

Distributed, cross-datacenter SQL Database and Storage at ownCloud

Insight into integration with CockroachDB and IBM Spectrum Scale

Piotr Mrówczyński

Student at Royal Institute of Technology and Software Developer at ownCloud piotr@owncloud.com

Thomas Müller, Jörn Friedrich Dreyer

Research on benefits of integration with:

- 1. Objectstore for multi-region deployments
 - 2. Distributed SQL Database

Globally Distributed Organisation requiring relational SQL database and scaling storage

Data Management Issues Single datacenter

Let's bring servers and data storage in one location

Slow, bad user experience!

- Data needs to be available
- O Data needs to be protected
- Data needs to be close to users
- Data management needs to be cost efficient
- O Data needs to scale

Data Management Issues

Multi-region SQL/Storage or Application Sharding

• • • •

•••

Let's divide the data (shard)

Introduces very complex application logic and maintenance, problems with **CAP Theorem, downtimes and more!**

Google for AdWords dropped sharded **MySQL** in 2012...

- Data needs to be available
- Data needs to be protected
- Data needs to be close to users
- Data management needs to be cost efficient
- Data needs to scale

Data Management Issues

Multi-region SQL/Storage Replication

Let's replicate the data (make copies everywhere)

Needs to make application data location aware - it is OK

Costly, insert/mod/delete is slow!

- O Data needs to be available
- On Data needs to be protected
- Data needs to be close to users
- Data management needs to be cost efficient
- O Data needs to scale

Data Management Issues

Multi-region NoSQL workaround

Let's use benefits of NoSQL

Problem with data integrity, problems with ACID

Difficult for applications requiring relations - e.g. Google's AdWords, or ownCloud

- O Data needs to be available
- On Data needs to be protected
- Data needs to be close to users
- Data management needs to be cost efficient
- O Data needs to scale

"How can I scale my ownCloud's storage system for my global business?"

IBM Spectrum Scale example

- O Data needs to be available
- On Data needs to be protected
- Data needs to be close to users
- Data management needs to be cost efficient
- Data needs to scale

Multi-site replication and flexible restore capacity. Location aware file-tree in ownCloud

High-performance deduplication, compression and incremental capabilities. Storage options including flash, disk, tape, object stores.

Expands to manage billions of objects

Requires new hierarchical file-tree representation in ownCloud database.

File-tree aware of location of files

Better integration for object storages in ownCloud

Watch Thomas talk about object storage at owncloud

Scalable, multi-site, costefficient object store e.g. IBM Spectrum Scale Requires new hierarchical file-tree representation in ownCloud database.

File-tree aware of location of files

"How can I scale my ownCloud's relational database for my global business? Without sharding or NoSQL workarounds?"

It all started with AdWords at Google...

[1] F1: A Distributed SQL Database That Scales, Jeff Shute et al., 2013, VLDB'13 [2] Spanner: Becoming a SQL System, David F. Bacon et al., 2017, SIGMOD'17

... where Google's F1 and Spanner were developed in 2013-2017. Open source CockroachDB released in 2017

... Distributed SQL Queries!

Data integrity

SQL layer converts SQL statements into a plan of KeyValue operations, which pass to Transaction Layer. Full support for ACID transaction semantics in the Transaction Layer.

SQL API

PostgreSQL client drivers

Data integrity

SQL layer converts SQL statements into a plan of KeyValue operations, which pass to Transaction Layer. Full support for ACID transaction semantics in the Transaction Layer.

Availability and Protection

Always-on services with multi-active availability. Groups of symmetric nodes intelligently agree on write success, once consensus is reached, writes are instantly readable from any node in the cluster.

SQL API

PostgreSQL client drivers

Data integrity

SQL layer converts SQL statements into a plan of KeyValue operations, which pass to Transaction Layer. Full support for ACID transaction semantics in the Transaction Layer.

Availability and Protection

Always-on services with multi-active availability. Groups of symmetric nodes intelligently agree on write success, once consensus is reached, writes are instantly readable from any node in the cluster.

SQL API

PostgreSQL client drivers

Flexible operations

Reduces operational overhead with selforganizing nodes that support built-in scaling, failover, replication, and repair. Control data placement with zone configurations.

Self-organising nodes

Self-organising nodes

Data integrity

SQL layer converts SQL statements into a plan of KeyValue operations, which pass to Transaction Layer. Full support for ACID transaction semantics in the Transaction Layer.

Availability and Protection

Always-on services with multi-active availability. Groups of symmetric nodes intelligently agree on write success, once consensus is reached, writes are instantly readable from any node in the cluster.

Scalability

Horizontal scalability with symmetric nodes that run on commodity hardware. Orchestrated with Kubernetes.

SQL API

PostgreSQL client drivers

Flexible operations

Reduces operational overhead with selforganizing nodes that support built-in scaling, failover, replication, and repair. Control data placement with zone configurations.

Data integrity

SQL layer converts SQL statements into a plan of KeyValue operations, which pass to Transaction Layer. Full support for ACID transaction semantics in the Transaction Layer.

Availability and Protection

Always-on services with multi-active availability. Groups of symmetric nodes intelligently agree on write success, once consensus is reached, writes are instantly readable from any node in the cluster.

Scalability

Horizontal scalability with symmetric nodes that run on commodity hardware. Orchestrated with Kubernetes.

SQL API

PostgreSQL client drivers

Flexible operations

Reduces operational overhead with selforganizing nodes that support built-in scaling, failover, replication, and repair. Control data placement with zone configurations.

ownCloud

Requires changes in ownCloud core queries, might not work with all SQL constructs that apps use.
Research in progress

- You have global business which requires data to be available, protected, low-latency, cost-efficient and scale?
- You don't want application and maintenance complexity, and to sacrifice availability and data protection using sharded architecture?
- Your first-class citizen is data integrity and SQL/relational data?

24

- You have global business which requires data to be available, protected, low-latency, cost-efficient and scale?
- You don't want application and maintenance complexity, and to sacrifice availability and data protection using sharded architecture?
- Your first-class citizen is data integrity and SQL/relational data?

Thus **object storage** and **distributed SQL** is something you might be looking at for your **ownCloud service**.

Thank you!

Any questions?

25