SYNC & SHARE TO REPLACE HPC HOMES?

Krzysztof Wadówka, Maciej Brzeźniak, Marcin Pospieszny, Piotr Brona, Radosław Januszewski

HPC Department

- Challenges / background
- Why Seafile?
- HPC @PSNC & PIONIER-BOX: who we are, aims
- Our setup & tests
- Observations & discussion

DATA MGMT IN HPC

- DATA VOLUMES:
 - · PetaBytes...
 - 10-100s **GB**/s, 100s k **IOPS**
- HPC storage:
 - fast but hermetic
 - not easy to access
- Dillemma: performance vs usability:
 - SFTP, GridFTP, NFS no longer a solution
 - HPC storage especially hermetic
- Users:
 - want performance of Lustre...
 - with the Dropbox' ease of use

Source: IDC

TYPICAL DATA FLOW IN HPC

User & data

Barrier

Storage

TARGET DATA FLOW IN HPC

User & data

Interface

Storage

TYPICAL HPC DATA FLOW:

HPC+CLOUD DATA FLOW:

OUR USE-CASE:

Input data:

- ~3 GB
- 100 files

Output data:

- ~40 GB per run & file
- 100 files

POSSIBLE TARGET APPROACH

Seafile TECHNOLOGY SELECTION

- Requirements:
 - efficiency
 - reliability
 - robustness
- OK, but what system can cope with this?

WHAT IS SEAFILE?

- · Seafile is a sync & share system with focus on:
 - · reliability data model, robust synchronisation algorithm
 - efficiency low-level implementation (C), proper data model
- Synchronisation mechanism:
 - Snapshot based synchronisation (not per-file versioning)
 - Only deltas included in commits (content-defined chunking)

SEAFILE SYNC MECHANISM:

SNAPSHOT-BASED (NOT PER-FILE VERSIONING)

SEAFILE SYNC MECHANISM: ONLY DELTAS INCLUDED IN COMMITS,

CONTENT DEFINED CHUNKING ALGORITHM USED FOR DEDUP

FOCUS ON PURPOSE, NOT (TOO) MULTI-FUNCTION

Source: http://www.fastcarinvasion.com/must-see-moment-tractor-crosses-way-racing-car/

Seafile SEAFILE'S STRENGHTS:

- Well-optimized synchronization engine & architecture:
 - no overhead on CPU:
 - well-optimised synchronisation engine
 - no load on DBMS:
 - minimum data in the DB (only shares, etc.),
 - metadata in storage backend
- Seafile has potential to address I/O intensive workloads
 - for large-scale sync & share services (this is what we do currently)
 - even as an HPC home (this is what we're testing)

SEAFILE PERFORMANCE

2016 BENCHMARKS COMPARING SEAFILE WITH OTHER PRODUCTS

SPEED	Seafile [files-dirs/s]	theOther [files-dirs/s]	difference
Small files upload	627	27	23x
Small files download:	940	43	22x

SPEED	Seafile [GB/s]	theOther [GB/s]
Large files upload	0.17	0.11
Large files download	0.29	0.71

SMALL FILES: Linux kernel source v. 4.5.3: 706 MB of data, 52 881 files, 3 544 directories

LARGE FILES: 5 x 1GB

SEAFILE PERFORMANCE

WITH CEPH AND GPFS BACKENDS (2017)

SMALL FILES TEST: 45K X 100KB FILES [FILES/S]

UPLOAD

DOWNLOAD

LARGE FILES TEST: 4,4 GB FILES: [MB/S] UPLOAD

DOWNLOAD

WHO WE ARE?

- Poznań Supercomputing and Networking Centre is one of the largest HPC centres in Poland
- It's also an **network** and **services provider (NREN)**; services include: cloud computing, storage, backup etc.

- BOX is a country-wide sync & share service:
- aimed at large user base (10s thousands);
 milions of files expected
- in production since 2015,
 PoCs with large universities ongoing

HPC@

,EAGLE' CLUSTER:

- I.4 PFlops cluster
- 172th on Nov 2017 (Rmax: 1,372)
- 33k cores / E5-2697v3
- 301 TB RAM
- Infiniband FDR
- Scratch on 6PB, 120GB/s Lustre
- Homes on 5PB, 20GB/s GPFS

- POLISH NREN & SERVICES PROVIDER

PIONIER NETWORK

- 8000 kms of own fibers
- 3500+ public institutions
- links to Geant, AMS-X, CERN

Archival Storage Services:

- **14+PB** of space, 10 DCs
- 300+ client institutions
- Based on "National Data Storage" software developed in-house

Cloud computing services:

- several 1000s of servers in 21 DCs
- 1000s of users

EUDAT:

Collaborative pan-European Data Infrastructure

- PSNC delivers resources and services:
 B2SAFE, B2SHARE
- R&D on object storage federations,
 HTTP-based federations

- INDIGO-DataCloud:
 European PaaS-based cloud for e-Science:
 - participating in work related to extending CDMI protocol/standard wit QoS-related mechanisms
 - providing interfaces to object stores

IN THE EU ACADEMIC NETWORKS

GEANT

- Connectivity:
 - multiple 10/100 Gbit lines
- Collaborations: GN4 project:
 - software defined networks, infrastructure
 - multi-media, e-learning
 - cloud services incl. brokerage
- Collaborations:
 - task forces: media, NOC etc.
 - special interest groups:
 cloud services & software stacks

BOX@PIONIER Seafile

Country-wide sync&share service

- aimed at large user base (100s thousands);
- milions of files expected
- in production since 2015
- PoCs with large universities ongoing

TEST INFRASTRUCTURE

We used production BOX@PIONIER service:

- Based on cluster of Seafile Pro servers
- Database cluster: MariaDB + Galera
- HTTP load-balancers HTTP: HAProxy etc.
- Storage cluster: GPFS (GPFS+cNFS)

TEST INFRASTRUCTURE

We use GPFS at the Seafile back-end throught the cluster NFS gateways

We tested Ceph but GPFS performed better

Seafile server

GPFS NSD client

\$\$\$\$

GPFS

Seafile server

NFS client

NFS server

GPFS

Seafile server

libRADOS client

RADOS

Ceph

DETAILED CONFIGURATION

Seafile:

- Ix load-balancer
- 2 Seafile servers
- Maria DB Galera
- MemcacheD
- Storage back-ends:
 - Ceph
 - GPFS

GPFS back-end:

- 2 GPFS servers
 - 2 CPUs, I28GB RAM
 - 2x 10GbE, 2x 10GbFC
 - GPFS v4.2.2
- Disk array:
 - Huawei OS 5500
 - 120 HDDs, RAID6
- Interface:
 - 2×10GbE
 - NFSv3

HPC storage:

- Scratch / Lustre:
 - 16 OSS servers
 - 2 MDS servers
 - 5,6 PB physical space
- Home/GPFS:
 - 8 NSD servers
 - 8 cNFS servers
 - 2 PB physical space
- Interfaces
 - I Gbit link to "world":(

PSNC OBSERVATIONS Seafile

- The approach proposed is convenient for users and efficient:
 - ease of use + automation of data movement
 - no delays on user's / workflow engine reaction
 - instant availability of results as they are produced
- Admin's point of view:
 - Space usage is similar to storing data in ,classical' home
 - Only minimum extra work required
 - Users are happy so admins are
- Overall this seems to be a way to go in some use-cases

Web client

STORAGE USAGE

User's system Sync & share HPC system or VM in cloud system Sync client Seafile server Sync client NFS client GUI/CLI client CLI client Drive client NFS server

GPFS

- **Limitations** of our approach:
 - Only I Gbit link to cluster storage we used temporary/testing setup
 - More interfaces/ machines needed ,gateways' in a systematic approach
- Only synchronisation client tested:
 - Virtual drive-like access possible: Seadrive could be used for ad-hoc access without copying them to local drives within the user workstation and/or in VM embedded in cloud

- User credentials ,delegation':
 - for testing we created a dedicated ,a group' account in Seafile; users joined to be able to share data
 while keeping their private credentials for themselves
 - more systematic approach to configuring user accounts would be required in future (ideally ,common' accounts in sync & share and in the HPC cluster)
- Configuration of directories/libraries to be sync'ed:
 - performed manually for testing purposes
 - more automated approach needed

SUMMARY

- We tested in practice a concept of replacing ,classical' home filesystem with sync & share solution
 - · this approach is a work in progress, with limitations
 - however looks like the way to go in some use-cases
 - proper sync engine provides performance relevant to HPC
 - · for now: ,zero development' approach
 - · more systematic approach may require development work

SYNC&SHARE TO REPLACE HPC HOMES?

THANK YOU! QUESTIONS?

Credits to:

Krzysztof Wadówka, Maciej Brzeźniak, Marcin Pospieszny, Piotr Brona, Radosław Januszewski

HPC Department

