
HA dCache as cloud back-end
for dCache Team

Workshop on Cloud Services for
Synchronisation and Sharing
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Three problems to solve
(we are in the late ‘90s)

I. Data never fits into a single server

• Multiple servers

• Off-load to tape

II. Growing number of clients

• Main frame vs. Linux cluster

III. We want our own HW/OS selection

• Better offers

• Local expertise
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The MISSION:

“...  to provide a system for storing and retrieving 
huge amounts of data, distributed among a large 
number of heterogeneous server nodes, under a 
single virtual filesystem tree with a variety of 
standard access methods.”

16 Sep. 2000

Michael Ernst, Patrick Fuhrmann, Martin Gasthuber, Rainer Mankel



       4US sites in Stealth mode as they don’t publish to BDII 
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Project Logistic

● Joint effort between DESY, FNAL and NDGF

● developing sites use dCache as main storage system 

● Open source

● code hosted on GitHub

● Time based release model

● one ‘golden’ release every year

● long term (2 years) supported branch

● quarterly feature branches

● 861 releases since 2007
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Four main components

● DOOR 
● user entry points (NFS, FTP, WEBDAV)

● POOL
● data storage nodes, talk all protocols

● Namespace
● metadata DB, POSIX layer

● PoolManager
● request distribution unit
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Minimal Setup

Pool-A

Namespace

HTTP

PoolMgr
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Minimal Setup
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Minimal Setup

All components are CELLs :
they are independent and can interact with 
each other (send messages).
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Minimal Setup
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Grouping CELLs
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Grouping CELLs
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Grouping CELLs

● Independent JVMs
● Shared CPU
● Per-process Log file

● All components run the same 
version
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Grouping CELLs
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Grouping CELLs
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Interconnecting components

● CELL messages

● used for inter component communication

● Starting dCache v3.2 supports TLS

● ZooKeeper

● 3rd party product (from the Hadoop universe)

● a distributed hierarchical key-value store, providing distributed 
configuration & synchronization services and naming registry for 
large distributed systems

● used by dCache for service discovery

● no TLS support in stable release, but can be secured with stunnel
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Cell messaging 101

● Star like topology

● Selected node configured as  a 
hub called CORE domain

● All communication goes through 
CORE domains

● Other domains called SATELLITE 
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Cell messaging 101

● Star like topology

● Selected node configured as  a 
hub called CORE domain

● All communication goes through 
CORE domains

● Multiple CORE domains make 
communication fault tolerant 
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Internal Communication

● Inter-cell communication

● Message passing

● Routing

● ZooKeeper

● Service discovery

● Coordination

● Configuration
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ZooKeeper in dCache

● Distributed key-value-store

● A central registry of CORE domains

● Similar to DNS or routing table

● Master election for single-man operations

● Some actions must be done only once

● Must be deployed as a cluster

● built-in version for kick-off 
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Securing communication

● dCache-3.2 supports TLS for CELL messages

●  ZooKeeper doesn't support TLS out of box

● We recommend stunnel to use as proxy
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STUNNEL

● Proxy to add TLS to legacy software

● No code change requires

● Easy to install

● required on both endpoints



ZooKeeper with STUNNEL



Network Authentication

● TLS based

● Client/server authentication based on host certificates

● Ideally, dedicated CA

● Works with dCache and stunnel
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Fault tolerance

● All core services can run multiple instances (replicable)

● Namespace

● Pool Manager

● Door/Pool crashes can be handled by clients

● NFS

● dcap

● xrootd

● File replication protects against data loss

● Master/slave postgres config required

● dCache detects which node runs as master when both provided
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Upgrades

● Replicable services can be upgraded at any time

● Pools/doors may require draining

● Postgres can be upgraded within same major version

● 3rd party tools available for fail-over management 
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CAP

● Consistency

● Every read receives the most recent write or an error.

● Availability

● Every request receives a (non-error) response – without 
guarantee that it contains the most recent write.

● Partition tolerance

● The system continues to operate despite an arbitrary number of 
messages being dropped (or delayed) by the network between 
nodes.
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The CAP Theorem:

it is impossible for a distributed 
data store to simultaneously 
provide more than two out of 
the following three guarantees
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CAP theorem explained

● If the network is OK, both availability and 
consistency can be satisfied, but...

● No distributed system is safe from network 
failures. 

● The choice is between consistency and 
availability is forced when a network partition 
or failure happens.
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dCache and CAP

● dCache provides consistency over availability.

● All clients will see the same data at the same point in time.

● A timeout or error will be returned, if consistency can't be 
guaranteed.
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Summary and Conclusions

● dCache has a long tradition in providing reliable and scalable 
storage for many sites around the world.

● Fault-tolerant setup allows zero-downtime operation

● This predestines dCache as the platform for DESY cloud storage

● And maybe yours?


