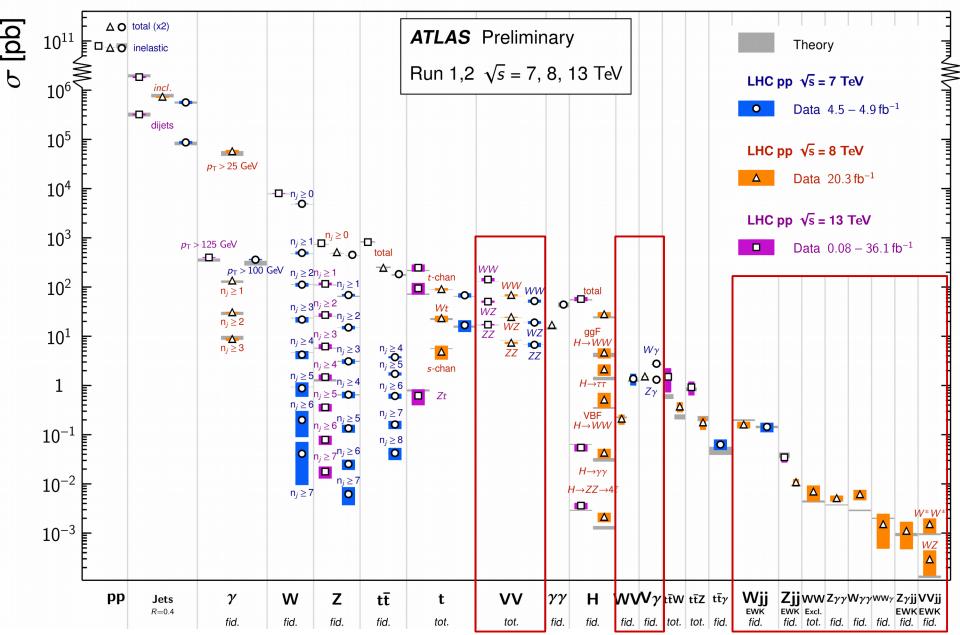
Electroweak/diboson constraints on EFT

- Overview over current (ATLAS) measurements and constraints
- General approach in ATLAS
- Diboson measurements
- VBS measurements
- VBF measurements

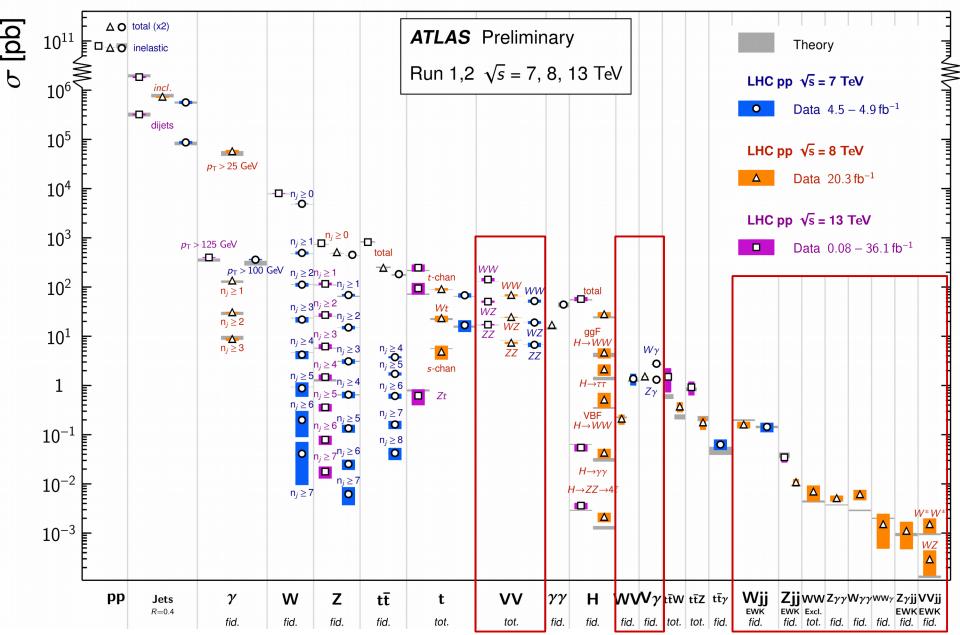
Kristin Lohwasser¹, Darren Price²

¹University of Sheffield ²University of Manchester

European Research Council


The University Of Sheffield.

The University of Manchester


Standard Model Production Cross Section Measurements

Status: July 2017

Standard Model Production Cross Section Measurements

Status: July 2017

In detail: Recent, relevant measurements

Paper with unfolded differential cross sections					
ZZ cross section at 8TeV (Note: 13 TeV paper with unfolded distributions in preparation (timescale until HEPData ~2-3 month))	JHEP	8	2012	20.3 fb-1	HepData
WZ cross section at 13 TeV (Note: only Njets distribution unfolded)	PLB	13	2015	3.2 fb-1	HepData
WW cross section at 8 TeV and limits on aTGCs	JHEP	8	2012	20.3 fb-1	HepData
WZ cross section at 8 TeV and limits on aTGCs and aQGCs	PRD	8	2012	20.3 fb-1	HepData
Differential 4I cross section	PLB	8	2012	20.3 fb-1	HepData
Zy and Zyy cross sections at 8 TeV and aGCs limits	PRD	8	2012	20.3 fb-1	HepData
Electroweak production of a Z boson	JHEP	8	2012	20.3 fb-1	HepData Rivet
Electroweak W production	subm. to EPJC	7,8	2011/12	4.7 +20.2 fb-1	
Wgamma and Zgamma Production	PRD	7	2011	4.6 fb-1	HepData Rivet
$Z \rightarrow 4I$ production cross section (lineshape)	PRL	7,8	2011/12	24.8 fb-1	
Paper with cross section (limits) in fiducial region					
VBF Z at 13TeV	3.2 fb-1				
WVgamma Production	subm. to EPJC	8	2012	20.3 fb-1	
WV semileptonic	subm. to EPJC	8	2012	20.3 fb-1	
VBS Z+gamma	subm. to JHEP	8	2012	20.3 fb-1	
WW 13TeV	subm. to PLB	13	2015	3.2 fb-1	
ssWW 8TeV aQGC	subm. to PRD	8	2012	20.3 fb-1	
Search for triboson WWW production	EPJC	8	2012	20.3 fb-1	HepData
WW + 1jet production	PLB	8	2012	20.2 fb-1	
Exclusive $\gamma\gamma \rightarrow WW$ and exclusive $H \rightarrow WW$	PRD	8	2012	20.2 fb-1	
Semileptonic WW+WZ cross section and limits on aTGC	JHEP	7	2011	4.6 fb-1	HepData

General approach currently employed (in ATLAS)

- Parametrisation of BSM couplings in multiboson physics
- Mostly based on LEP parametrisations: charged/neutral couplings (Lagrangian and Vertex approach)
 - In newer publications: Usage of genuine effective field theory (dim6/dim8), however using linear relations between LEP and EFT:
 - Charged TGCs: arxiv.org/abs/1205.4231
 Neutral TGCs: arxiv.org/abs/1308.6323
 VBS / Dim-8 operators: recommendation to use Eboli model arxiv.org/abs/1604.03555 with additional fS2 parameter as base line
 - > No larger / more complete models explored yet
 - General strategy: separate limit setting and unfolded cross sections

This is what is done now \rightarrow need further investigations and developments

Detector level vs. unfolded cross sections

Limit setting usually separated from measurement of differential cross section

- > Often two different situations:
 - aGC limits from a single bin (cut-and-count)
 - Sometimes 95% CL limits on the fiducial cross-section in this bin are published (helpful?)
 - Fit to a distribution: Usually completely different binning optimisations (compared to fiducial measurement)
 - Detailed systematics published for differential cross sections only, no poissonian statistics anymore
 - Detector level limits
 - \rightarrow no problems with different detector response to BSM signals (e.g. lower Etmiss on average \rightarrow lower fiducial acceptance)

 - However: Fiducial differential distribution give important information on SM prediction....

Detector level vs. unfolded cross sections

Limit setting usually separated from measurement of differential cross section [25-75], [75-150], [150-250], [250-350], [350-1000] [25-30], [30-35], [35-40], [40-50], [50-60], [60-70], [70-80], [80-100], [100-150] Events / bin do^{tid} / dp_T [fb/GeV] ATLAS Data ATLAS Backaround √s = 8 TeV, 20.3 fb⁻¹ 14 √s = 8 TeV. 20.3 fb⁻¹ 10^{4} Powhea+Resumm C@NI O 12 = 0.6 = 0.210 10³ $\lambda^{z} = 0.2$ $\Delta \kappa^{\gamma} = 0.2$ $\lambda^{\gamma} = 0.2$ 10^{2} 10 Pred. / Data 1 1.2 0.8 100 200 300 400 500 600 700 800 900 1000 0.60.4 p_r^{lead} [GeV] 500 40 60 80 100 120 140 p_r^{lead} [GeV]

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2013-07/

Detector level vs. unfolded cross sections

> Information given mainly on unfolded distributions

>	
>	

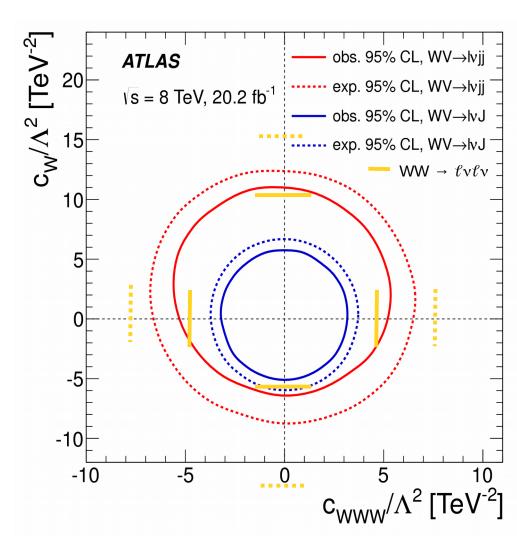
. .

$p_{\rm T}^{\rm lead}$ [GeV]	25-30	30-35	35-40	40-50	50-60	60-70	70-80	80-100	100-150	150-500
	Differential cross sections									
Results [fb/GeV]	3.49	7.05	10.7	9.30	6.65	3.97	2.35	1.20	0.363	0.008 67
Total Unc.	23 %	16 %	12 %	9.4%	7.6%	13 %	16 %	15 %	13 %	30 %
Stat. Unc.	12 %	7.6%	5.7%	4.0%	4.8%	6.1%	8.0%	7.9%	8.6%	24 %
Syst. Unc.	6.7%	6.3%	5.3%	5.2%	5.4%	5.6%	5.5%	6.3%	6.0%	7.9%
Bkg. Unc.	18 %	13 %	9.2%	6.8%	2.4%	9.5%	13 %	11 %	8.4%	17 %

$p_{\rm T}^{\rm lead}$ [GeV]	25-30	30–35	35–40	40–50	50-60	60–70	70–80	80-100	100-150	150-500
25-30	1	0.13	0.091	0.14	0.20	0.11	0.094	0.13	0.12	0.092
30-35	0.13	1	0.060	0.17	0.24	0.12	0.091	0.14	0.15	0.078
35-40	0.091	0.060	1	0.22	0.32	0.20	0.15	0.19	0.22	0.088
40-50	0.14	0.17	0.22	1	0.39	0.27	0.22	0.28	0.30	0.15
50-60	0.20	0.24	0.32	0.39	1	0.33	0.28	0.39	0.43	0.21
60-70	0.11	0.12	0.20	0.27	0.33	1	0.16	0.25	0.29	0.17
70-80	0.094	0.091	0.15	0.22	0.28	0.16	1	0.19	0.25	0.14
80-100	0.13	0.14	0.19	0.28	0.39	0.25	0.19	1	0.33	0.21
100-150	0.12	0.15	0.22	0.30	0.43	0.29	0.25	0.33	1	0.21
150-500	0.092	0.078	0.088	0.15	0.21	0.17	0.14	0.21	0.21	1

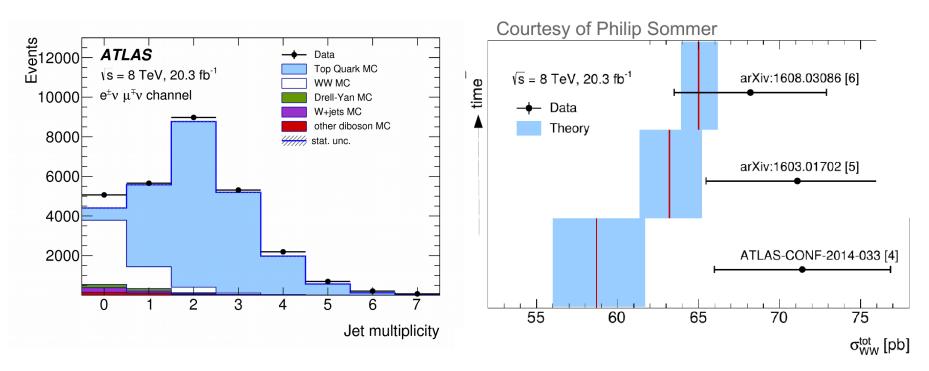
Table 25: Correlation matrix for the total uncertainties for the unnormalised unfolded distribution of the leading lepton $p_{\rm T}$, including all sources of systematic and statistical uncertainties.

Cross sections and limits: Leptonic vs. hadronic decays


Differential cross section can however reveal flaws in SM predictions used for BSM limits >

- > Most apparent in leptonic decays:
- \rightarrow smaller systematics
- > \rightarrow more accurate measurements

- Observed limits much more stringent than expected
- → due to mismatch between SM prediction and data


- Semi-leptonic decay channels:
- Problems less apparent due to larger systematics

> Accurate SM predictions needed

Experimental Limitations (because of backgrounds)

WW again as example: beyond 0-jet bin dominated by top production >

- > Do we still model the SM correctly if jet vetoes are applied?
 - Interplay with EFTs? (e.g. NLO, VV+1 jet signatures?)

Neutral couplings: A preview for Run-2

May 2017	CMS				
May 2017	CMS ATLAS ATLAS+CMS	Channel	Limits	∫ <i>L</i> dt	√s
εŶ		ZZ (4I,2I2v)	[-1.5e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
f_4^{γ}	⊢−−−−−	ZZ (4I,2I2v)	[-3.8e-03, 3.8e-03]	20.3 fb ⁻¹	8 TeV
	⊢	ZZ (4I)	[-1.8e-03, 1.8e-03]	36.1 fb ⁻¹	13 TeV
	F	ZZ (4I)	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
	⊢−−−− 4	ZZ (2l2v)	[-3.6e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
	⊢−−− ↓	ZZ (4I,2I2v)	[-3.0e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
	H	ZZ (4I)	[-1.3e-03, 1.3e-03]	35.9 fb ⁻¹	13 TeV
		ZZ (4I,2I2v)	[-1.0e-02, 1.0e-02]	9.6 fb ⁻¹	7 TeV
7		ZZ (4I,2I2v)	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
f_4^Z	⊢	ZZ (4I,2I2v)	[-3.3e-03, 3.2e-03]	20.3 fb ⁻¹	8 TeV
	⊢ ⊣	ZZ (4I)	[-1.5e-03, 1.5e-03]	36.1 fb ⁻¹	13 TeV
	┝────┥	ZZ (4I)	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
	⊢−−− 4	ZZ (2l2v)	[-2.7e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
	⊢−−−	ZZ (4I,2I2v)	[-2.1e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
	H	ZZ (4I)	[-1.2e-03, 1.1e-03]	35.9 fb ⁻¹	13 TeV
		ZZ (4I,2I2v)	[-8.7e-03, 9.1e-03]	9.6 fb ⁻¹	7 TeV
f_5^{γ}		ZZ (4I,2I2v)	[-1.6e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
1 ₅	⊢−−−−− 	ZZ (4I,2I2v)	[-3.8e-03, 3.8e-03]	20.3 fb ⁻¹	8 TeV
	⊢ −−1	ZZ (4I)	[-1.8e-03, 1.8e-03]	36.1 fb ⁻¹	13 TeV
	⊢ −−−−−−	ZZ (4I)	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
	⊢−−−−−	ZZ(2l2v)	[-3.3e-03, 3.6e-03]	24.7 fb ⁻¹	7,8 TeV
		ZZ(4I,2I2v)	[-2.6e-03, 2.7e-03]	24.7 fb ⁻¹	7,8 TeV
	⊢-I	ZZ (4I)	[-1.2e-03, 1.3e-03]	35.9 fb ⁻¹	13 TeV
	├	ZZ (4I,2I2v)	[-1.1e-02, 1.1e-02]	9.6 fb ⁻¹	7 TeV
f_5^Z		ZZ (4I,2I2v)	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
¹ 5		ZZ (4I,2I2v)	[-3.3e-03, 3.3e-03]	20.3 fb ⁻¹	8 TeV
	, 	ZZ (4I)	[-1.5e-03, 1.5e-03]	36.1 fb ⁻¹	13 TeV
		ZZ (4I)	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
		ZZ (2l2v)	[-2.9e-03, 3.0e-03]	24.7 fb ⁻¹	7,8 TeV
	⊢	ZZ (4I,2I2v)	[-2.2e-03, 2.3e-03]	24.7 fb ⁻¹	7,8 TeV
	, H	ZZ (4I)	[-1.0e-03, 1.2e-03]	35.9 fb ⁻¹	13 TeV
1 I		ZZ (4I,2I2v)	[-9.1e-03, 8.9e-03]	9.6 fb ⁻¹	7 TeV
-0.0	02 0	0.02	0.04		0.06
2.0				imita @0	
			algol	imits @9	5% U.L.

> Higher order effects can induce couplings O(10⁻⁴)

> Possible to observe end of Run-2? Are there precise enough predictions?

Current status inside the experiments

Publishing differential cross sections

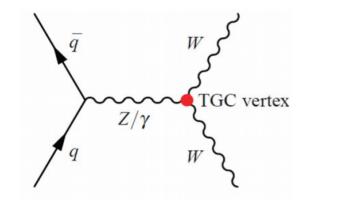
- > Minimal systematics information
 - Little information on correlations (e.g. ZZ and WW mostly uncorrelated for the electron systematics)

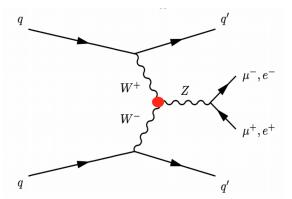
 - Efforts within the experiments only starting

What else could be done?

- >
- > Possibility to publish detector level quantities?
- > (management still rather reserved)

 - Collaboration within LHC EWWG ?

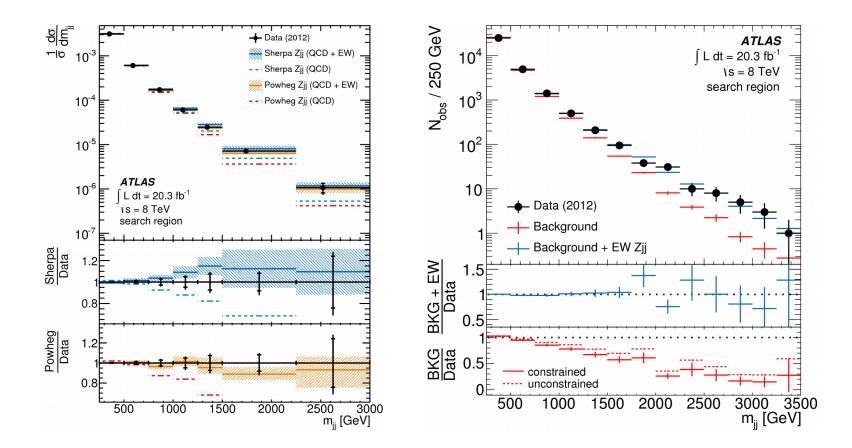



VBF measurements (W and Z)

> Differential cross-sections and cut-and-count aTGC limits published

- VBF Z: JHEP 04 (2014) 031, arXiv:1401.7610
- VBF W: Eur. Phys. J. C 77 (2017) 474, arXiv:1703.04362
- Fiducial cross-sections published in HEPDATA
- Splits of sources of systematics bin-by-bin

- aTGC limits from VBF complementary to diboson final states
- Complementary constraints on new phenomena
- VBF: two bosons with space-like momentum transfer vs. three bosons with time-like momentum transfer in di-boson Baur, Zeppenfeld: arXiv:hep-ph/9309227



Kristin Lohwasser, Darren Price | EFT mini-Workshop | 07.09.2017 | 13

VBF Z: differential cross-sections and aTGC limits

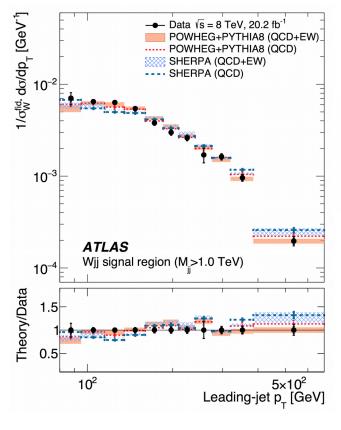
Differential cross-sections and cut-and-count aTGC limits published VBF Z: JHEP 04 (2014) 031, arXiv:1401.7610

VBF Z: differential cross-sections and aTGC limits

Differential cross-sections and cut-and-count aTGC limits published
 VBF Z: JHEP 04 (2014) 031, arXiv:1401.7610

$$\frac{\mathcal{L}}{g_{WWZ}} = i \left[g_{1,Z} \left(W^{\dagger}_{\mu\nu} W^{\mu} Z^{\nu} - W_{\mu\nu} W^{\dagger\mu} Z^{\nu} \right) + \kappa_Z W^{\dagger}_{\mu} W_{\nu} Z^{\mu\nu} + \frac{\lambda_Z}{m_W^2} W^{\dagger}_{\rho\mu} W^{\mu}_{\nu} Z^{\nu\rho} \right]$$

aTGC	$\Lambda = 6 \text{ TeV} (\text{obs})$	$\Lambda = 6 \text{ TeV } (\exp)$	$\Lambda = \infty \text{ (obs)}$	$\Lambda = \infty \ (\exp)$
$\Delta g_{1,Z}$	[-0.65, 0.33]	[-0.58, 0.27]	[-0.50, 0.26]	[-0.45, 0.22]
λ_Z	[-0.22, 0.19]	[-0.19, 0.16]	[-0.15, 0.13]	[-0.14, 0.11]

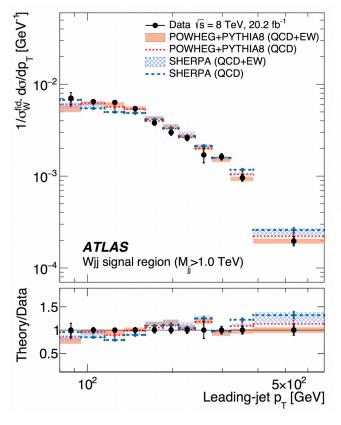

Unfolded mjj cross-section distribution and other distributions are available for inclusion in EFT fits!

VBF W: differential cross-sections and aTGC limits

> Differential cross-sections and cut-and-count aTGC limits published

- VBF W: Eur. Phys. J. C 77 (2017) 474, arXiv:1703.04362
- aTGC limits from cut-and-count for m_{ii}>1 TeV, p_T^{j1}>600 GeV,
- central lepton, central jet veto

 $\frac{y_1 + y_2}{1^2}$


$$i\mathcal{L}_{\text{eff}}^{WWV} = g_{WWV} \left\{ \left[g_1^V V^{\mu} (W_{\mu\nu}^- W^{+\nu} - W_{\mu\nu}^+ W^{-\nu}) + \kappa_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} + \frac{\lambda_V}{m_W^2} V^{\mu\nu} W_{\nu}^{+\rho} W_{\rho\mu}^- \right] - \left[\frac{\tilde{\kappa}_V}{2} W_{\mu}^- W_{\nu}^+ \epsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} + \frac{\tilde{\lambda}_V}{2m_W^2} W_{\rho\mu}^- W_{\nu}^{+\mu} \epsilon^{\nu\rho\alpha\beta} V_{\alpha\beta} \right] \right\},$$

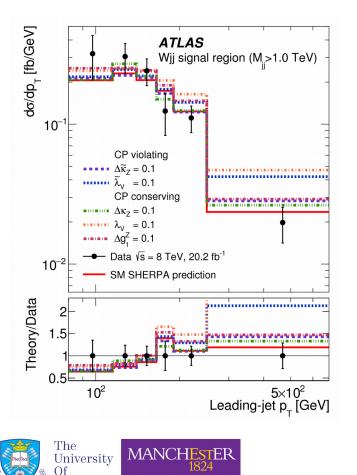
	$\Lambda =$	4 TeV	$\Lambda = \infty$			
	Expected	Observed	Expected	Observed		
Δg_1^Z	[-0.39, 0.35]	[-0.32, 0.28]	[-0.16, 0.15]	[-0.13, 0.12]		
$\Delta \kappa_Z$	[-0.38, 0.51]	[-0.29, 0.42]	[-0.19, 0.19]	[-0.15, 0.16]		
λ_V	[-0.16, 0.12]	[-0.13, 0.090]	[-0.064, 0.054]	[-0.053, 0.042]		
κ _Z	[-1.7, 1.8]	[-1.4, 1.4]	[-0.70, 0.70]	[-0.56, 0.56]		
$ ilde{\lambda}_V$	[-0.13, 0.15]	[-0.10, 0.12]	[-0.058, 0.057]	[-0.047, 0.046]		

VBF W: differential cross-sections and aTGC limits

> Differential cross-sections and cut-and-count aTGC limits published

- VBF W: Eur. Phys. J. C 77 (2017) 474, arXiv:1703.04362
- aTGC limits from cut-and-count for m_{ij}>1 TeV, p_T^{j1}>600 GeV,
- central lepton, central jet veto

$$\begin{split} \tilde{\mathcal{L}}_{\text{eff}}^{WWV} &= g_{WWV} \left\{ \left[g_1^V V^{\mu} (W_{\mu\nu}^- W^{+\nu} - W_{\mu\nu}^+ W^{-\nu}) + \kappa_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} + \frac{\lambda_V}{m_W^2} V^{\mu\nu} W_{\nu}^{+\rho} W_{\rho\mu}^- \right] \\ &- \left[\frac{\tilde{\kappa}_V}{2} W_{\mu}^- W_{\nu}^+ \epsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} + \frac{\tilde{\lambda}_V}{2m_W^2} W_{\rho\mu}^- W_{\nu}^{+\mu} \epsilon^{\nu\rho\alpha\beta} V_{\alpha\beta} \right] \right\}, \end{split}$$


Central region

	Parameter	Expected [TeV ⁻²]	Observed [TeV ⁻²]
(0)	$\frac{c_W}{\Lambda^2}$	[-39, 37]	[-33, 30]
basis	$\frac{c_B}{\Lambda^2}$	[-200, 190]	[-170, 160]
	$\frac{c_{WWW}}{\Lambda^2}$	[-16, 13]	[-13,9]
HISZ	$rac{c_{ ilde W}}{\Lambda^2}$	[-720, 720]	[-580, 580]
Т	$rac{c_{ ilde WWW}}{\Lambda^2}$	[-14, 14]	[-11, 11]

VBF W: differential cross-sections and aTGC limits

> Differential cross-sections and cut-and-count aTGC limits published > VBF W: Eur. Phys. J. C 77 (2017) 474, arXiv:1703.04362

Suite of differential cross-section measurements as candidates for EFT fits:

Sheffield. The University of Manchester

- e.g. m_{ij} , $\Delta \Phi_{ij}$, leading jet p_T , dijet system p_T
 - Unit-normalised and absolute differential rates (incorporating systematic cancellations)
 - QCD+EW Wjj rates and 'EW-only' rates
- NP limits derived at reco-level can have comparable sensitivity to those derived a posterioi at particle-level (interesting to investigate here!)
- Flexibility for re-use in global fits