

Single top-quark production by direct supersymmetric FCNC at the LHC

Jaume Guasch

Departament de Física Fonamental Universitat de Barcelona

J.G., W. Hollik, J. Solà, S. Peñaranda, hep-ph/0601218

Jaume Guasch (Dept. FFN, UB)

Top by SUSY-FCNC @ LHC

3

12

Introduction Model setup

 Minimal Supersymmetric Standard Model ⊕ flavour mixing mass terms in the Left-Left sector

MSSM without mixing terms	With flavour mixing terms
 Assuming Alignment at μ₀ ~ Λ ⇒ RGE generates unalignment at μ₀ ~ 100 GeV in the <i>LL</i> sector 	• giving up Alignment • $\delta_{ij} = m_{ij}^2 / (\tilde{m}_i \tilde{m}_j) \ i \neq j$ • δ_{ij} constrained (mass insertion approximation)
M.J. Duncan, Nucl. Phys. B 221, 285 (1993) Assuming Alignment: $\Gamma(\tilde{t} \rightarrow c\chi^0)$ is divergent (!)	$egin{array}{rcl} \delta_{12} &\lesssim .1\sqrt{m_{ ilde{u}}m_{ ilde{c}}}/500{ m GeV} \ \delta_{13} &\lesssim .098\sqrt{m_{ ilde{u}}m_{ ilde{t}}}/500{ m GeV} \ \delta_{23} &\lesssim 8.2m_{ ilde{c}}m_{ ilde{t}}/(500{ m GeV})^2 \end{array}$
K.Hikasa, M.Kobayashi Phys. Rev. D 36, 724 (1987); G.Jahn, ITP-Karlsruhe Diplomarbeit (1998) One-loop FCNC: H^{\pm} , χ^{\pm}	 B(b → sγ): additional contstraints < □ > <@> < @> < @> < @> < @> < @> < @>
Jaume Guasch (Dept. FFN, UB) Top by SUSY-F	CNC @ LHC 3 / 17

Introduction Model setup

MSSM without mixing terms	With flavour mixing terms	
• Assuming Alignment at $\mu_0 \sim \Lambda$ \Rightarrow RGE generates unalignment at $\mu_0 \sim 100 \text{GeV}$ in the <i>LL</i> sector	• giving up Alignment • $\delta_{ij} = m_{ij}^2 / (\tilde{m}_i \tilde{m}_j) \ i \neq j$ • δ_{ij} constrained (mass insertion approximation)	
M.J. Duncan, Nucl. Phys. B 221, 285 (1993) • Assuming Alignment: $\Gamma(\tilde{t} \rightarrow c\chi^0)$ is divergent (!)	$\begin{array}{cccc} \delta_{12} &\lesssim & .1 \sqrt{m_{\tilde{u}}} m_{\tilde{c}} / 500 \mathrm{GeV} \\ \delta_{13} &\lesssim & .098 \sqrt{m_{\tilde{u}}} m_{\tilde{t}} / 500 \mathrm{GeV} \\ \delta_{23} &\lesssim & 8.2 m_{\tilde{c}} m_{\tilde{t}} / (500 \mathrm{GeV})^2 \end{array}$	
 K.Hikasa, M.Kobayashi Phys. Rev. D 36, 724 (1987); G.Jahn, ITP-Karlsruhe Diplomarbeit (1998) One-loop FCNC: H[±], χ[±] 	• $B(b \rightarrow s\gamma)$: additional contstraints	

Contstraints

 The Flavour-Changing terms are communicated from the up- to the down-sector by CKM

e.g. M.Misiak, S.Pokorski, J. Rosiek, Adv.Ser.Direct.High Energy Phys.15:795-828,1998, hep-ph/9703442

 \Rightarrow top-charm FCNC are constrained by $B(b \rightarrow s\gamma)$

• $BR^{exp}(b \rightarrow s\gamma) = (3.3 \pm 0.4) \times 10^{-4}$

 $\mathsf{CLEO}\mathsf{+}\mathsf{ALEPH}\mathsf{+}\mathsf{BELLE}\mathsf{+}\mathsf{BABAR}\to\mathsf{Particle}\;\mathsf{Data}\;\mathsf{Group}$

• $BR^{SM}(b \to s\gamma) = (3.29 \pm 0.33) \times 10^{-4}$

K. Chetyrkin, M. Misiak, M. Münz, Phys. Lett. B 400 (1997) 206 [Erratum-ibid. B 425 (1998) 414], hep-ph/9612313; A. J. Buras, A. Kwiatkowski and N. Pott, Phys. Lett. B 414 (1997) 157 [Erratum-ibid. B 434 (1998) 459], hep-ph/9707482; A. L. Kagan and M. Neubert, Eur. Phys. J. C 7 (1999) 5, hep-ph/9805303;

+ • • •

$B(b ightarrow s \gamma)$

Borzumati ZPC63 (1994) 291, hep-ph/9310212; Borzumati, Greub, Hurt, Wyler, PRD62 (2000) 075005, hep-ph/9911245. [True for Left-Left mixing only!]

Relevant Wilson operator in the effective theory: chirality flip

$$O_7 = \frac{e}{16\pi^2} m_b \left(\bar{\mathbf{s}}_L \sigma^{\mu\nu} b_R\right) F_{\mu\nu}$$

Leading, Double insertion

Sub-Leading, Single insertion

• The Feynman Amplitude:

$$A^{SUSY-QCD}(b
ightarrow s\gamma) \sim \delta_{23} rac{m_b(A_b-\mu an eta)}{M_{SUSY}^2} imes rac{1}{m_{ ilde g}}$$

Similar to t → cg: J.G., J. Solà, NPB562 (1999) 3, hep-ph/9906268

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□■ めんの

Direct FCNC production @ LHC

Previous computation

J.J. Lui et al., Nucl. Phys. B 705 (2005) 3, hep-ph/0404099

- No complete parameter analysis
- Main effects from Left-Right mixing

Newer computation

G. Eilam, M. Frank, I. Turan, hep-ph/0601253 (Jan. 30)

- Very recent
- Mostly agree in the computation

• Computation: FeynArts, FormCalc, LoopTools

T. Hahn, W. Hollik, J. I. Illana and S. Peñaranda,

hep-ph/0512315; http://www.feynarts.de

Leading terms from Left-Left sector: similar structure to
 b → sγ

S. Béjar, J.G., J. Solà, JHEP 0510 (2005) 113, hep-ph/0508043;hep-ph/0601191.

• Take parameters of maximum $\sigma(pp \rightarrow h \rightarrow tc)$: Large M_{SUSY} and $m_{\tilde{g}}$

$$\sigma(pp \rightarrow H^0 \rightarrow t\bar{c} + \bar{t}c) \simeq 2.5 \times 10^{-3} \text{ pb} \text{ [tan } \beta = 5 \text{]}$$

• $M_{SUSY} \simeq m_{\tilde{g}} \simeq 880 \,\text{GeV}, \, \mu \simeq -700 \,\text{GeV}, \, \delta_{23} \simeq 10^{-0.1} \simeq 0.79$ $\sigma(pp[gg] \rightarrow t\bar{c}) \simeq 1.8 \times 10^{-3} \,\text{pb}$

⇒ Same order of magnitude as Higgs-mediated FCNC

(日)

Maximum rates

$${\cal A}(gg o tar{c}) \sim \delta_{23} rac{m_t (A_t - \mu/ aneta)}{M_{
m SUSY}^2} imes rac{1}{m_{ ilde{g}}^2}$$

• Large rates \implies Large δ_{23} and Large $(A_t - \mu/\tan\beta)$

- \Rightarrow high sensitivity to A_t
- ⇒ Left-Left flavour mixing ⊕ Left-Right stop mixing ⇒ similar to Left-Right flavour mixing

 \Rightarrow Similar analysis of $B(b \rightarrow s\gamma)$

- Analytical approximation to maximization:
 - Find the maximum value of: $\delta_{23} \times (A_t \mu / \tan \beta)$
 - Physical mass constraints: upper limit on: $\delta_{23}^2 + (A_t \mu/\tan\beta)^2$
 - Non-colour breaking vauca: additional contstraints on A_t
 - Low value of M_{SUSY}
 - Similar analytical expressions to find the contstraints from $B(b \rightarrow s\gamma)$

 \Rightarrow tan $\beta = 5$, $\mu = 400$ GeV, $A_t = 2238$ GeV, $A_b = 2000$ GeV,

$$\delta_{23} = 0.68, M_{SUSY} = 750 \,\text{GeV}, \text{ low } m_{\tilde{q}}$$

▲ ■ ▶ ▲ ■ ▶ ■ ■ ● 9 Q G

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- \Rightarrow Cross-sections \sim 0.5 pb possible
- \Rightarrow ~ 100,000 events/100 fb⁻¹ for $t\bar{c}$ processes
- ⇒ Only with Left-Left intergenerational mixing

Conclusions & Outlook

Direct production is competitive to Higgs-mediated processes

Direct process can give much larger rates

Parameter	Higgs-mediated	Direct production
$\tan \beta$	Decreases fast	insensitive
M_{A^0}	Decreases fast	insensitive
M _{SUSY}	Prefers large	Decreases fast
A_t	insensitive	very sensitive
δ_{23}	Moderate	Moderate

- Reproduce previous results
- Left-Left flavour mixing gives large rates
- Analytical approximation to maximization
 - Maximal possible value of $\delta_{23} \times (A_t \mu / \tan \beta)$
- Low sensitivity to $\tan \beta$

- $\sigma(pp[gg] \rightarrow t\bar{c}) \sim 0.5 \text{ pb} \Longrightarrow 10^5 \text{ events}/100 \text{ fb}^{-1}$ $[m_{\tilde{g}} \sim 200 \text{ GeV}]$
 - SM: $\sigma^{SM}(pp[gg]
 ightarrow tar{c} + ar{t}c) \sim 7 imes 10^{-7}~{
 m pb}$

 \Rightarrow 7 orders of magnitude larger than SM!

• 2–3 orders of magnitude larger than Higgs-mediated

Experimental issues:

- Signal: single top-quark + light c-jet
 - ⇒ Evidence of new physics
 - Direct production in SUSY
 - Higgs-mediated production in SUSY
 - S. Béjar, J.G., J. Solà, JHEP 0510 (2005) 113, hep-ph/0508043;hep-ph/0601191.
 - Higgs-mediated production in 2HDM

S. Béjar talk. S. Béjar, J.G., J. Solà, NPB675 (2003) 270, hep-ph/0307144.

• single top quark @ LHC: t + W, t + b, ...: ~ 300 pb

Request: can be separated from backgrounds?

э.

Finding the maximum

- Define: $\delta_{33}^{LR} = \frac{m_t(A_t \mu/\tan\beta)}{M_{SUSY}^2}$ $\sigma = (\delta_{23})^2 (\delta_{33}^{LR})^2 = \text{constant defines an hyperbola in the } \delta_{23} \delta_{33}^{LR}$ plane
- Mass (approximation):

$$m_{\tilde{q}}^{2} = M_{SUSY}^{2} \begin{pmatrix} c_{L} & t_{L} & t_{R} \\ \hline c_{L} & 1 & \delta_{23} & 0 \\ t_{L} & \delta_{23} & 1 & \delta_{33}^{LR} \\ t_{R} & 0 & \delta_{33}^{LR} & 1 \end{pmatrix}$$

lightest mass:

$$m_q^2 = M_{SUSY}^2 \left(1 - \sqrt{(\delta_{23})^2 + (\delta_{33}^{LR})^2} \right) > M_{\text{limit}}^2 \; .$$

Experimental limit defines a circle in $\delta_{23} - \delta_{33}^{LR}$ plane:

$$(\delta_{23})^2 + (\delta_{33}^{LR})^2 < \left(1 - \frac{M_l^2}{M_{SUSY}^2}\right)^2 \equiv R^2$$

Maximum at:

$$\delta_{23} = \delta_{33}^{LR} = \frac{R}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(1 - \frac{M_l^2}{M_{SUSY}^2}\right) \rightarrow \frac{1}{\sqrt{2}}$$

$$M_{SUSY} \rightarrow \infty$$

Jaume Guasch (Dept. FFN, UB)

Top by SUSY-FCNC @ LHC

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

non-colour breaking vacua: $|A_t| \sim < 3M_{SUSY}$

$$|\delta_{33}^{LR}| < \sim \frac{3m_t}{M_{SUSY}}$$

The maximum is obtained when:

(a)

- the diagonal: $\delta_{23} = \delta_{33}^{LR}$
- the limit mass circle

• the limit from A_t

cross in a single point

Exact equations

$$\delta_{23} = \delta_{33}^{LR}$$

$$\delta_{33}^{LR} = \frac{m_t (3M_{SUSY} - \mu/\tan\beta)}{M_{SUSY}^2}$$

$$(\delta_{23})^2 + (\delta_{33}^{LR})^2 = \left(1 - \frac{M_l^2}{M_{SUSY}^2}\right)^2$$

setting: $m_t = 175 \,\text{GeV}, \, M_l = 150 \,\text{GeV}, \, \mu = 400 \,\text{GeV}, \, \tan \beta = 5 \text{ (by } b \to s\gamma)$ $\delta_{33}^{LR} = \delta_{23} = 0.678525$ $M_{SUSY} = 746.082 \,\text{GeV}$ $A_t = 2238.25 \,\text{GeV}$

▲□▶▲圖▶▲≣▶▲≣▶ 差目目 のの()