

$\Lambda_b \rightarrow \Lambda^0 \mu^+ \mu^-$ rare decay at ATLAS

Flavour in the era of the LHC, CERN, February 6.-8. 2006

Zdeněk Doležal, Peter Kodyš, Theodota Lagouri, <u>Pavel Řezníček</u> Charles University in Prague

> Mária Smižanská University of Lancaster

<u>Outline:</u>

Introduction Theory Trigger Studies Atlas Simulations Conclusions

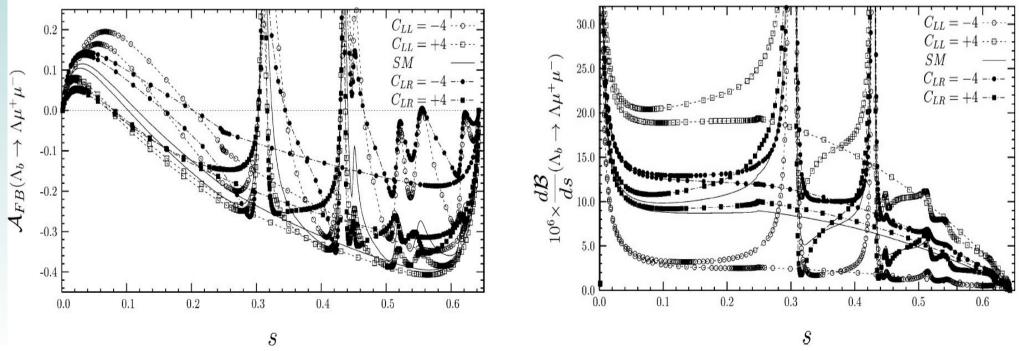
- $b \rightarrow sl^+l^-$ transition in baryon sector
 - forbidden at tree level, at lowest order occur through 1-loop diagrams (penguin, box)
 - branching ratio ~ 10^{-6} of the same order as for meson decays
- differential crossection sensitive to new physics similarly as in meson decays
 - forward-backward asymmetry, di-muon mass spectrum
- polarization aspects:
 - polarization of the initial Λ_{b} baryon affects angular distribution
 - various asymmetry parameters exihibit dependence on new physics contributions as well as Λ^0 polarization

Theory Background

- H^{eff} written as Operator Products Expansion: $\mathcal{H} = -4 \frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$
- New physics through Wilson Coefficients C_i in $H_{b \rightarrow slit}$
 - SM NLO calculation taken from [A.Buras, M.Munz, PRD52, p.182, 1995]
- Amplitude b→sl⁺l⁻ using 12 model independent four-Fermi interactions [T.M. Aliev et al., Nucl.Phys.B649,1681 2003]:

$$\mathcal{M} = \frac{G\alpha}{4\sqrt{2\pi}} V_{tb} V_{ts}^* \left\{ C_{SL} \bar{s} i \sigma_{\mu\nu} \frac{q^{\nu}}{q^2} L b \bar{\ell} \gamma_{\mu} \ell + C_{BR} \bar{s} i \sigma_{\mu\nu} \frac{q^{\nu}}{q^2} b \bar{\ell} \gamma_{\mu} \ell + C_{LL}^{tot} \bar{s}_L \gamma^{\mu} b_L \bar{\ell}_L \gamma_{\mu} \ell_L \right. \\ \left. + C_{LR}^{tot} \bar{s}_L \gamma^{\mu} b_L \bar{\ell}_R \gamma_{\mu} \ell_R + C_{RL} \bar{s}_R \gamma^{\mu} b_R \bar{\ell}_L \gamma_{\mu} \ell_L + C_{RR} \bar{s}_R \gamma^{\mu} b_R \bar{\ell}_R \gamma_{\mu} \ell_R \right. \\ \left. + C_{LRLR} \bar{s}_L b_R \bar{\ell}_L \ell_R + C_{RLLR} \bar{s}_R b_L \bar{\ell}_L \ell_R + C_{LRRL} \bar{s}_L b_R \bar{\ell}_R \ell_L + C_{RLRL} \bar{s}_R b_L \bar{\ell}_R \ell_L \right. \\ \left. + C_T \bar{s} \sigma^{\mu\nu} b \bar{\ell} \sigma_{\mu\nu} \ell + i C_{TE} \epsilon^{\mu\nu\alpha\beta} \bar{s} \sigma_{\mu\nu} s \sigma_{\alpha\beta} \ell \right\} ,$$

 forward-backward asymmetry, di-muon mass specrum etc. studied according to parametrization by C_x coreficients


Ŷ

Forward-Backward Asymmetry

• Sensitivity of F-B asymmetry A_{FB} to Wilson Coeficients - trends of F-B asymmetry are similar to the B-meson decays μ^+ , $\hat{z} = \cos \theta$

$$\mathcal{A}_{FB}(s) = \frac{1}{d\Gamma(s)/ds} \left[\int_0^1 d\hat{z} \frac{d^2\Gamma(s,\hat{z})}{dsd\hat{z}} - \int_{-1}^0 d\hat{z} \frac{d^2\Gamma(s,\hat{z})}{dsd\hat{z}} \right]$$

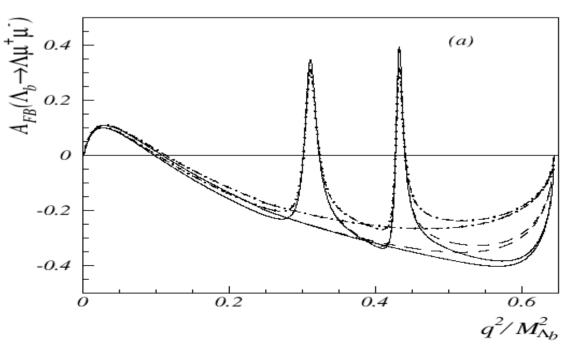
Model independent analysis (W.C. parametrization) of di-muon mass spectra and A_{FB} according to [T.M.Aliev et.al, Nucl.Phys.B649(2003),168-188)]:

06.02.2006 Flavour in the era of the LHC - 2nd meeting, Pavel Reznicek, reznicek@ipnp.troja.mff.cuni.cz, IPNP Charles University, Prague

θ

 Λ_{h}

 Λ^0



$\Lambda_{\rm b} \rightarrow \Lambda^0$ Form Factors

 For the decay amplitude, following matrix elements are needed:

$$\begin{split} &\langle \Lambda \left| \bar{s} \gamma_{\mu} (1 \mp \gamma_{5}) b \right| \Lambda_{b} \rangle , \\ &\langle \Lambda \left| \bar{s} \sigma_{\mu\nu} (1 \mp \gamma_{5}) b \right| \Lambda_{b} \rangle , \\ &\langle \Lambda \left| \bar{s} (1 \mp \gamma_{5}) b \right| \Lambda_{b} \rangle . \end{split}$$

- 12 form-factors are used to parametrize these matrix elements
- QCD sum rule + HQET reduce number of independent form-factors to just two: F₁, F₂: $\langle \Lambda(p_{\Lambda}) | \bar{s} \Gamma b | \Lambda_b(p_{\Lambda_b}) \rangle = \bar{u}_{\Lambda} \left(F_1(q^2) + \not v F_2(q^2) \right) \Gamma u_{\Lambda_b}$
- Senstivity of A_{FB} was studied in [C.-H. Chen et al., hep-ph/0101201,2001]
 - comparing QCD sum rule approach (solid curve) with two pole models
 - uncertainity growing with di-muon invariant mass

Polarization / Asymmetry Parameters

-0.4

-0.6

Longitudal, normal and transverse polarizations P_{L} , P_{N} and P_{T} of Λ^{0} differ significantly from SM in some Beyond-SM models (i.e. [A.K.Giri at al., J.Phys.G.Nucl.Part.31,2005,1959-1969])

 $\frac{\mathrm{d}\Gamma(\hat{\eta})}{\mathrm{d}s} = \frac{1}{2} \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}s} \right)_0 \left[1 + \left(P_L \hat{e}_L + P_N \hat{e}_N + P_T \hat{e}_T \right) \cdot \hat{\eta} \right]$ -0.2

> R-parity violating SUSY model Standard Model

Asymmetry parameter α from expression for distribution of polar angle θ_{Λ} of proton in rest frame of Λ^0

$$\frac{d\Gamma}{dq^2 \, d\cos\theta_{\Lambda}} \sim 1 + \alpha \alpha_{\Lambda} \cos\theta_{\Lambda}$$

[T.M.Aliev et al., hep-ph/0507324, 2005]

- -0.8 15 10 20 5 S 0.0 -0.2 $\mathcal{X}(\Lambda_b \to \Lambda \mu^- \mu^+)$ -0.4 -0.6 -0.8 0.0 5.010.0 20.0 15.0 $q^2 (GeV^2)$
- Full helicity amplitude analysis to be performed

Calculations in Specific Models

- $\Lambda_b \rightarrow \Lambda^0 \mu^+ \mu^-$ decay properties were studied in several models, resulting in various A_{FB} shapes and BR enhancements over SM:
 - R-parity violating SUSY models

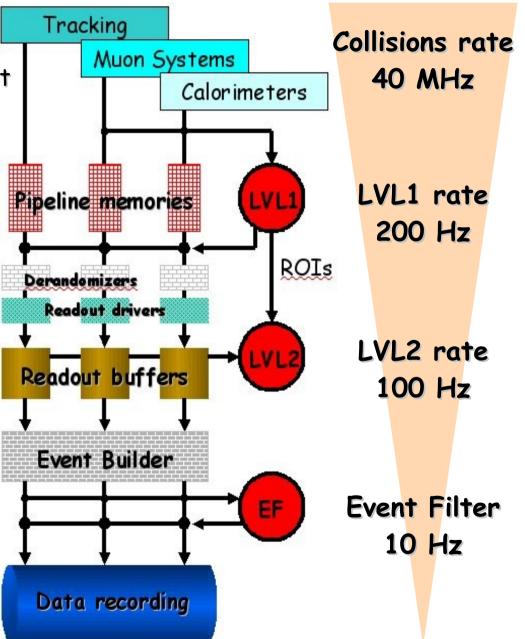
[A.K.Giri at al., J.Phys.G.Nucl.Part.31,2005,1959-1969]

Effect of FCNC mediated Z-boson

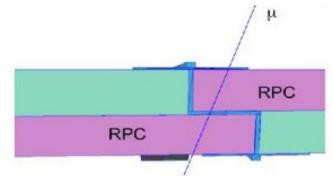
[A.K.Giri et al., hep-ph/051017,2003]

Two Higgs doublet model

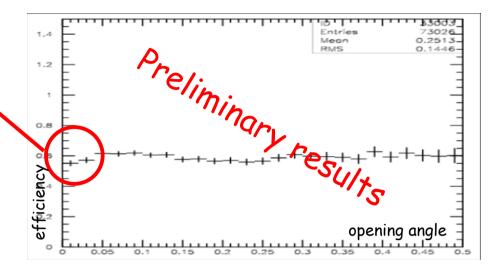
[G.Turan, J.Phys.G.Nucl.Part.31,2005,525-537], [T.M.Aliev,hep-ph/9906473,1999]

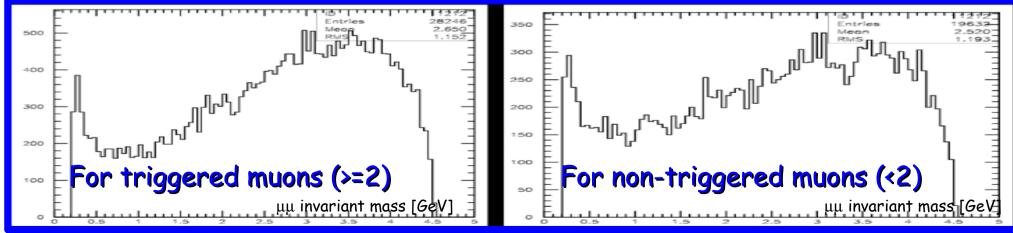

Model with fourth generation

[G.Turan, JHEP05(2005)08]


- B-physics mostly during initial stage of low luminosity ~ 10³³ cm⁻²s⁻¹
 - vary by factor ~ 2 during beam-coast
 - 2-3 interactions/collision
- bb pairs production ~ 500 kHz
 - 1% of collisions
 - 5.10^{12} bb pairs / year = 10^7 sec.
- LVL1 trigger is based on detection of two muons (p_{Tµ1} > 6 GeV, p_{Tµ2} ≥ 4 GeV) by muon trigger chambers
- LVL2 trigger + Event Filter confirms LVL1 measurement by precise MDT, calorimeters and tracks extrapolation to Inner Detector
 - refits tracks in LVL2 ROIs
 - decay vertices search, mass cuts, decay length, opening angles, etc.

Di-muon Trigger: Overlaps


- The LVL1 rate is dominated by:
 - real di-muons i.e. $b\overline{b}$ and $c\overline{c}$ events with two muons ~ 150 Hz
 - events with one muon doubly counted due to overlap of trigger chambers
- Study based on 50 kEvents of rare $\Lambda_{\!\scriptscriptstyle b}$ decay fully simulated+digitized by ATLAS software with layout Q
- Overlaps: some regions are covered by more trigger chambers
 - overlaps between barrel and end-cap, η-overlaps, φ-overlaps
 - single muon can produce fake di-muon signal in these region


- overlap flags (Sector Logic, MuCTPI) to resolve these fake di-muon triggers
- using overlap flags reduces the fake di-muon trigger barrel rate from ~ 550 Hz to ~ 170 Hz
- the overlap removing mechanism can cause loss of real di-muon signal if both muons pass through the same overlap region
 - effect found to be less than 0.5% in total and less than 1.6% for di-muons with $\Delta\eta$ < 0.1 and $\Delta\phi$ < 0.1 (small opening angle)

Di-muon Trigger: Efficiency, Opening Angle

- The trigger efficiency study
 - barrel trigger efficiency is ~ 10% lower with Δη < 0.1 and Δφ < 0.1
 than in the barrel without opening angle constraint, but overall loss is almost unaffected because of small fraction (7%) of events with such small opening angle

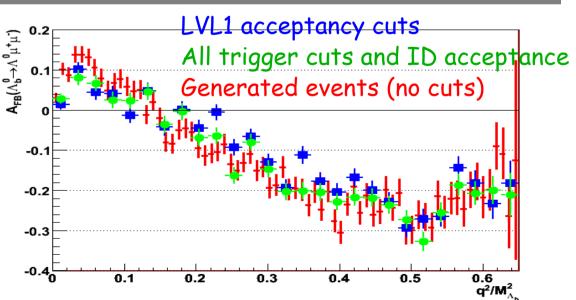
- $\Delta\eta$ and $\Delta\phi$ distributions have sigma around 0.25 and there is no correlation between $\Delta\eta$ and $\Delta\phi$ values
- Non-triggered di-muons advance lower di-muon invariant masses (58% of non-triggered events has di-muon invariant mass below J/ψ mass) compared to triggered di-muons (54% events below J/ψ mass)

MC Generator

- Pythia (with parameters tuned for B-physics, MSEL=1) under ATLAS software framework Athena, but using EvtGen for Λ_b and consequent Λ^0 decay
 - Λ_b decay amplitude according to [T.M.Aliev at al.], with NLO Wilson Coefs. from [A.J.Buras et al.], Λ^0 decay follows model from [Review of Part. Phys.]
- No. of triggerable and reconstructable $\Lambda_b \rightarrow \Lambda^0_{\rightarrow p\pi} \mu^+ \mu^-$ events for $L_{int} = 30 \text{ fb}^{-1}$:

$\Lambda_{ intside}$ production	σ _{bb̄} = 500 μb, BR _{b→Λb} = 0.071	1.1*10 ¹²
$\Lambda_{ extsf{b}}$ rare decay	$BR_{\Lambda\flat\to\Lambda\mu\mu}=2.10^{-6},BR_{\Lambda\to p\pi}=0.64$	1.400.000
Di-muon LVL1 cuts + acceptance	p⊤ > 6 / 4 GeV , η < 2.5	26.000
Hadron acceptance by ID	pτ > 0.5 GeV, η < 2.5	14.000

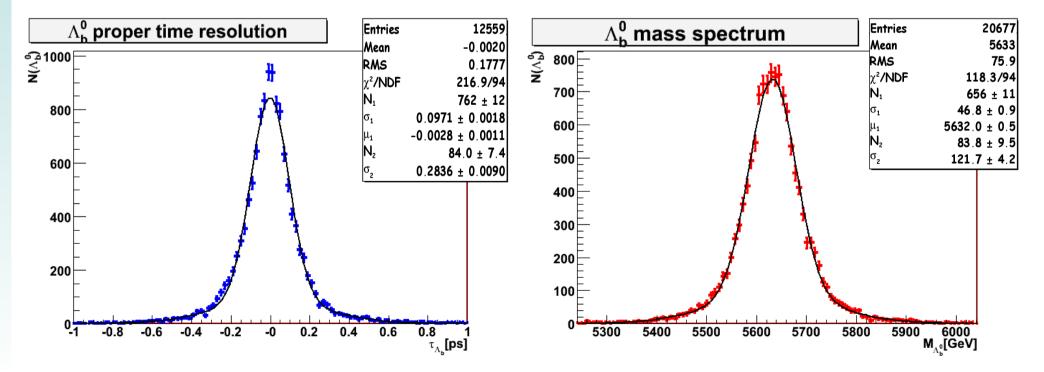
LVL1 acceptancy cuts $\label{eq:constraint} \begin{array}{c} {}^{} {}^{\phantom{a$ Impact of trigger/acceptance: All trigger cuts and ID acceptance Generated events (no cuts) higher di-muon masses are prefered - fraction of events with di-muon 10³ mass below J/ψ mass changed from 67% to 58% **EVL1** and all acceptance cuts 100x rescaled 10² 0.5 0.6 q^2/M_{Λ}^2



MC Generator

- Pythia (with parameters tuned for B-physics, MSEL=1) under ATLAS software framework Athena, but using EvtGen for Λ_b and consequent Λ^0 decay
 - Λ_b decay amplitude according to [T.M.Aliev at al.], with NLO Wilson Coefs. from [A.J.Buras et al.], Λ^0 decay follows model from [Review of Part. Phys.]
- No. of triggerable and reconstructable $\Lambda_b \rightarrow \Lambda^0_{\rightarrow p\pi} \mu^+ \mu^-$ events for $L_{int} = 30 \text{ fb}^{-1}$:

$\Lambda_{ intside}$ production	σ _b = 500 μb, BR _{b→Λb} = 0.071	1.1*10 ¹²
$\Lambda_{ extsf{b}}$ rare decay	$BR_{\Lambda \to \Lambda \mu \mu} = 2.10^{-6}, BR_{\Lambda \to p\pi} = 0.64$	1.400.000
Di-muon LVL1 cuts + acceptance	p⊤ > 6 / 4 GeV , η < 2.5	26.000
Hadron acceptance by ID	p⊤ > 0.5 GeV, η < 2.5	14.000

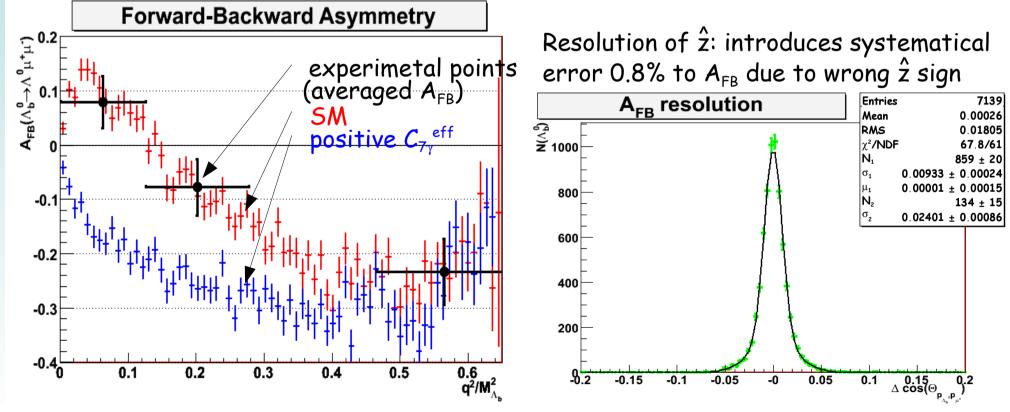

- Impact of trigger/acceptance:
 - 40% suppresion of |A_{FB}|
 in region q²/M_{Ab}² < 0.1
 was found

Signal Reconstruction

- Preselection of di-muon candidates and Λ^0 candidates:
 - muon identification, mass inside allowed interval ($q_{min} \dots q_{max}$, $m_{\Lambda 0} \pm 3 \cdot \sigma$) before (wider cuts) and after vertex fitting, vertex fit quality cut
- Λ_b reconstruction: using CDF vertex fitting routine fits whole decay topology at once
 - total reconstruction efficiency ~ 27% (preliminary result)
- Study based on ~ 50 kEvents fully simulated and reconstructed by ATLAS software with layout Q

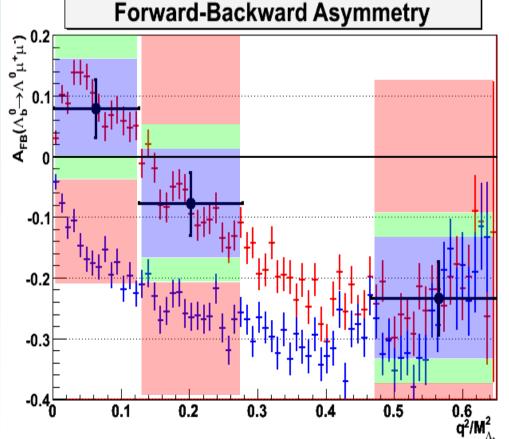
Di-muon Spectrum, F-B Asymmetry

Other cuts introduced for background reduction



Forward-Backward Asymmetry

- expected precision after 3 years:
 - 14% reconstruction efficiency
 - accounting 75% LVL1 efficiency
 - → 1500 events


q²/M ۸ь	min 0.13	0.13 0.28	0.47 max
<afb> for SM</afb>	7,9%	-7,8%	-23,3%
<afb> for $C_{7\gamma}^{eff} > 0$</afb>	-13,8%	-25,0%	-27,9%
<afb> statistical error</afb>	4,8%	5,2%	6,2%
Number of events	430	370	280

A_{FB} of $A_b \rightarrow A^0 \mu^+ \mu^-$ with Early Data

	q²/M_^²	s _{min} 0.13	0.13 0.28	0.47 s _{max}
<afb> for SM</afb>		8%	-8%	-23%
< A _{FB} > for C _{7γ} > 0		-14%	-25%	-28%
Number of events:	L _{int} = 30 fb ⁻¹	430	370	280
<afb> statistical error:</afb>	L _{int} = 30 fb ⁻¹	5%	5%	6%
ckward Asymmetry	L _{int} = 10 fb ⁻¹	8%	9%	10%
	L _{int} = 5 fb ⁻¹	12%	13%	14%
	L _{int} = 0.8 fb ⁻¹	29%	32%	36%

- starting from around 5 fb⁻¹, SM and MSSM with opposite $C_{7\gamma}$ sign can be distinguished better than at $2 \cdot \sigma_{stat}$ level
- at lower luminosities, SUSY effects can be searched in BR measurement

- Analysis of $\Lambda_b \to \Lambda^0 \mu^- \mu^+$ rare decay can provide similar signatures of new physics (NP) as $b \to sl^-l^+$ decay in mesons sector
 - to allow understanding of angular effects, $\Lambda_{\rm b}$ polarization have to be know from independent source
 - NP effects can be searched in angular distribution of Λ^{0} decay
- Di-muon trigger studies at ATLAS showing negligible loss of events due to small opening angles and/or overlaps treatment algorithm
- Trigger, acceptancy and offline analysis cuts slightly suppress ~ 10% more events with di-muon mass below J/ψ mass, but A_{FB} is affected only in region $q^2/M_{\Lambda b}^2 < 0.1$ ($|A_{FB}|$ is ~ 40% lower in this region)
- A_{FB} statistical precision after 3 years of low luminosity LHC running: will allow to distinguish at $1.6 \cdot \sigma$ level between models having A_{FB} different by more than ~ 8% in di-muon invariant mass below J/ψ mass
 - with early data, NP effects can be searched in BR, and with integrated luminosity $\sim 5 \text{ fb}^{-1}$ statistics is enough to distinguish C_7^{eff} sign
- A lot of effort is being given for background analysis