{B\to\pi}$ -shape More spectral data (bins) would be useful e.g. $B \to \pi e \nu$ others

Determination of Gegenbauer moments a_1, a_2, \ldots

- Fit to an observable, be careful other hadr. uncert. do not contaminate Examples for a_2^{π} : $F_{\gamma\gamma^*,\pi}$, F_{π}^{em} , $F^{B\to\pi}$ -shape More spectral data (bins) would be useful e.g. $B \to \pi e\nu$ others
- Direct calculation from the matrix elements

$$\langle 0|\bar{s}z_{\mu}\gamma^{\mu}\gamma_{5}(iz\stackrel{\leftrightarrow}{D})^{n}q|K(p)\rangle = (zp)^{n+1}f_{K}2\int_{0}^{1}du(2u-1)^{n}\phi_{K}(u) \equiv N\cdot M_{n}$$

$$M_0 = 1 \qquad M_2 = \frac{1}{5} + \frac{12}{35}a_2$$
$$M_1 = a_1 \qquad M_4 = \frac{3}{35} + \frac{8}{35}a_2 + \frac{8}{77}a_4$$

- In QCD sum rules (pioneered by Chernyak & Zhitnitsky \sim 1980) Noticed that only first few moments give stable sum rules, n > 4 not useful
- Lattice worked on it ~ 90 got contradicting results New start UKQCD QCDSF second moment available, first moment on the way !! Also here higher moments difficult (derivatives)

Determination of Gegenbauer moments a_1, a_2, \ldots

- Fit to an observable, be careful other hadr. uncert. do not contaminate Examples for a_2^{π} : $F_{\gamma\gamma^*,\pi}$, F_{π}^{em} , $F^{B\to\pi}$ -shape More spectral data (bins) would be useful e.g. $B \to \pi e\nu$ others
- Direct calculation from the matrix elements

$$\langle 0|\bar{s}z_{\mu}\gamma^{\mu}\gamma_{5}(iz\stackrel{\leftrightarrow}{D})^{n}q|K(p)\rangle = (zp)^{n+1}f_{K}2\int_{0}^{1}du(2u-1)^{n}\phi_{K}(u) \equiv N\cdot M_{n}$$

$$M_0 = 1 \qquad M_2 = \frac{1}{5} + \frac{12}{35}a_2$$
$$M_1 = a_1 \qquad M_4 = \frac{3}{35} + \frac{8}{35}a_2 + \frac{8}{77}a_4$$

- In QCD sum rules (pioneered by Chernyak & Zhitnitsky \sim 1980) Noticed that only first few moments give stable sum rules, n > 4 not useful
- Lattice worked on it ~ 90 got contradicting results New start UKQCD QCDSF second moment available, first moment on the way !! Also here higher moments difficult (derivatives)
- New methods from exact operator relations for first moment $(a_1) \dots$

Overview of calculations for a_1

 a_1 obtained from correlation function of the type

$$i \int_{x} \langle 0 | T\bar{q}(iz \stackrel{\leftrightarrow}{D}) \Gamma_{1} s(x) \, \bar{s} \Gamma_{2} q(0) | 0 \rangle$$

Note: $a_1 > 0$ higher average momentum of *s*-quark as suggested by Constituent quark-model

Туре	$a_1(K)(\mu_0)$	$a_1^{\parallel}(K^*)(\mu_0)$	$a_1^{\perp}(K^*)(\mu_0)$	Authors	Remarks
ND	0.17	0.19	0.2	Chernyak & Zhit. 84	sign mistake
ND	-0.18	-0.4	-0.34	Ball Boglione 03	NLO,unstable
D	0.05 ± 0.02	-	-	Khodjamiran et al 04	-
OPR	0.1 ± 0.12	0.1 ± 0.07	-	Braun Lenz 04	neglect ${\cal O}(m_s^2)$
D	0.06 ± 0.03	0.03 ± 0.02	0.04 ± 0.03	Ball RZ 05	confirm 04, extend
OPR	0.07 ± 0.18	0.01 ± 0.05	0.09 ± 0.07	Ball RZ 06	incl $O(m_s^2)$

- ND: spectral-fct non-positive def. (cancellations, contamination higher states) ! which turns out to be the case \Rightarrow not consider anymore
- D: pos. def. work fine are the best OPR: New method can't compete yet ...

a_1 from operator relations

New operator relations of the type:

$$M_{1} \equiv \frac{3}{5} a_{1}^{\parallel}(K^{*}) = -\frac{f_{K}^{\perp}}{f_{K}^{\parallel}} \frac{m_{s} - m_{q}}{m_{K^{*}}} + 2 \frac{m_{s}^{2} - m_{q}^{2}}{m_{K^{*}}^{2}} - 4\kappa_{4}^{\parallel}(K^{*})$$
$$\langle 0|\bar{q}(gG_{\alpha\mu})i\gamma^{\mu}s|K^{*}(q)\rangle = e^{\alpha}f_{K}^{\parallel}m_{K^{*}}^{3}\kappa_{4}^{\parallel}(K^{*})$$

1. From $O_{\mu\nu} = \frac{1}{2}\bar{q}\gamma_{\mu}\gamma_{5}i \stackrel{\leftrightarrow}{D}_{\nu}s + \dots$ with $O_{\mu}^{\ \mu} = 0$ playing role of energy momentum tensor by Braun & Lenz 04 for $a_{1}(K)$ and $a_{1}^{\parallel}(K^{*})$

a_1 from operator relations

New operator relations of the type:

$$M_{1} \equiv \frac{3}{5} a_{1}^{\parallel}(K^{*}) = -\frac{f_{K}^{\perp}}{f_{K}^{\parallel}} \frac{m_{s} - m_{q}}{m_{K^{*}}} + 2 \frac{m_{s}^{2} - m_{q}^{2}}{m_{K^{*}}^{2}} - 4\kappa_{4}^{\parallel}(K^{*})$$
$$\langle 0|\bar{q}(gG_{\alpha\mu})i\gamma^{\mu}s|K^{*}(q)\rangle = e^{\alpha}f_{K}^{\parallel}m_{K^{*}}^{3}\kappa_{4}^{\parallel}(K^{*})$$

- 1. From $O_{\mu\nu} = \frac{1}{2}\bar{q}\gamma_{\mu}\gamma_{5}i \stackrel{\leftrightarrow}{D}_{\nu}s + \dots$ with $O_{\mu}^{\ \mu} = 0$ playing role of energy momentum tensor by Braun & Lenz 04 for $a_{1}(K)$ and $a_{1}^{\parallel}(K^{*})$
- 2. From the QCD equation of motion those relations were rederived plus a relation for $a_1^{\perp}(K^*)$ (Difficult other method) by Ball & RZ 06

a_1 from operator relations

New operator relations of the type:

$$M_{1} \equiv \frac{3}{5} a_{1}^{\parallel}(K^{*}) = -\frac{f_{K}^{\perp}}{f_{K}^{\parallel}} \frac{m_{s} - m_{q}}{m_{K^{*}}} + 2 \frac{m_{s}^{2} - m_{q}^{2}}{m_{K^{*}}^{2}} - 4\kappa_{4}^{\parallel}(K^{*})$$
$$\langle 0|\bar{q}(gG_{\alpha\mu})i\gamma^{\mu}s|K^{*}(q)\rangle = e^{\alpha}f_{K}^{\parallel}m_{K^{*}}^{3}\kappa_{4}^{\parallel}(K^{*})$$

- 1. From $O_{\mu\nu} = \frac{1}{2}\bar{q}\gamma_{\mu}\gamma_{5}i \stackrel{\leftrightarrow}{D}_{\nu}s + \dots$ with $O_{\mu}^{\ \mu} = 0$ playing role of energy momentum tensor by Braun & Lenz 04 for $a_{1}(K)$ and $a_{1}^{\parallel}(K^{*})$
- 2. From the QCD equation of motion those relations were rederived plus a relation for $a_1^{\perp}(K^*)$ (Difficult other method) by Ball & RZ 06
 - The $\kappa'_4 s$ are estimated via several QCD Sum Rules, not very stable sensitive to $m_s, \alpha_s, \langle \bar{s}s \rangle / \langle \bar{q}q \rangle$
 - $\kappa'_4 s$ could of course also be estimated from Lattice ! Why not ? Overall Precision ?

Therefore for phenomenology one should use the values from the diagonal sum rules

 $a_1(K) = 0.06 \pm 0.03, \quad a_1^{\parallel}(K^*) = 0.03 \pm 0.02 \quad a_1^{\perp}(K^*) = 0.04 \pm 0.03$

Khodjamirian et al PRD70, Ball RZ JHEP 06 in press

- 1. $a_2(K) \sim a_2(\pi)$, SU(3) sufficiently good there
- 2. Many determinations .. Sum Rules, Lattice, other approaches, fit to exp. data etc Small overview appear in Ball, Braun, Lenz $a_2 \sim 0.2$

The topic of another talk!

Application: Tensorratio $\frac{T_1^{B \to K^*}}{T_1^{B \to \rho}}$

$B ightarrow K^* \gamma$ vs. $B ightarrow ho \gamma$

(work in preparation, so don't expect too many details...)

- measured by Belle 05, Babar forthcoming
- constrain $|V_{ts}/V_{td}|$ from $B(B \to K^*\gamma)/B(B \to \rho\gamma)$: more accurate than constraint from B mixing?
- In QCD factorization (Bosch et al Beneke et al Neubert et al):

$$\langle V\gamma | Q_i | B \rangle = T_i^I F(B \to V_\perp) + \int_0^\infty \frac{d\omega}{\omega} \phi_B(\omega) \int_0^1 du \phi_{V_\perp}(u) T_i^{II}(\omega, u)$$

$$+ O\left(\frac{\Lambda}{m_b}\right) + O\left(\frac{\Lambda^2}{m_s^2}\right)$$

- need SU(3) breaking in
 - (a) ratio of form factors $F(B \to K_{\perp}^*)/F(B \to \rho_{\perp})$
 - (b) distribution amplitudes $\phi_{K_{\perp}^{*},\rho_{\perp}}$

- SU(3) breaking in distribution amplitude ϕ_{\perp} : known Ball RZ 06(a)
- SU(3) breaking in form factors: under way Ball RZ 06(b) The dependence of the formfactors on a₁(K*) are given in Ball RZ PRD7105(b) and the update of the preliminary ratio is

$$\xi = \frac{T_1^{B \to K^*(0)}}{T_1^{B \to \rho}(0)} = 1.16 \pm 0.1_{\text{param}} \pm 0.005_{a_1^{\parallel}} \pm 0.035_{a_1^{\perp}} = 1.16 \pm 0.1 \pm 0.04_{a_1}$$

• old values
$$\xi = 1.25 \pm 0.1_{\text{param}} \pm 0.02_{a_1^{\parallel}} \pm 0.13_{a_1^{\perp}}$$

- $\hfill \hfill \hfill$
- \bigcirc could do with some $1/m_b$ effects? e.g. long-distance photon-emission (under way)

From Bosch & Buchalla 04:

$$R_0 \equiv \frac{B(B^0 \to \rho^0 \gamma) + B(\bar{B}^0 \to \rho^0 \gamma)}{B(B^0 \to K^* \gamma) + B(\bar{B}^0 \to \bar{K}^* \gamma)} = \frac{K}{2|\xi|^2} |V_{td}/V_{ts}|^2 (1+\Delta),$$

where K kinematical factor, $|\Delta| < 0.4$ contains subleading WA & penguins

Roman Zwicky LHCb 6th Feb 06

Conclusions

A1 The $F^{B_{(d,s)} \rightarrow P,V}(q^2)$ can be calculated for $0 < q^2 < \sim 14 \text{GeV}^2$ from LCSR

Lattice provides $F^{B_{d,s} \to P}$ so far for $q^2 > 16 \text{GeV}^2$ complementarity!

- A2 LCSR only source for vector formfactors. Other methods would be nice. Ingenious lattice people will hopefully come up with something
- A3 Two-pole param. fits the LCSR-well and survives consistency tests.
- A4 good numerical agreement with Lattice-QCD (comp. upon extrapol.)
- B1 After confusion considerable progress on leading Kaon DA Gegenbauer moment a_1
- B2 Progress on Kaon DA immediate impact on $B \to K^* \gamma$ vs. $B \to \rho \gamma$
- C1 Experimentalists: Would be useful to get more bins! In order to check and test expansions and models of DA (relevant for exclusive physics)

Thanks for your attention !

Backup slide

Physics

• Comparison with $Meson \rightarrow \pi$

$f_{+}^{B\to\pi}(0)$	$f_+^{D\to\pi}(0)$	$f_+^{K\to\pi}(0)$	$f_+^{\pi \to \pi}(0)$
0.26	0.65	0.96	1.00

the larger the recoil the less likely π -boundstate can form

Physics

• Comparison with $Meson \rightarrow \pi$

$f_{+}^{B\to\pi}(0)$	$f_+^{D\to\pi}(0)$	$f_+^{K\to\pi}(0)$	$f_+^{\pi \to \pi}(0)$
0.26	0.65	0.96	1.00

the larger the recoil the less likely π -boundstate can form

Higher twist DA. More unknown parameters ?

Structure of DA known up to twist-4 (Ball,Braun,Koike,Filyanov,Tanaka). Quick overview for π (counting):

Twist	2	3	4	
numb.DA	1	3	6	10
param.NLO j	1(2)	5	12	18

- j conformal spin (Gegenbauer expansion). 18 Non-pert. parameters !
- paramters
 - 1. Norm. of matrix elements (Analogue of $f_{\pi}a_0 \equiv f_{\pi}$)
 - 2. NL-conf. spin (analogue of a_2)
- The number of parameters reduce to 5 upon use of (exact) QCD e.o.m. !!

e.g.
$$\frac{\partial}{\partial x_{\mu}} \bar{q}_{1}(x) \gamma_{\mu}(\gamma_{5}) q_{2}(-x) = -i \int_{-1}^{1} dv \, v \bar{q}_{1}(x) x_{\alpha} g G^{\alpha \mu}(vx) \gamma_{\mu}(\gamma_{5}) q_{2}(-x)$$

 $+ (m_{1} \pm m_{2}) \bar{q}_{1}(x) i(\gamma_{5}) q_{2}(-x)$

Higher twist DA. More unknown parameters ?

Structure of DA known up to twist-4 (Ball,Braun,Koike,Filyanov,Tanaka). Quick overview for π (counting):

Twist	2	3	4	
numb.DA	1	3	6	10
param.NLO j	1(2)	5	12	18

- j conformal spin (Gegenbauer expansion). 18 Non-pert. parameters !
- paramters
 - 1. Norm. of matrix elements (Analogue of $f_{\pi}a_0 \equiv f_{\pi}$)
 - 2. NL-conf. spin (analogue of a_2)
- The number of parameters reduce to 5 upon use of (exact) QCD e.o.m. !!

e.g.
$$\frac{\partial}{\partial x_{\mu}} \bar{q}_{1}(x) \gamma_{\mu}(\gamma_{5}) q_{2}(-x) = -i \int_{-1}^{1} dv \, v \bar{q}_{1}(x) x_{\alpha} g G^{\alpha \mu}(vx) \gamma_{\mu}(\gamma_{5}) q_{2}(-x)$$

 $+ (m_{1} \pm m_{2}) \bar{q}_{1}(x) i(\gamma_{5}) q_{2}(-x)$