
HA dCache as cloud back-end
for dCache Team

Workshop on Cloud Services for
Synchronisation and Sharing

C
C

 B
Y

-S
A

 3
.0

 2

Three problems to solve
(we are in the late ‘90s)

I. Data never fits into a single server

• Multiple servers

• Off-load to tape

II. Growing number of clients

• Main frame vs. Linux cluster

III. We want our own HW/OS selection

• Better offers

• Local expertise

 3

The MISSION:

“... to provide a system for storing and retrieving
huge amounts of data, distributed among a large
number of heterogeneous server nodes, under a
single virtual filesystem tree with a variety of
standard access methods.”

16 Sep. 2000

Michael Ernst, Patrick Fuhrmann, Martin Gasthuber, Rainer Mankel

 4US sites in Stealth mode as they don’t publish to BDII

 5

Project Logistic

● Joint effort between DESY, FNAL and NDGF

● developing sites use dCache as main storage system

● Open source

● code hosted on GitHub

● Time based release model

● one ‘golden’ release every year

● long term (2 years) supported branch

● quarterly feature branches

● 861 releases since 2007

 6

Four main components

● DOOR
● user entry points (NFS, FTP, WEBDAV)

● POOL
● data storage nodes, talk all protocols

● Namespace
● metadata DB, POSIX layer

● PoolManager
● request distribution unit

 7

Minimal Setup

Pool-A

Namespace

HTTP

PoolMgr

 8

Minimal Setup

 9

Minimal Setup

All components are CELLs :
they are independent and can interact with
each other (send messages).

 10

Minimal Setup

 11

Grouping CELLs

 12

Grouping CELLs

 13

Grouping CELLs

● Independent JVMs
● Shared CPU
● Per-process Log file

● All components run the same
version

 14

Grouping CELLs

 15

Grouping CELLs

 16

Interconnecting components

● CELL messages

● used for inter component communication

● Starting dCache v3.2 supports TLS

● ZooKeeper

● 3rd party product (from the Hadoop universe)

● a distributed hierarchical key-value store, providing distributed
configuration & synchronization services and naming registry for
large distributed systems

● used by dCache for service discovery

● no TLS support in stable release, but can be secured with stunnel

 17

Cell messaging 101

● Star like topology

● Selected node configured as a
hub called CORE domain

● All communication goes through
CORE domains

● Other domains called SATELLITE

 18

Cell messaging 101

● Star like topology

● Selected node configured as a
hub called CORE domain

● All communication goes through
CORE domains

● Multiple CORE domains make
communication fault tolerant

 19

Internal Communication

● Inter-cell communication

● Message passing

● Routing

● ZooKeeper

● Service discovery

● Coordination

● Configuration

 20

ZooKeeper in dCache

● Distributed key-value-store

● A central registry of CORE domains

● Similar to DNS or routing table

● Master election for single-man operations

● Some actions must be done only once

● Must be deployed as a cluster

● built-in version for kick-off

 21

Securing communication

● dCache-3.2 supports TLS for CELL messages

● ZooKeeper doesn't support TLS out of box

● We recommend stunnel to use as proxy

 22

STUNNEL

● Proxy to add TLS to legacy software

● No code change requires

● Easy to install

● required on both endpoints

ZooKeeper with STUNNEL

Network Authentication

● TLS based

● Client/server authentication based on host certificates

● Ideally, dedicated CA

● Works with dCache and stunnel

 25

Fault tolerance

● All core services can run multiple instances (replicable)

● Namespace

● Pool Manager

● Door/Pool crashes can be handled by clients

● NFS

● dcap

● xrootd

● File replication protects against data loss

● Master/slave postgres config required

● dCache detects which node runs as master when both provided

 26

Upgrades

● Replicable services can be upgraded at any time

● Pools/doors may require draining

● Postgres can be upgraded within same major version

● 3rd party tools available for fail-over management

 28

CAP

● Consistency

● Every read receives the most recent write or an error.

● Availability

● Every request receives a (non-error) response – without
guarantee that it contains the most recent write.

● Partition tolerance

● The system continues to operate despite an arbitrary number of
messages being dropped (or delayed) by the network between
nodes.

 29

The CAP Theorem:

it is impossible for a distributed
data store to simultaneously
provide more than two out of
the following three guarantees

C

A P

 30

CAP theorem explained

● If the network is OK, both availability and
consistency can be satisfied, but...

● No distributed system is safe from network
failures.

● The choice is between consistency and
availability is forced when a network partition
or failure happens.

C

A P

 31

dCache and CAP

● dCache provides consistency over availability.

● All clients will see the same data at the same point in time.

● A timeout or error will be returned, if consistency can't be
guaranteed.

 32

Summary and Conclusions

● dCache has a long tradition in providing reliable and scalable
storage for many sites around the world.

● Fault-tolerant setup allows zero-downtime operation

● This predestines dCache as the platform for DESY cloud storage

● And maybe yours?

