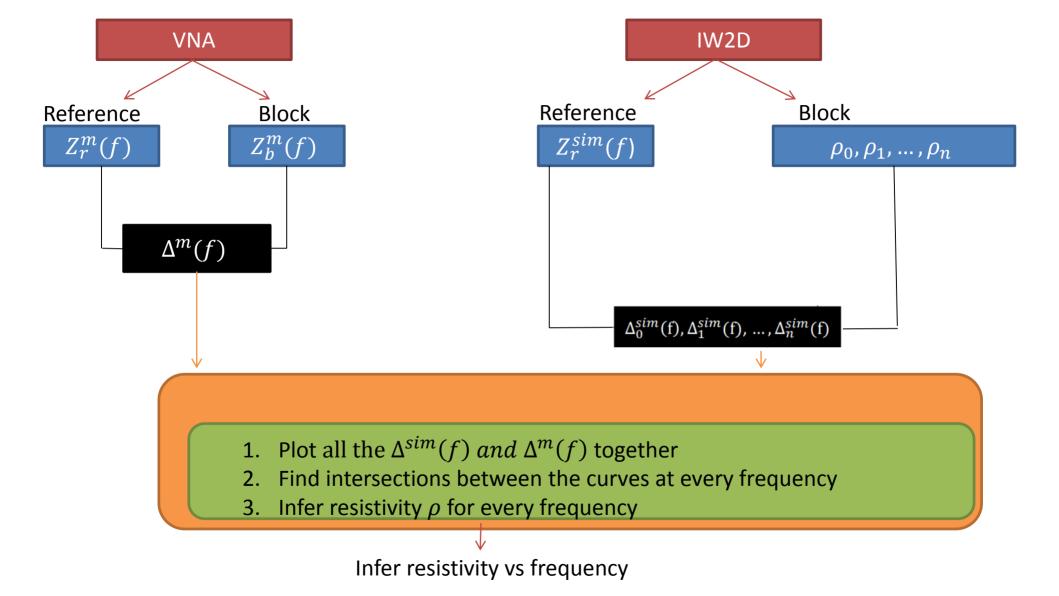

Follow-up of bench measurement of TCSPM block

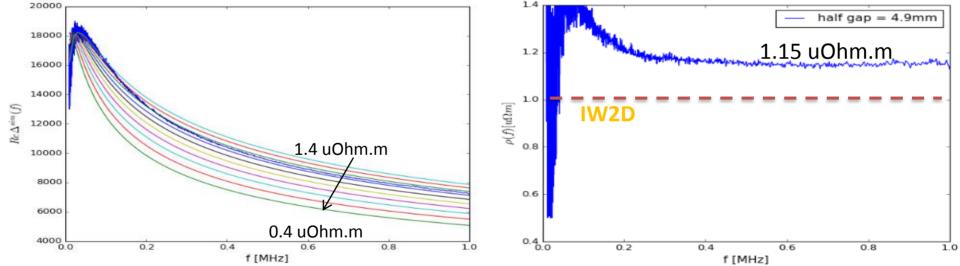

N.Biancacci, G.Mazzacano

HSC meeting 4-09-2017

Resistivity measurements on collimator blocks routinely performed in the lab.

Date	Bulk	Coating	Treatment	Coating resistivity	Expected resistivity
30 Aug 2017	С	-	-	(0.87to1.3)μΩm	1 $\mu\Omega m$
01 Jun 2016	MoGr	Мо	-	(30 to 150) <i>n</i> Ω <i>m</i>	53.5 nΩm
01 Jun 2016	MoGr	-	-	(1.5 \pm 0.2) $\mu\Omega m$	1 $\mu\Omega m$
18 May 2016	CFC	Cu stripe	-	(43 ±10) <i>n</i> Ω <i>m</i>	30 nΩm
18 May 2016	CFC	-	-	(6.9 \pm 0.5) $\mu\Omega m$	$5\mu\Omega m$
18 May 2016	CFC	Mo stripe	-	(140 \pm 40) $n\Omega m$	53.5 n Ω m
18 May 2016	С	-	heat treatment	$(23 \pm 3) \mu \Omega m$	15 $\mu\Omega m$
18 May 2016	С	Мо	heat treatment	$(125 \pm 12) n\Omega m$	53.5 nΩm
18 May 2016	С	-	-	$(27.5 \pm 0.3) \mu\Omega m$	15 $\mu\Omega m$
18 May 2016	С	TiN	-	$(147 \pm 49) n\Omega m$	400 n Ωm
18 May 2016	CFC	-	-	$(7.6\pm0.8)\mu\Omega m$	$5\mu\Omega m$
18 May 2016	CFC	TiN	-	$(182 \pm 26) n\Omega m$	400 n Ωm
09 Feb 2016	CFC	Мо	after heat treatment	$(75 \pm 6) n\Omega m$	53.5 nΩm
15 Dec 2015	С	Мо	-	$(54 \pm 5) n\Omega m$	53.5 nΩm
08 Dec 2015	CFC	-	-	$(6.8\pm0.8)\mu\Omega m$	$5\mu\Omega m$
08 Dec 2015	CFC	Мо	-	$(68.0 \pm 8.4) n\Omega m$	53.5 $n\Omega m$
12 Nov 2015	С	-	-	$(16.7 \pm 3.5) \mu\Omega m$	15 $μ\Omega m$

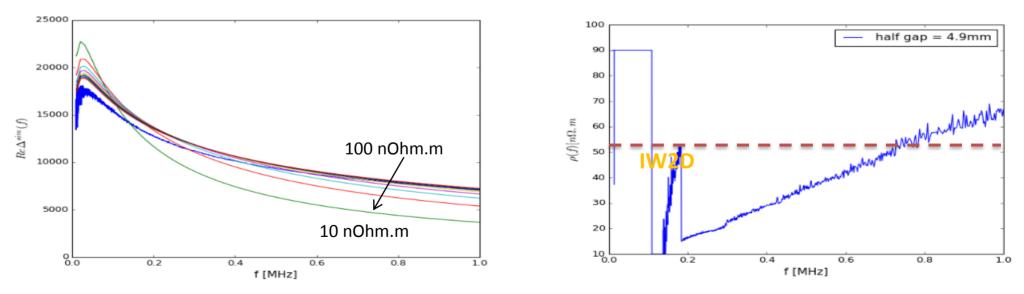
Resistivity measurements on collimator blocks routinely performed in the lab.


Measurement of Mo coating not fully understood

- Resistivity around the expected range (53nOhm.m) but unexplained frequency dependent behavior of resistivity.
- In the past the setup was very rough and prone to systematic errors.
- Setup improvement performed: use of plastic spacer to fix block and loop in reproducible way.

Measurement on MoGr bulk

Position: **behind the Mo stripe** $N = 7 \rightarrow self coil resonance ~ 3 MHz$ $\Delta = 6.2 mm (*)$ Half gap =4.9 mm Coil core width = 6 mm Wire winding diameter = 6 mm Spacer width = 1.3 mm


(*) We infer Δ in order to match the curve peak to the simulated curve peak as it does not seem to be dependent on conductivity -> calibration.

Measurement on Mo

Position: Mo stripe

N = 7 -> self coil resonance ~ 3 MHz Δ = 6.2 mm Half gap =4.9 mm Coil core width = 6 mm Wire winding diameter = 6 mm Spacer width = 1.3 mm Bulk resistivity assumed: 1.15 uOhm.m

- Non flat behavior.
- Inferred resistivity, only above 200 kHz, tends to vary with frequency.

Can we deduce a flat resistivity curve for a simpler material?

Resistivity measurements on collimator blocks routinely performed in the lab.

Measurement of Mo coating not fully understood

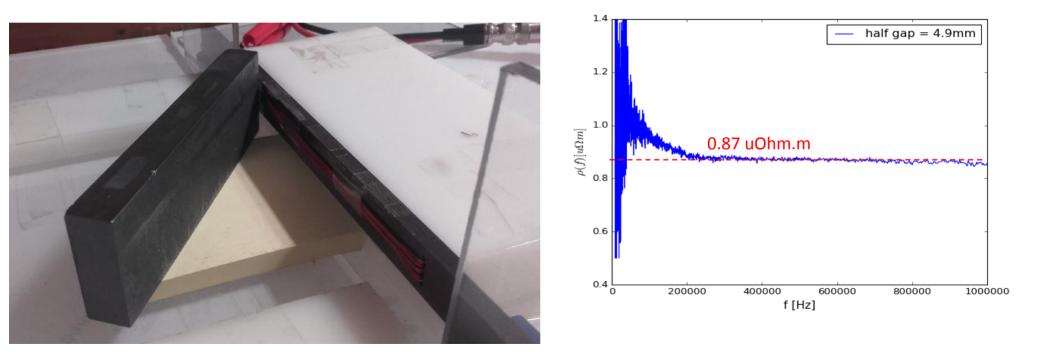
- Resistivity around the expected range (53nOhm.m) but unexplained frequency dependent behavior of resistivity.
- In the past the setup was very rough and prone to systematic errors.
- Setup improvement performed: use of plastic spacer to fix block and loop in reproducible way.

Possible paths for explanation:

- Do we have still some issue related with the measurement setup?
- Is it due to the small stripe width?
- Is it a feature of Mo?

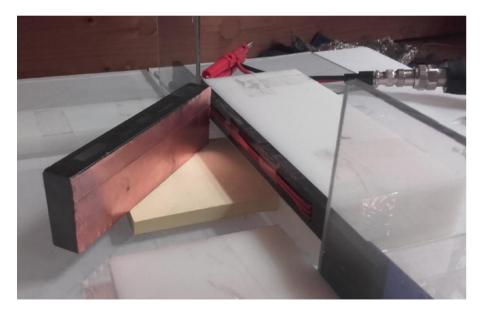
Resistivity measurements on collimator blocks routinely performed in the lab.

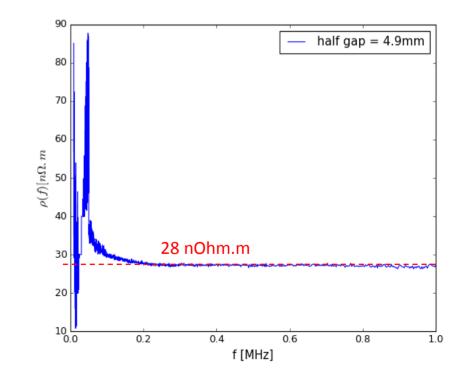
Measurement of Mo coating not fully understood


- Resistivity around the expected range (53nOhm.m) but unexplained frequency dependent behavior of resistivity.
- In the past the setup was very rough and prone to systematic errors.
- Setup improvement performed: use of plastic spacer to fix block and loop in reproducible way.

Possible paths for explanation:

- Do we have still some issue related with the measurement setup?
- Is it due to the small stripe width?
- Is it a feature of Mo?


Measurement on MoGr


- Re-measured the uncoated part of the TCSPM block
- Measurement taken as reference before a Cu-tape "coating" is applied

Measurement on Cu "coating"

- Re-measured the uncoated part of the TCSPM block
- Measurement taken as reference before a Cu-tape "coating" is applied
- Good flatness of resistivity achieved at ~28nOhm.m: setup reliability proved!

Conclusions and Next steps

Benchmark measurement proves:

- Reliability of the setup
- Capability of inferring resistivity from IW2D simulations for ~50um Cu layer
- Flat behavior of resistivity as expected
- Potential to deduce Mo on MoGr/CFC, Cu on MoGr/CFC in accurate way

Next steps:

- Coating the full face of the block with 5um Mo to clear out the effect of stripe width.
- Performing similar measurements on CFC and coated CFC.