
© 2018 SWITCH | 1© 2017 SWITCH | 1

Greg Vernon
greg.vernon@switch.ch

Krakow, 30 January 2018

Troubleshooting Relational
Database Backed Applications

© 2018 SWITCH | 2

• We are the Swiss National Research and Education
Network.

• We network the Institutes of Higher Education and
Research to each other, and the rest of the world.

• We provide additional services such as Federated
Authentication, Video, and File Sharing to our Educational
customers.

• We manage the Top Level Domains for Switzerland (.ch)
and Liechtenstein (.li).

• We provide SWITCH-CERT security service.

SWITCH

© 2018 SWITCH | 3

Extended community
• Other organizations involved in research

or education

SWITCH community
• Swiss universities on tertiary level (academic

sector) and their research institutions

Commercial customers
• Registrars of .ch- and .li-Domain-Names,

Swiss financial institutions, research-related
industry and government

Our customers

© 2018 SWITCH | 4

• We were seeing corruption in our ownCloud instance.

• Our database servers were struggling. We had to add

more read nodes to keep up with the load.

• We saw issues with MaxScale, and suspected that

MaxScale had a role in the corruption we were seeing.

• The solution was a team effort between SWITCH and

ownCloud.

The Problem

© 2018 SWITCH | 5

SWITCHdrive is our branded ownCloud offering. We had the following
before the fix:
• About 30,000 Users
• 105,000,000 files
• 100,000,000 rows in our oc_filecache table
• 6 Mariadb servers in a Galera cluster
• 9 Apache Servers(4 Sync/4 Web/1 Management)
• Redis
• 3 LDAP Servers
• 6 NFS servers running atop CEPH
• 2 HAproxy load balancers
• Monitoring (Graphite, ELK)
• Runs atop SWITCHengines, our OpenStack offering
• Most services are Docker containers

SWITCHdrive

© 2018 SWITCH | 6

© 2018 SWITCH | 7

• MariaDB 10
• Galera Cluster
• 1 Write Node
• 5 Read Nodes
• MaxScale on the Web/Sync/Mgmt servers for DB

connection channeling
• DB nodes are Docker containers

Database Environment

© 2018 SWITCH | 8

• Synchronous replication

• Multi-Master Capabilities, but we use single master with
multiple read nodes to increase read bandwidth.

• Automatic node handling, when nodes join or leave the
cluster.

Galera Cluster

© 2018 SWITCH | 9

• MariaDB Database Proxy
• We use it to split reads from writes.
• Automatic switchover when nodes fail/rejoin.
• All writes go to the master, all reads to the replicas.
• We use version 1.4.
• New version, 2.1, requires purchasing a license for 3 or

more server instances in production
• ProxySQL might be our future direction.

MaxScale

© 2018 SWITCH | 10

• MaxScale top queries
• Mysql performance_schema
• Explain
• Analyze
• Profiling

Tools to diagnose DB problems

© 2018 SWITCH | 11

• These are performance tables.
• They contain a lot of information.
• You should truncate the tables as needed to reset the counters.
• Disabled by default in MariaDB 10.0.12, enable by putting the

following into your my.cnf file:
• performance_schema=on

• These views may show you problems that don't show up elsewhere.
• events_statements_summary_by_digest is very interesting.
• A good writeup is at: http://www.markleith.co.uk/2012/07/04/mysql-

performance-schema-statement-digests/

MySQL performance_schema

© 2018 SWITCH | 12

SELECT IF(LENGTH(DIGEST_TEXT) > 64, CONCAT(LEFT(DIGEST_TEXT, 30), ' ... ',
RIGHT(DIGEST_TEXT, 30)), DIGEST_TEXT) AS query,

IF(SUM_NO_GOOD_INDEX_USED > 0 OR SUM_NO_INDEX_USED > 0, '*', '') AS
full_scan,

COUNT_STAR AS exec_count,
SUM_ERRORS AS err_count,
SUM_WARNINGS AS warn_count,
SEC_TO_TIME(SUM_TIMER_WAIT/1000000000000) AS exec_time_total,
SEC_TO_TIME(MAX_TIMER_WAIT/1000000000000) AS exec_time_max,
(AVG_TIMER_WAIT/1000000000) AS exec_time_avg_ms,
SUM_ROWS_SENT AS rows_sent,
ROUND(SUM_ROWS_SENT / COUNT_STAR) AS rows_sent_avg,
SUM_ROWS_EXAMINED AS rows_scanned,
DIGEST AS digest

FROM performance_schema.events_statements_summary_by_digest
ORDER BY SUM_TIMER_WAIT DESC LIMIT 10 \G
(Source: http://www.markleith.co.uk/2012/07/04/mysql-performance-schema-statement-
digests/)

MySQL performance_schema Top10
Queries

© 2018 SWITCH | 13

• MaxScale has a query summary as well
• You will then end up with a top 10 summary filter for the

logged session.
• Documentation for the filter is at:

• https://mariadb.com/kb/en/mariadb-enterprise/mariadb-maxscale-
14/maxscale-top-filter-overview/

MaxScale top queries

© 2018 SWITCH | 14

To enable add the following to your /etc/maxscale.cnf file on
your client systems:

uncomment the following to lines to activate the top10Logger
router_options=running
filters=top10Logger

MaxScale top queries

© 2018 SWITCH | 15

• This is what we did
• The results were impressive

MaxScale top queries

© 2018 SWITCH | 16

[root@drive-mgmt1 sessions]# cat top10.1181
Top 10 longest running queries in session.
==
Time (sec) | Query
-----------+---

0.078 | SELECT `oc_share`.`id`, `item_type`, `item_source`, `item_target`,`oc_share`.`parent`, `share_type`, `share_with`,
`uid_owner`,`file_source`, `path`, `file_target`, `oc_share`.`permissions`,`stime`, `expiration`, `token`, `storage`,
`mail_send`,`oc_storages`.`id` AS `storage_id`, `oc_filecache`.`parent` as `file_parent` FROM `oc_share` INNER JOIN `oc_filecache` ON
`file_source` = `oc_filecache`.`fileid` AND `file_target` IS NOT NULL INNER JOIN `oc_storages` ON `numeric_id` = `oc_filecache`.`storage`
AND ((`share_type` in ('0', '2') AND `share_with` = 'username@switch.ch')) AND `uid_owner` != 'username@switch.ch' ORDER BY
`oc_share`.`id` ASC

0.040 | INSERT INTO `oc_preferences` (`userid`, `appid`, `configkey`, `configvalue`) VALUES('username@switch.ch', 'user_ldap',
'homePath', '')

0.018 | COMMIT
0.013 | START TRANSACTION
0.012 | SELECT `fileid`, `storage`, `path`, `parent`, `name`, `mimetype`, `mimepart`, `size`, `mtime`,

`storage_mtime`, `encrypted`, `etag`, `permissions`, `checksum`
FROM `oc_filecache` WHERE `storage` = '4231' AND `path_hash` =

[...]
-----------+---
Session started Wed Aug 30 06:14:49 2017
Connection from localhost_from_socket
Username owncloud

Total of 14349 statements executed.
Total statement execution time 13.645 seconds
Average statement execution time 0.001 seconds
Total connection time 79.461 seconds

MaxScale identifying top queries

© 2018 SWITCH | 17

THIS was our problem query!

SELECT `oc_share`.`id`, `item_type`, `item_source`, `item_target`,`oc_share`.`parent`, `share_type`, `share_with`,
`uid_owner`,`file_source`, `path`, `file_target`, `oc_share`.`permissions`,`stime`, `expiration`, `token`,
`storage`, `mail_send`,`oc_storages`.`id` AS `storage_id`, `oc_filecache`.`parent` as `file_parent`

FROM `oc_share`
INNER JOIN `oc_filecache`
ON `file_source` = `oc_filecache`.`fileid`
AND `file_target` IS NOT NULL
INNER JOIN `oc_storages`
ON `numeric_id` = `oc_filecache`.`storage`
AND ((`share_type` in ('0', '2')
AND `share_with` = 'username@switch.ch'))

AND `uid_owner` != 'username@switch.ch'
ORDER BY `oc_share`.`id` ASC

But why is it our problem query? What is wrong with it? How
can we fix it?

MaxScale identifying top queries

© 2018 SWITCH | 18

• The MariaDB EXPLAIN statement will give you an
estimate on how your SQL statements will be run against
the DB.

• EXPLAIN EXTENDED will give you a estimate as to what
percentage of the table rows will be filtered by the
condition.

• It will show you the steps used to get your result set, like:
• How many rows are returned at each step

• If sorts are being performed

• If a filter is being used

• If an index is being used

• There is also EXPLAIN FORMAT=JSON that gives JSON
format back

Explain

© 2018 SWITCH | 19

There is also an additional way to run Explain, formerly this
was EXPLAIN ANALIZE, now it is just ANALIZE
• Can be run on any query you can run EXPLAIN on.
• Runs the optimizer.
• Runs the actual query.
• Returns results based on the actual query.
• Obviously slower than just running EXPLAIN, but gives

more correct results on what is happening with the data.

Analyze

© 2018 SWITCH | 20

To invoke an EXPLAIN plan just put EXPLAIN in front of the
query, so for our problem query:

EXPLAIN SELECT `oc_share`.`id`, `item_type`, `item_source`, `item_target`,`oc_share`.`parent`, `share_type`,
`share_with`,
`uid_owner`,`file_source`, `path`, `file_target`, `oc_share`.`permissions`,`stime`, `expiration`, `token`,
`storage`, `mail_send`,`oc_storages`.`id` AS `storage_id`, `oc_filecache`.`parent` as `file_parent`

FROM `oc_share`
INNER JOIN `oc_filecache`
ON `file_source` = `oc_filecache`.`fileid`
AND `file_target` IS NOT NULL
INNER JOIN `oc_storages`
ON `numeric_id` = `oc_filecache`.`storage`
AND ((`share_type` in ('0', '2')
AND `share_with` = 'username@switch.ch'))

AND `uid_owner` != 'username@switch.ch'
ORDER BY `oc_share`.`id` ASC

Explain

© 2018 SWITCH | 21

And the output is:

Explain

id select_type table type possible_keys key key_len ref rows Extra

1 SIMPLE oc_share index file_source_index PRIMAR
Y

4 NULL 70305 Using
where

1 SIMPLE oc_filecache eq_ref PRIMARY,
fs_storage_hash,
fs_storage_mimetype,
fs_storage_mimepart,
fs_storage_size

PRIMAR
Y

4 owncloud.oc_shar
e.file_source

1

1 SIMPLE oc_storages eq_ref PRIMARY PRIMAR
Y

4 owncloud.oc_filec
ache.storage

1

© 2018 SWITCH | 22

Our Problem is here:

What is the problem with this?

• We are using the PRIMARY KEY index to retrieve 70305
rows, and this is the wrong index.

• And then we are filtering on the output of this into a JOIN.

• Note that the 'AND' operators in our join invokes an implicit 'WHERE'

clause.

• This is also our top query that we see from MaxScale

Explain

id select_type table type possible_keys key key_len ref rows Extra

1 SIMPLE oc_share index file_source_index PRIMAR
Y

4 NULL 70305 Using
where

© 2018 SWITCH | 23

What is an index in an relational database?

• An index is basically a key-value store using one or more

columns as a key to retrieve rows in a database table.

• PRIMARY KEY and UNIQUE constraints are enforced by

indexes.

• Be aware that MySQL/MariaDB do not handle NULLs as unique

values in a UNIQUE constraint so unless You have UNIQUE and and

NOT NULL constraints on the column you can still wind up with

duplicate rows.

• A missing index can really make your database slow, but

unused/seldom used indexes will also consume resources.

• Adding an index will lock your table during index creation.

Indexes

© 2018 SWITCH | 24

• Without going into too much detail, you can join tables to
get results based on a combination of tables. Usually you
join based on common data in a column. Our query is
doing this to find out who is sharing data.

• When joining tables, you want to be sure that you have an
index on the column you are joining, or the join will be
slow.

• You may also want indexes on the filters.

• An improper join may result in a cartesian product,
basically returning a set of all possible combinations of
data in both tables. Your filters might process this to be a
correct result, but it will use a lot of resources.

Table Joins

© 2018 SWITCH | 25

Back to our problem query:

SELECT `oc_share`.`id`, `item_type`, `item_source`, `item_target`,`oc_share`.`parent`, `share_type`, `share_with`,

`uid_owner`,`file_source`, `path`, `file_target`, `oc_share`.`permissions`,`stime`, `expiration`, `token`,

`storage`, `mail_send`,`oc_storages`.`id` AS `storage_id`, `oc_filecache`.`parent` as `file_parent`

FROM `oc_share`

INNER JOIN `oc_filecache`

ON `file_source` = `oc_filecache`.`fileid`

AND `file_target` IS NOT NULL

INNER JOIN `oc_storages`

ON `numeric_id` = `oc_filecache`.`storage`

AND ((`share_type` in ('0', '2')

AND `share_with` = 'username@switch.ch'))

AND `uid_owner` != 'username@switch.ch'

ORDER BY `oc_share`.`id` ASC

We know that the problem table is oc_share, and we're
filtering using a value for the column share_with, there is no
index on share_with.

Finding the missing index

© 2018 SWITCH | 26

The fix to this problem is to add the missing index on the
table oc_share using the column share_with:

CREATE INDEX share_with_index ON oc_share (share_with);

The results from this were amazing...

The fix

© 2018 SWITCH | 27

Running explain on the query after the index is added:

This time, our first part of query returns exactly ONE row

instead of 70305

Explain after the index is added

id select_type table type possible_keys key key_len ref rows Extr
a

1 SIMPLE oc_share ref file_source_index,

share_with_index

share_with_index 768 NULL 1 const

1 SIMPLE oc_filecache eq_ref PRIMARY,

fs_storage_hash,

fs_storage_mimetype,

fs_storage_mimepart,

fs_storage_size

PRIMARY 4 owncloud.oc

_share.file_s

ource

1

1 SIMPLE oc_storages eq_ref PRIMARY PRIMARY 4 owncloud.oc

_filecache.st

orage

1

© 2018 SWITCH | 28

The results of implementing the fix

A Grafana chart of our average query response times after
the change

© 2018 SWITCH | 29

The results of implementing the fix
And our Grafana chart of our CPU usage afterwards

© 2018 SWITCH | 30

• Database read node response time average went from 3
ms to about 0.15 ms.

• Database peak CPU usage went from 1200% to 200%.
• Our database infrastructure became more stable.
• Our owncloud cron jobs now run a bit faster.
• We have reduced our number of database servers to

three. We could reduce that further, but keep three for
failover.

• These three still use much fewer resources than they did
before, with a database read node response time of about
0.2 ms.

The aftermath

© 2018 SWITCH | 31

PostgreSQL provides the pg_stat_statements extension for
viewing SQL query summary information.

Oracle has the Oracle Diagnostics Pack and Oracle Tuning
Pack as part of their Oracle Enterprise Manager tool.

Both PostgreSQL and Oracle also have EXPLAIN
capabilities.

Other database products?

© 2018 SWITCH | 32

• Query profiling in MariaDB can also be useful to see how
your queries are running

• Set in a SQL session

• ‘SET profiling = 1;

• You can then run your query and then run the SQL
command SHOW PROFILES to see how long your
queries take.

• More information at:

https://mariadb.com/kb/en/library/show-profile

Profiling

© 2018 SWITCH | 33

MariaDB [owncloud]>SET profiling = 1;
Query OK, 0 rows affected (0.00 sec)

MariaDB [owncloud]>select count(*) from oc_share_external where
owner='gregory.vernon@switch.ch';
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.00 sec)

MariaDB [owncloud]>select count(*) from
oc_share_external;

+----------+
| count(*) |
+----------+
| 730 |
+----------+
1 row in set (0.00 sec)

MariaDB [owncloud]>SHOW PROFILES;
+----------+------------+---+
| Query_ID | Duration | Query |
+----------+------------+---+
| 1 | 0.00408854 | select count(*) from oc_share_external where owner='gregory.vernon@switch.ch' |
| 2 | 0.00382607 | select count(*) from oc_share_external |
+----------+------------+---+
2 rows in set (0.00 sec)

Profiling Example

© 2018 SWITCH | 34

• Database issues can be hard to troubleshoot, if you don't
know the tools.

• MySQL's optimizer won't always run your query the way
you think it should. Sometimes you need to think like the
optimizer.

• Your data is your data, so you may see different problems.
• Your problem query might not show up in the slow query

log, it might just be a little inefficient.
• Missing indexes can cause you big problems, adding the

right indexes can make your database much faster.
• It’s useful to see how long your query takes, and profiling

can help you with this.

Summary

© 2018 SWITCH | 35

Email: greg.vernon@switch.ch

Questions

© 2018 SWITCH | 36

Just for fun: What are the spikes here?

© 2018 SWITCH | 37

www.switch.ch/30years

SWITCH – an integral part of the Swiss
academic community since 1987.

