Fitting simplified template cross sections for EFT parameters

Chris Hays and Gabija Zemaityte, Oxford University

September 6, Durham, England

Overview

STXS introduction
STXS fit strategy
External constraints
Equations relating STXS to EFT
Issues

STXS introduction

LHC Higgs working group has defined standard binning for cross section measurements using unfolding ('diffXS') or SM template distributions ('STXS')

The standards allow for public 'tools' mapping the measurements to EFT parameters

Hope to extend to EW measurements (joint LHC Higgs + EW meeting)
STXS vs diffXS:

- STXS implemented in workspaces as an intermediate translation of data: effectively a direct fit to data
- STXS can better fit low-statistics regions (no unfolding)
- STXS relies on SM distributions for extrapolations within bins and migrations across bins
- Leads to theory uncertainties and potential model-dependence

STXS fit strategy

General strategy is to start with simplest fit and add detail based on expected impact

First attempt:

- Use LO HEL implementation of SILH basis in Madgraph
- Update to more complete Warsaw basis or NLO when available
- Reduce parameter set using external constraints
- Take tightly constrained parameters to be zero
- Can relax to Gaussian constraints to check impact
- Also can include running and theory uncertainties when available
- Use equations relating STXS to EFT parameters to fit the data

Documenting tools and procedures in a Higgs WG note with V. Sanz

External constraints

Operator	Coefficient	Constraint
$\mathcal{O}_{g}=\frac{g_{s}^{2}}{m_{W}^{2}}\|H\|^{2} G_{\mu \nu}^{A} G^{A \mu \nu}$	$c_{g}^{\prime}=\frac{m_{W}^{2}}{\Lambda^{2}} 16 \pi^{2} \mathrm{cG}$	$(-0.050,0.017)$
$\tilde{\mathcal{O}}_{g}=\frac{g_{s}^{2}}{m_{W}^{2}}\|H\|^{2} G_{\mu \nu}^{A} \tilde{G}^{A \mu \nu}$	$\tilde{c}_{g}^{\prime}=\frac{m_{W}^{2}}{\Lambda^{2}} 16 \pi^{2} \mathrm{tcG}$	$(-0.019,0.019)$
$\mathcal{O}_{\gamma}=\frac{g^{\prime 2}}{m_{V}^{2}}\|H\|^{2} B_{\mu \nu} B^{\mu \nu}$	$c_{\gamma}^{\prime}=\frac{m_{W}^{2}}{\Lambda^{2}} 16 \pi^{2} \mathrm{cA}$	$(-0.17,0.035)$
$\tilde{\mathcal{O}}_{\gamma}=\frac{g^{\prime 2}}{m_{W}^{2}}\|H\|^{2} B_{\mu \nu} \tilde{B}^{\mu \nu}$	$\tilde{c}_{\gamma}^{\prime}=\frac{m_{W}^{2}}{\Lambda^{2}} 16 \pi^{2} \mathrm{tcA}$	$(-0.19,0.19)$
$\mathcal{O}_{u}=\frac{y_{u}}{v^{2}}\|H\|^{2} u_{L} H u_{R}+$ h.c.	$c_{u}=\frac{v^{2}}{\Lambda^{2}} \mathrm{cu}$	
$\mathcal{O}_{d}=\frac{y_{d}}{v^{2}}\|H\|^{2} d_{L} H d_{R}+$ h.c.	$c_{d}=\frac{v^{2}}{\Lambda^{2}} \mathrm{~cd}$	
$\mathcal{O}_{\ell}=\frac{y_{\ell}}{v^{2}}\|H\|^{2} \ell_{L} H \ell_{R}+$ h.c.	$c_{\ell}=\frac{v^{2}}{\Lambda^{2}} \mathrm{cl}$	
$\mathcal{O}_{H}=\frac{1}{2 v^{2}}\left(\partial^{\mu}\|H\|^{2}\right)^{2}$	$c_{H}=\frac{v^{2}}{\Lambda^{2}} \mathrm{cH}$	
$\mathcal{O}_{6}=\frac{\lambda}{v^{2}}\left(H^{\dagger} H\right)^{3}$	$c_{6}=\frac{v^{2}}{\Lambda^{2}} \mathrm{c} 6$	
$\mathcal{O}_{H W}=\frac{i g}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma^{a}\left(D^{\nu} H\right) W_{\mu \nu}^{a}$	$c_{H W}=\frac{m_{W}^{2}}{\Lambda^{2}} \mathrm{cHW}$	$(-0.035,0.015)$
$\tilde{\mathcal{O}}_{H W}=\frac{i g}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma^{a}\left(D^{\nu} H\right) \tilde{W}_{\mu \nu}^{a}$	$\tilde{c}_{H W}=\frac{m_{W}^{2}}{\Lambda^{2}} \mathrm{tcHW}$	$(-0.06,0.06)$
$\mathcal{O}_{H B}=\frac{i g^{\prime}}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$	$c_{H B}=\frac{m_{W}^{2}}{\Lambda^{2}} \mathrm{cHB}$	$(-0.045,0.075)$
$\tilde{\mathcal{O}}_{H B}=\frac{i g^{\prime}}{m_{W}^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) \tilde{B}_{\mu \nu}$	$\tilde{c}_{H B}=\frac{m_{W}^{2}}{\Lambda^{2}} \mathrm{tcHB}$	$(-0.23,0.23)$
$\mathcal{O}_{W} \pm \mathcal{O}_{B}=\frac{i g}{2 m_{W}^{2}}\left(H^{\dagger} \sigma^{a} D^{\mu} H\right) D^{\nu} W_{\mu \nu}^{a}$	$c_{W-B}=\frac{m_{W}^{2}}{\Lambda^{2}}(\mathrm{cWW}-\mathrm{cB})$	$(-0.035,0.005)$
$\pm \frac{i g^{\prime}}{2 m_{W}^{2}}\left(H^{\dagger} D^{\mu} H\right) \partial^{\nu} B_{\mu \nu}$	$c_{W+B}=\frac{m_{W}^{2}}{\Lambda^{2}}(\mathrm{cWW}+\mathrm{cB})$	$(-0.0033,0.0018)$
$\mathcal{O}_{3 W}=\frac{g^{3}}{m_{W}^{2}} \epsilon_{i j k} W_{\mu \nu}^{i} W_{\rho}^{\nu j} W^{\rho \mu k}$	$c_{3 W}=\frac{m_{W}^{2}}{\Lambda^{2}} \mathrm{c} 3 \mathrm{~W}$	$(-0.083,0.045)$
$\tilde{\mathcal{O}}_{3 W}=\frac{g^{3}}{m_{W}^{2}} \epsilon_{i j k} W_{\mu \nu}^{i} W_{\rho}^{\nu j} \tilde{W}^{\rho \mu k}$	$\tilde{c}_{3 W}=\frac{m_{W}^{2}}{\Lambda^{2}} \mathrm{tc3W}$	$(-0.18,0.18)$

Operators constrained by Higgs \& EW data
Constraints taken from global Run 1 fit by Ellis, Sanz, and You CP-violating operators constrained from individual fits

External constraints

Operator	Coefficient	Constraint
$\mathcal{O}_{T}=\frac{1}{2 v^{2}}\left(H^{\dagger} D^{\mu} H\right)^{2}$	$c_{T}=\frac{v^{2}}{\Lambda^{2}} \mathrm{cT}$	$(-0.0043,0.0033)$
$\mathcal{O}_{2 W}=\frac{g^{2}}{m_{W}^{2}} D^{\mu} W_{\mu \nu}^{k} D_{\rho} W_{k}^{\rho \nu}$	$c_{2 W}=\frac{m_{W}^{2}}{\Lambda^{2}} \mathrm{c} 2 \mathrm{~W}$	
$\mathcal{O}_{2 B}=\frac{g^{2}}{m_{W}^{2}} \partial^{\mu} B_{\mu \nu} \partial_{\rho} B^{\rho \nu}$	$c_{2 B}=\frac{m_{W}^{2}}{\Lambda^{2}} \mathrm{c} 2 \mathrm{~B}$	
$\mathcal{O}_{R}^{u}=\frac{1}{v^{2}}\left(i H^{\dagger} D_{\mu} H\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)$	$c_{R}^{u}=\frac{v^{2}}{\Lambda^{2}} \mathrm{cHu}$	$(-0.011,0.011)$
$\mathcal{O}_{R}^{d}=\frac{1}{v^{2}}\left(i H^{\dagger} D_{\mu} H\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)$	$c_{R}^{d}=\frac{v^{2}}{\Lambda^{2}} \mathrm{cHd}$	$(-0.042,0.0044)$
$\mathcal{O}_{R}^{e}=\frac{1}{v^{2}}\left(i H^{\dagger} D_{\mu} H\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)$	$c_{R}^{e}=\frac{v^{2}}{\Lambda^{2}} \mathrm{cHe}$	$(-0.0018,0.00025)$
$\mathcal{O}_{L}^{q}=\frac{1}{v^{2}}\left(i H^{\dagger} D_{\mu} H\right)\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)$	$c_{L}^{q}=\frac{v^{2}}{\Lambda^{2}} \mathrm{cHQ}$	$(-0.0019,0.0069)$
$\mathcal{O}_{L}^{(3) q}=\frac{1}{v^{2}}\left(i H^{\dagger} \sigma^{a} D_{\mu} H\right)\left(\bar{Q}_{L} \sigma^{a} \gamma^{\mu} Q_{L}\right)$	$c_{L}^{(3) q}=\frac{v^{2}}{\Lambda^{2}} \mathrm{cpHQ}$	$(-0.0044,0.0044)$
$\mathcal{O}_{L L}^{(3) L}=\frac{1}{v^{2}}\left(\bar{L}_{L} \sigma^{a} \gamma^{\mu} L_{L}\right)\left(\bar{L}_{L} \sigma^{a} \gamma^{\mu} L_{L}\right)$	$c_{L L}^{(3) l}$	$(-0.0013,0.00075)$
$\mathcal{O}_{3 G}=\frac{g_{s}^{3}}{m_{W}^{2}} f_{a b c} G_{\mu \nu}^{a} G_{\rho}^{\nu b} G^{\rho \mu c}$	$c_{3 G}=\frac{m_{W}^{2}}{\Lambda^{2}} \mathrm{c} 3 \mathrm{G}$	$(-0.00026,0.00026)$
$\tilde{\mathcal{O}}_{3 G}=\frac{g_{s}^{3}}{m_{V}^{W}} f_{a b c} G_{\mu \nu}^{a} G_{\rho}^{\nu b} \tilde{G}^{\rho \mu c}$	$\tilde{c}_{3 G}=\frac{m_{W}^{2}}{\Lambda^{2}} \mathrm{tc} 3 \mathrm{G}$	
$\mathcal{O}_{2 G}=\frac{g_{s}^{2}}{m_{W}^{2}} D^{\mu} G_{\mu \nu}^{a} D_{\rho} G_{a}^{\rho \nu}$	$c_{2 G}=\frac{m_{W}^{2}}{\Lambda^{2}} \mathrm{c} 2 \mathrm{G}$	

Operators constrained by EW \& QCD data
EW constraints taken from global fit by Ellis, Sanz, and You
QCD constraint taken from individual fit by Krauss, Kuttimalai, and Plehn
12 additional HEL operators not constrained
Four-fermion operators not implemented in HEL

Mapping STXS to EFT

Use "Stage 1" STXS: $\quad \sigma_{i} \times \mathcal{B}_{4 \ell}$

Can update to Stage 1.5 or Stage 2 when available / appropriate

Mapping STXS to EFT

Take cross sections and decay widths to be quadratic functions of EFT
Have validated approximation to substantially higher accuracy than data

$$
\begin{align*}
& \sigma_{E F T}=\sigma_{S M}+\sigma_{\text {int }}+\sigma_{B S M} \\
& \frac{\sigma_{\text {int }}}{\sigma_{S M}}=\sum_{i} A_{i} c_{i}, \quad \mathcal{B}_{4 \ell}=\frac{\Gamma_{4 \ell}}{\sum_{f} \Gamma_{f}} \approx \frac{\Gamma_{4}^{S M}}{\sum_{f} \Gamma_{f}^{S M}}\left[1+\sum_{i} A_{i}^{4 C_{i}} c_{i}+\sum_{i j} B_{i j}^{4 \epsilon} c_{i} c_{j}-\sum_{f}\left(\sum_{i} A_{i}^{f} c_{i}+\sum_{i j} B_{i j}^{f} c_{i} c_{j}\right)\right], \\
& \frac{\sigma_{B S M}}{\sigma_{S M}}=\sum_{i j} B_{i j} c_{i} c_{j} . \tag{3}\\
& \frac{\Gamma_{f}}{\Gamma_{4 \ell}} \approx \frac{\Gamma_{f}^{S M}}{\Gamma_{d<}^{S_{k}^{M}}}\left[1+\sum_{i} A_{i}^{f} c_{i}+\sum_{i j} B_{i j}^{f} c_{i j}-\left(\sum_{i} A_{i}^{4 \ell} c_{i}+\sum_{i j} B_{i j}^{4 t} c_{i j}\right)\right] .
\end{align*}
$$

Madgraph options available to directly evaluate A_{i} and B_{ij} for $\mathrm{i}=\mathrm{j}$
(Not yet available for NLO?)
Need to subtract two calculations to get B_{ij} for $\mathrm{i} \neq \mathrm{j}$
Initial fit: Keep B_{ij} in fit in case interference is suppressed Should not be too model-dependent since B_{ij} is leading SM-independent term Can also fit with $\mathrm{B}_{\mathrm{ij}}=0$ to test impact

Equations relating STXS to EFT

Do not include terms where coefficient is less than 0.1% of leading term (expect NLO to become relevant)

Cross-section region	$\sum_{i} A_{i} c_{i}$	$\sum_{i j} B_{i j} c_{i} c_{j}$
$\begin{aligned} & g g \rightarrow H(0 \text {-jet }) \\ & g g \rightarrow H\left(1 \text {-jet, } p_{T}^{H}<60 \mathrm{GeV}\right) \\ & g g \rightarrow H\left(1 \text {-jet, } 60 \leq p_{T}^{H}<120 \mathrm{GeV}\right) \end{aligned}$	$56 c_{g}^{\prime}$	$790\left(c_{g}^{\prime 2}+c_{\tilde{g}}^{\prime 2}\right)$
$\begin{aligned} & g g \rightarrow H\left(1 \text {-jet, } 120 \leq p_{T}^{H}<200 \mathrm{GeV}\right) \\ & g g \rightarrow H\left(1 \text {-jet, } p_{T}^{H} \geq 200 \mathrm{GeV}\right) \\ & g g \rightarrow H\left(\geq 2 \text {-jet, } p_{T}^{H}<60 \mathrm{GeV}\right) \\ & g g \rightarrow H\left(\geq 2 \text {-jet, } 60 \leq p_{T}^{H}<120 \mathrm{GeV}\right) \\ & g g \rightarrow H\left(\geq 2 \text {-jet, } 120 \leq p_{T}^{H}<200 \mathrm{GeV}\right) \\ & g g \rightarrow H\left(\geq 2 \text {-jet, } p_{T}^{H} \geq 200 \mathrm{GeV}\right) \\ & g g \rightarrow H\left(\geq 2 \text {-jet VBF-like, } p_{T}^{j 3}<25 \mathrm{GeV}\right) \\ & g g \rightarrow H\left(\geq 2 \text {-jet VBF-like, } p_{T}^{j 3} \geq 25 \mathrm{GeV}\right) \end{aligned}$	$\begin{aligned} & \hline 56 c_{g}^{\prime}+18 c_{3 G}+12 c_{2 G} \\ & 56 c_{g}^{\prime}+55 c_{3 G}+36 c_{2 G} \\ & 56 c_{g}^{\prime} \\ & 56 c_{g}^{\prime} \\ & 56 c_{g}^{\prime}+22 c_{3 G}+17 c_{2 G} \\ & 56 c_{g}^{\prime}+89 c_{3 G}+69 c_{2 G} \\ & 56 c_{g}^{\prime} \\ & 56 c_{g}^{\prime}+9 c_{3 G} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 790\left(c_{g}^{\prime 2}+c_{\tilde{g}}^{2}\right) \\ & 790\left(c_{g}^{\prime 2}+c_{\tilde{g}}^{2}\right)+63000 c_{2 G}^{2} \\ & +34000\left(c_{3 G}^{2}+c_{3 \tilde{G}}^{2}\right) \\ & 790\left(c_{g}^{\prime 2}+c_{\tilde{g}}^{2}\right) \\ & 790\left(c_{g}^{\prime 2}+c_{\tilde{g}}^{2}\right) \\ & \hline \end{aligned}$
$q q \rightarrow H q q$ VBF-like, $\left.p_{T}^{j 3}<25 \mathrm{GeV}\right)$ $q q \rightarrow H q q$ VBF-like, $p_{T}^{j 3} \geq 25 \mathrm{GeV}$) $q q \rightarrow H q q\left(p_{T}^{j} \geq 200 \mathrm{GeV}\right)$	$\begin{aligned} & 56 c_{g}^{\prime} \\ & 56 c_{g}^{\prime}+9 c_{3 G} \\ & -1.1 c_{H}-1.2 c_{T}+17 c_{2 W} \\ & +0.6 c_{B}-26 c_{H W}-1.8 c_{H B} \\ & +0.3 c_{H Q}-16 c_{\tilde{H Q}}-c_{H u} \\ & +0.3 c_{H d} \end{aligned}$	$\begin{aligned} & 790\left(c_{g}^{\prime 2}+c_{\tilde{g}}^{\prime 2}\right) \\ & 790\left(c_{g}^{\prime 2}+c_{\tilde{g}}^{\prime 2}\right) \\ & 1.4 c_{T}^{2}+560 c_{2 W}^{2}+12 c_{B}^{2} \\ & +660 c_{H W}^{2}+13 c_{H B}^{2}+220 c_{H Q}^{2} \end{aligned}$
$\begin{aligned} & g g / q q \rightarrow H l l / H l \nu \\ & g g / q q \rightarrow t t H \end{aligned}$	$\begin{aligned} & -c_{H}+3 c_{u}+c_{G} \\ & +314 c_{u G}+28 c_{3 G}-13 c_{2 G} \end{aligned}$	$\begin{aligned} & 124000 c_{u G}^{2}+142000\left(c_{3 G}^{2}+c_{3 i}^{2}\right. \\ & -112000 c_{u G} c_{3 G}+50400 c_{u G} c_{2} \end{aligned}$

At LO could use $\mathrm{gg} \rightarrow \mathrm{H}$ jet binning to constrain $\mathrm{c}_{2 \mathrm{G}}$ and $\mathrm{c}_{3 \mathrm{G}}$ in situ

Equations relating STXS to EFT

Partial width	$\sum_{i} A_{i} c_{i}$	$\sum_{i j} B_{i j} c_{i} c_{j}$
$H \rightarrow b \bar{b}$		
$H \rightarrow W W^{*}$		
$H \rightarrow Z Z^{*}$	$52 c_{2 W}+14 c_{B}+15 c_{H W}$	$230 c_{2 W} c_{H W}+220 c_{2 W}\left(c_{H l}+c_{\tilde{H l}}\right)$
$H \rightarrow \gamma \gamma$	$-5.4 c_{H B}+10\left(c_{H l}+c_{\tilde{H l}}^{\prime}\right)$	$810 c_{2 W} c_{B}$
$H \rightarrow \tau \tau$		$8.4\left(c_{\gamma}^{\prime 2}+c_{\tilde{\gamma}}^{\prime 2}\right)$
$H \rightarrow g g$		
$H \rightarrow c c$		

Example: fit to two channels (ZZ and $\gamma \gamma$) could constrain c_{g}, $\mathrm{cr}^{\prime}, \mathrm{c}_{\mathrm{HW}}, \mathrm{c}_{\mathrm{HB}}, \mathrm{c}_{\mathrm{W}}-\mathrm{B}, \mathrm{c}_{\mathrm{u}}$ (also $\mathrm{c}_{2 \mathrm{G}}, \mathrm{c}_{3 \mathrm{G}}$ at expense of c_{u} ?)

Ideally incorporate top data to constrain c_{uG}, jet data to constrain $\mathrm{c}_{2 \mathrm{G}}$ and $\mathrm{c}_{3 \mathrm{G}}$

Issues

EW scheme not clear in HEL

Appears to have $\mathrm{m}_{\mathrm{W}}, \boldsymbol{\alpha}_{\mathrm{EM}}$ and G_{F} as inputs m_{z} given by the equation:

$$
m Z^{2}=m Z_{s M}^{2}\left[1-c T+\frac{8 c A \sin ^{4}\left(\theta_{w}\right)+2 c W W^{2} \cos ^{2}\left(\theta_{W}\right)+c B \sin ^{2}\left(\theta_{w}\right)}{\cos ^{2}\left(\theta_{w}\right)}\right]
$$

Since m_{Z} includes fit parameters we should constrain it to SM prediction
What is SM prediction of m_{Z} in this EW scheme?
Based on usual m_{w} prediction, expect $\sim 91.19 \mathrm{GeV}$ with $\sim 15 \mathrm{MeV}$ uncertainty

No clear EFT uncertainty prescription

- would also help motivate truncation cutoff

Need to define fit ranges

- what upper bound on c_{i} to use?
- what minimum scale for validity?

