WG2 - B/D/K decays

List of tasks (reminder...)

Hadronic uncertainties

Benchmark Models & Tools

Outline of Yellow Book Chapter

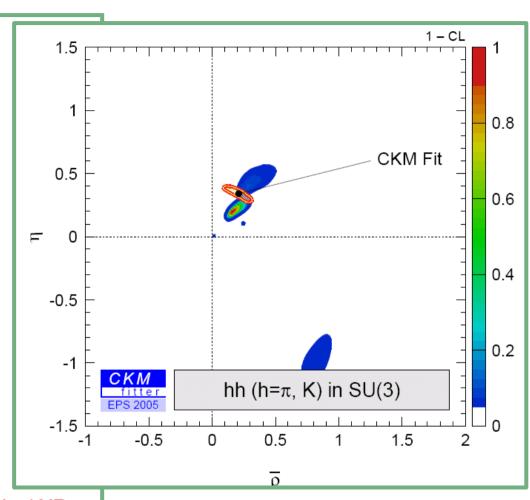
G. Buchalla, T. Komatsubara, F. Muheim, L. Silvestrini

List of Tasks (from 1st meeting)

- Study complementarity between collider and flavour physics
 - SUSY benchmark (e.g. SPS1a) in collider physics
 - Add flavour violation (→ squark decays)
 - Compute effective Hamiltonian (OPE)
 - Evaluate flavour observables, check consistency with data
- Beyond SUSY
 - NP model independent studies, MFV
- Common session WG1 & WG2
- Hadronic Uncertainties
- dedicated session at next meeting
- Experimental Studies
 - Sensitivities LHC, (super-)B & tau/charm factories, fixed target
 - Triggers, Backgrounds,

Hadronic Uncertainties

- CKM analysis
 - Malcles: SU(3) limit
 - Ciuchini: B → Kππ
 Dalitz
- Charmless two-body
 - Feldmann: overview
 - Jaeger: NLO spectator effects

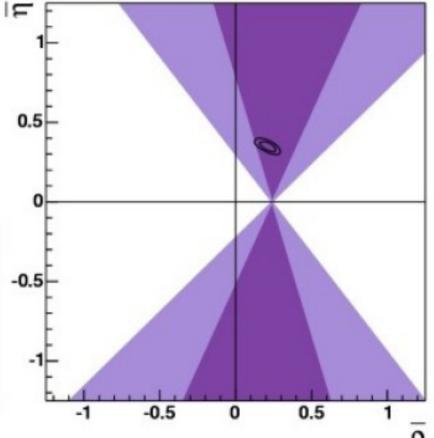

- Non-perturbative methods
 - Zwicky: Light-coneQCDSR
 - Duerr: Lattice QCD
- QED corrections
 - Baracchini: B → PP
 - Was: Photos
- $K^+ \rightarrow \pi^+ \nu \nu$
 - Haisch

With full system of inputs for EPS 2005

With all available inputs:

- Elimination of some of the mirror solutions
- The interesting zone does not change a lot
- Very constraining!
- Good agreement with the SM (p-value > 30%)
- Main contributions to χ^2 :
 - BR($K_s\pi^0$), S($K_s\pi^0$)
 - BR($K^+\pi^-$)

A new bound on the CKM Matrix


from K⁺π⁻π^o Dalitz plot

$$A^{0} = A(K^{*+}\pi^{-}) + \sqrt{2} A(K^{*0}\pi^{0}) = -V_{ub}^{*}V_{us}(E_{1} + E_{2})$$

$$R^{0} = \frac{\bar{A}^{0}}{A^{0}} = \frac{V_{ub} V_{us}^{*}}{V_{ub}^{*} V_{us}} = e^{-2i\gamma + i \operatorname{Arg}(1 + k_{EW})}$$

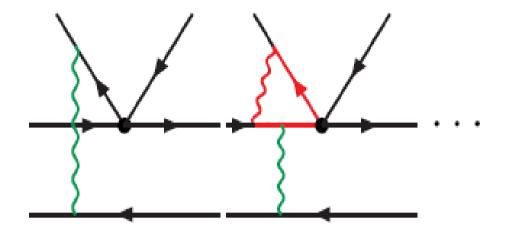
$$\bar{\eta} = -\tan\left(\frac{1}{2}\operatorname{Arg}R^{0}\right)(\bar{\rho} - \bar{\rho}_{0})$$

$$\bar{\rho}_0 = -\frac{3(C_9 + C_{10})}{2(C_1 + C_2) + 3(C_9 + C_{10})} \frac{(1 - \lambda^2/2)^2}{\lambda^2}$$

Marco Ciuchini

2nd "Flavour in the era of the LHC" Workshop, CERN 7/2/06

summary.tmp


T. Feldmann

- hadronic uncertainties as input to QCD factorization
- ▶ non-factorizable hadronic uncertainties at $\mathcal{O}(1/m_b)$
- symmetry constraints
- non-perturbative effects estimated via LCSRs (in QCD or in SCET)
- phenomenological situation not completely satisfactory
 - depends on particular channel/observable
 - may partly be improved by NNLO effects in QCDF

[→ talk by S. Jäger]

more experimental feedback may help, too!

S. Jaeger

- no large complex phases
- some enhancement of color-suppressed tree possible

For BRs, use fit values for $f_{+}(0), \lambda_{B}, a_{2}^{\pi}$ (parameter set "G" \approx S4)

$$10^6 \, \mathrm{Br}(B^- \to \pi^- \pi^0) = 5.5^{+0.3}_{-0.3} (\mathrm{CKM})^{+0.5}_{-0.4} (\mathrm{hadr.})^{+0.9}_{-0.8} (\mathrm{pow.}) \qquad \qquad [\mathrm{Exp:} \ 5.5 \pm 0.6]$$

$$10^6 \, \mathrm{Br}(\bar{B}^0 \to \pi^+ \pi^-) = 5.0^{+0.8}_{-0.9} (\mathrm{CKM})^{+0.3}_{-0.5} (\mathrm{hadr.})^{+1.0}_{-0.5} (\mathrm{pow.}) \qquad \qquad [\mathrm{Exp:} \ 5.0 \pm 0.4]$$

$$10^6 \operatorname{Br}(\bar{B}^0 \to \pi^0 \pi^0) = 0.73^{+0.27}_{-0.24}(\operatorname{CKM})^{+0.52}_{-0.21}(\operatorname{hadr.})^{+0.35}_{-0.25}(\operatorname{pow.}) \qquad [\operatorname{Exp:} 1.45 \pm 0.29]$$

- A1 The $F^{B_{(d,s)}\to P,V}(q^2)$ can be calculated for $0 < q^2 < \sim 14 {\rm GeV^2}$ from LCSR Lattice provides $F^{B_{d,s}\to P}$ so far for $q^2 > 16 {\rm GeV^2}$ complementarity!
- A2 LCSR only source for vector formfactors. Other methods would be nice. Ingenious lattice people will hopefully come up with something
- A3 Two-pole param. fits the LCSR-well and survives consistency tests.
- A4 good numerical agreement with Lattice-QCD (comp. upon extrapol.)
- B1 After confusion considerable progress on leading Kaon DA Gegenbauer moment a_1
- B2 Progress on Kaon DA immediate impact on $B \to K^* \gamma$ vs. $B \to \rho \gamma$

$$\xi = \frac{T_1^{B \to K^*(0)}}{T_1^{B \to \rho}(0)} = 1.16 \pm 0.1_{\text{param}} \pm 0.005_{a_1^{\parallel}} \pm 0.035_{a_1^{\perp}} = 1.16 \pm 0.1 \pm 0.04_{a_1}$$

R. Zwicky

S. Duerr

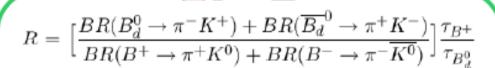
Summary

With a phenomenological lattice paper, please check:

- does the "effective mass/matrix-element" look convincing?
- has the continuum limit been taken?
- are backgrounds quenched/dynamical?
- are (some) pions in the "chiral" regime, say $200 \,\mathrm{MeV} < M_\pi < 300...500 \,\mathrm{MeV}$?
- is the "chiral" extrapolation done after $a \to 0$, or with a dedicated finite-a ansatz?
- are finite-volume effects under control?
- o for experts: improvement/renormalization/matching non-perturbatively?
- o for experts: need worry about action/algorithm issues?

Please don't:

- throw away high-precision (!) lattice data, just because they are quenched (except for observables which are known to get corrupted by $N_f = 0$)!
- ullet select "small cut-off effect" lattices by a cut on the lattice spacing (say $a < 0.1\,\mathrm{fm}$) !


Phenomenological application

Kπ charged modes

	BaBar		Belle		Average	
Channel	$BR \times 10^6$	$G(E^{max})$	$BR \times 10^6$	$G(E^{max})$	QEDCor.	HFAG
$K^+\pi^-$	19.2 ± 0.8	0.950 ± 0.005	18.5 ± 1.2	0.967 ± 0.005	20.2 ± 0.7	18.9 ± 0.7
$K^+\pi^0$	12.0 ± 0.9	0.976 ± 0.005	12.0 ± 1.7	0.982 ± 0.005	12.2 ± 0.8	12.1 ± 0.8
$K^0\pi^+$	26.0 ± 1.6	0.955 ± 0.005	22.0 ± 2.2	0.967 ± 0.005	25.2 ± 1.4	24.1 ± 1.3

no correction on $K^0\pi^0$

Taking the average on BR, one must take into account the e.m. correction factor $G(E^{max})$, cut on photon spectrum E^{max} dependent (equal to the imposed lower cut on ΔE)

$$R_c = 2 \left[\frac{BR(B^+ \to \pi^0 K^+) + BR(B^- \to \pi^0 K^-)}{BR(B^+ \to \pi^+ K^0) + BR(B^- \to \pi^- \overline{K^0})} \right]$$

$$R_n = \frac{1}{2} \left[\frac{BR(B_d^0 \to \pi^- K^+) + BR(\overline{B_d}^0 \to \pi^+ K^-)}{BR(B_d^0 \to \pi^0 K^0) + BR(\overline{B_d}^0 \to \pi^0 \overline{K^0})} \right]$$

Parameter	HFAG	QED corr
R	0.86 ± 0.06	0.87 ± 0.06
R_c	1.01 ± 0.09	0.97 ± 0.08
R_n	0.83 ± 0.08	0.89 ± 0.08

News on PHOTOS Monte Carlo: issue of systematic errors.

Z. Was

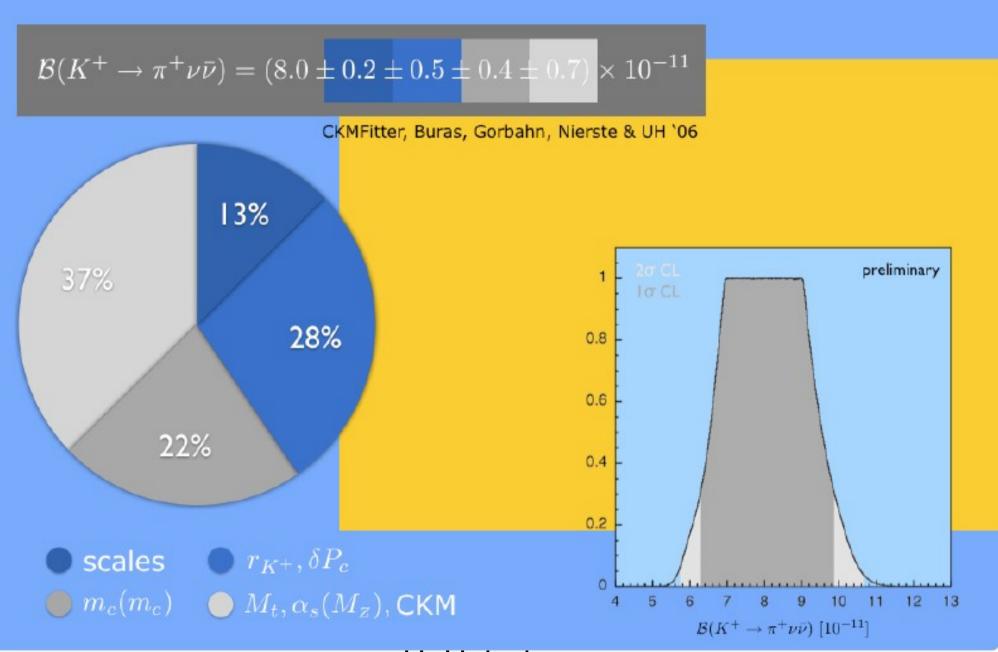
Institute of Nuclear Physics, Krakow and CERN-PH, Geneva

talk include contributions from:

P. Golonka CERN IT/CO-BE, Geneva, Institute of Nuclear Physics, Krakow

G. Nanava JINR, Dubna, Russia, Institute of Nuclear Physics, Krakow

E. Barberio Melbourne University, Australia


and:

Other members of BELLE and NA48 Collab.

Web pages: http://wasm.home.cern.ch/wasm/goodies.html

http://piters.home.cern.ch/piters/MC/PHOTOS-MCTESTER/

SM Prediction of $K^+ \to \pi^+ \nu \bar{\nu}$

U. Haisch

Discussion...

- Exclusive hadronic B decays:
 - need to disentangle CKM, NP, hadronic effects
 - theory guidance (factorization): need to identify/quantify power corrections
 - accurate experimental data on multitude of channels useful
 - flavour symmetry approach

NP Flavour Benchmark Models

- Useful to assess NP potential of future experiments
- Provide a "restricted" parameter space, easier to explore
- Allow to connect different sectors (hadrons/leptons, high-pt/flavour, ...)
- Work available/in progress on SUSY-GUTs, light stop (Raklev's talk), 4^{th} generation (Hou's talk + last workshop)

Benchmark models (cont'd)

- More work on SUSY benchmarks needed: high-pt benchmarks should be extended to include flavour & CPV (SLHA2?)
- Non-SUSY benchmarks to be explored (pioneering investigations in MFVLHWTP suggested in Schmaltz's talk)
- But don't take benchmarks too seriously...

Discussion on Tools

- Strong request of flavour physics tools from
 - Flavour physics experiments (M. Hazumi's talk)
 - WG1 (Polesello's talk at WG1/2 joint session)
- Interface with high-pt and/or spectrum computations to be defined according to SLHA2 (Heinemeyer's talk)
- Common hadronic/low-energy input parameters to be specified

SUSY:

- considered $\Delta S=1,2$, $\Delta B=2$, b->s,d γ , B-> K* γ ,b->s I+I-, B_{s,d} -> $\mu^+\mu^-$, b->svv, B-> τ v. (B->PP postponed...)
 - Identified volunteers for all of the above in both MFV and non-MFV MSSM
- Non-SUSY: Extra-dim, Little Higgs, ...
 - possibly available, only one group... please sign up!

Model independent

- Provide model-independent intermediate steps in SUSY programs:
 - Calculation of Wilson coefficients at the EW scale:
 NP-model dependent
 - Amplitude calculation from Wilson coefficients: NPmodel independent, sensitive to hadronic parameters

Study Groups (as of today)

- Radiative Penguin Decays
 - b \rightarrow s γ , b \rightarrow d γ inclusive and exclusive
 - LHCb, BaBar Bechtle, Sciolla, Playfer, Belle Hazumi, lijima
 - Theory Feldmann, Misiak, Gambino, Ball, Zwicky
- Electroweak Penguin Decays
 - b→sll inclusive and exclusive
 - LHCb Koppenburg, ATLAS Smizanska, Reznicek
 - BaBar Berryhill, Playfer, Eigen, Belle lijima
 - Theory Feldmann, Safir, (Greub, Hiller), Colangelo, Mannel, Khodjamirian, Ball,
 Zwicky
- Neutrino modes:
 - b \rightarrow svv, B \rightarrow τ +v, D τ +v
 - BaBar Robertson, Belle lijima
 - Theory (Okada), Foster, Paradisi
- Very rare decays:
 - $B_{s.d} \rightarrow \mu + \mu$ -, $\mu \mu \pi$, $\mu \mu \gamma$, $(\tau + \tau$ -)
 - ATLAS Smizanska, Nikitine, Sivoklokov, Eigen, Buanes, CMS Speer,
 Langenegger, Starodumov, CDF- Herndon, D0 Ay, LHCb, BaBar Robertson,
 BELLE Hazumi
 - Theory (Nierste, Dedes), Foster, Paradisi

Study Groups (as of today)

UT angles (tree-dominated)

```
\begin{array}{lll} \beta \text{ or } \varphi_1 \colon & B_d \to \psi K_s, \ \dots \\ \alpha \text{ or } \varphi_2 \colon & B_d \to \rho \pi, \ \pi \pi, \ \rho \rho \\ & \text{Belle - Hazumi, Babar- Bevan, Gritsan, Malcles, Pierini, Eigen LHCb - Deschamps} \\ \gamma \text{ or } \varphi_3 \colon & B_{d,u} \to DK - Dalitz \\ - & B_s \to D_s K, \ B_d \to \pi \pi/B_s \to KK \\ - & \text{Belle - Hazumi, Gershon, Babar - Bona, Cavoto} \\ - & \text{LHCb - Lazzeroni, Patel, CDF - Punzi} \\ - & \text{Theory: Vysotski, Fleischer, (Franco)} \end{array}
```

- B_s-B_sbar mixing
 - Mass difference Δm_s , weak phase ϕ_s , lifetime difference $\Delta \Gamma / \Gamma$
 - $B_s \rightarrow D_s \pi$, $B_s \rightarrow J/\psi \phi$
 - CDF Kroll, Bedeschi, Oldeman, D0 Ay, LHCb Fernandez, CMS Speer, Starodumov
 - Theory (Lubicz, Lenz, Nierste)
- b→s and b→d hadronic transitions
 - $-\quad B_{d} \rightarrow \varphi K_{S}, \ \eta' K_{S}, \ B_{s} \rightarrow \varphi \varphi, \ldots \ B_{d} \rightarrow \pi \pi / B_{s} \rightarrow KK, \ B_{d} \rightarrow \rho \pi, \ \pi \pi, \ \rho \rho, \ \pi K$
 - Babar Gritsan, Dujimic, Pierini, Belle Hazumi, Gershon, LHCb
 - Theory Ciuchini, (Beneke), Fleischer, Safir, Jaeger

Study Groups (as of today)

Kaon decays

- $K \rightarrow \pi \nu \nu$, $K_I \rightarrow \pi^0 II$
- NA48/III Ruggiero, JPARC Komatsubara
- Theory (Haisch, Cirigliano) Buras, (Isidori), Smith, Trine

Charm decays

- D⁰-D⁰bar mixing,
- D rare decays
- CLEO-3 Stone, Briere, BaBar Cavoto, CDF Campanelli, LHCb -
- Theory (Bigi), Fajfer

Workshop Report

Timeline:

- 2nd meeting (WGs): CERN Feb 6-8 2006
 Discuss outline of report
- 3rd meeting (WGs): CERN, May 15-17 2006
 Presentations from study groups and of other activities
- 4th meeting (WGs): CERN, sometime in September 2006 first draft of the report available
- Finalise report and deliver conclusions at the final Plenary meeting: CERN, sometime in Dec 2006 / Jan 2007

Guidelines

- None given
- Today: discuss first attempt for outline by convenors
- Estimated length: for workshop proceedings 100 to 300 pages
- For WG2 50 to 100 pages

Outline of Report

- Introduction
- High pt vs quark and lepton flavour physics
 - Scope of different working groups

Common Sections

New Physics Scenarios

- Overview
- SUSY (MFV, non-MFV, Specific)
- Non-SUSY
- Model independent analyses
- Methods and tools
- Hadronic Uncertainties
- New Physics in Benchmark Channels
 - Prospects for existing facilities, LHC, Super-B factories, Fixed Target
 - Radiative Penguin Decays
 - Electroweak Penguin Decays
 - Very rare Decays
 - ...
- Assessments
 - New Physics Patterns/correlations (between channels)
 - Connections to high pT (WG1) and lepton (WG3) flavour physics
 - Discrimination between NP scenarios
- Conclusions

WG2

Sections

Items for next workshop

- Status reports on results from study groups on benchmark modes
- Status reports for tools:
 - input definition
 - user interface and joint discussion with WG1
- Progress on benchmark models
- Interplay with WG1/3

In the meanwhile...

- WG mailing list being set up
- Results of present workshop will appear soon on WG2 web page
- Contact persons for subgroups to be appointed soon
- Start working!