

5 July 2018

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and search for exotic particles at the NA62 experiment

Francesco Gonnella University of Birmingham on behalf of the NA62 collaboration

ICFNP2018 – Kolymvari, Crete, Greece

The NA62 experiment

PER AD DOMALTA

□ 2014-2018 NA62:K⁺→π⁺vv

- 2014 Pilot run
- 2015 Commissioning run
- Full detector installation completed in September 2016
- First πvv dataset in 2016 (This talk)
- Continuous data-taking until the end of 2018

Ultra-rare kaon decays

$K \to \pi vv$: theoretically pure and experimentally unexplored

- Hadronic matrix element obtained from BR(K_{e3}) via isospin rotation
- Hard GIM suppression
 - Loop functions favor top quark contribution

Very sensitive probes for new physics:

- They are highly suppressed
- They are predicted with very high accuracy

Theoretical error budget [1]

Decay	Branching Ratio (x 10 ¹¹)			
Decay	Theory (SM)		Experiment	
$K^+ o \pi^+ u \overline{ u}$	8.4 ±1.0	[1]	17.3 +11.5 -10.5	[2]
$K_L o \pi^0 u \overline{ u}$	3.4 ±0.6	[1]	<2600 (90%CL)	[3]

- Buras, A.J., Buttazzo, D., Girrbach-Noe, J. et al. J. High Energ. Phys. 2015: 33 (2015)
- [2] A. V. Artamonov et al. (E949 Collaboration @ BNL) Phys. Rev. D 79, 092004 (2009)
- [3] J. K. Ahn et al. (E391a Collaboration @ KEK) Phys. Rev. D 81, 072004 (2010)

3

${ m K} ightarrow \pi u ar{ u}$ beyond the Standard Model

- **Custodial Randall-Sundrum** [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM analyses [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27], [Isidori et al. JHEP 0608 (2006) 064]
- Simplified Z, Z' models [Buras, Buttazzo, Knegjens, JHEP11(2015)166]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- LFU violation models [Isidori et al., Eur. Phys. J. C (2017) 77: 618]
- Constraints from existing measurements (correlations model dependent)
 - Kaon mixing, CKM elements, K, B rare meson decays, NP limits from direct searches

Analysis principles: in-flight decay

Large missing momentum

Cuts on the missing mass

$$m_{miss}^2 = (P_K - P_\pi)^2$$

defines 2 regions

- Kinematical rejection is $\sim 10^4$
- Further rejection relies on PID and vetoes

5

$K \rightarrow \pi v \bar{v}$: signal and background

Signal: BR_{SM} ~ 8 × 10⁻¹¹

Signature:

- □ K track in
- $\square \pi \text{ track out}$
- No other particles in final state
- **D** $M_{miss}^2 = (p_k p_\pi)^2$

Keystones of the analysis:

- **Timing between sub-detectors** $\sim O(100 \text{ ps})$
- Kinematic suppression ~ $O(10^4)$
- Muon suppression $> 10^7$
- π^0 suppression (from $K^+ \rightarrow \pi^+ \pi^0$) > 10⁷

Signal and background control regions are kept blind throughout the analysis

Decay backgrounds

Mode	BR	
$\mu^{\!+}\!\nu(\gamma)$	63.5%	
$\pi^+\pi^0(\gamma)$	20.7%	
$\pi^+\pi^+\pi^-$	5.6%	
$\pi^0 e^+ v$	5.1%	
$\pi^0\mu^+ u$	3.3%	
$\pi^+\pi^-e^+\nu$	4.1 × 10 ⁻⁵	
$\pi^0\pi^0e^+\nu$	2.2 × 10 ⁻⁵	
$\pi^+\pi^-\mu^+ u$	1.4 × 10 ⁻⁵	
$e^+\nu(\gamma)$	1.5 × 10 ⁻⁵	
Other backgrounds		
Beam-gas interactions		
Upstream interactions		

Beam Parameters	
400 GeV/c Protons on Target/s	10 ¹² per spill
75 GeV/c Hadrons/s	750 x 10 ⁶
Beam composition	р 70% п 24% К 6%
K ⁺ rate (particle/s)	45 x 10 ⁶
K ⁺ decays/s	4.5 x 10 ⁶

- NA62 uses SPS 400 GeV/c proton beam
- Proton beam interacts with a Beryllium target
- Among the interaction products, 75 GeV/c K⁺ are selected
 - 750 MHz particle rate at GTK3

60 m long fiducial region with ~ 5 MHz K+ decay in Vacuum ~10⁻⁶ mbar

NA62 experimental principles

- High resolution missing mass reconstruction
- Minimize multiple scattering
- **D** Hermetic veto for π^0 rejection
- Upstream K⁺ identification in hadron beam
- **Downstream** $\pi/\mu/e$ separation
- \square µ veto for Kµ2 rejection
- Sub ns time resolution

Incoming kaon ID: KTAG

The KTAG is an upgraded CERN CEDAR West

- Blind to particles other than kaon thanks to a diaphragm
- Extended external optics to reduce rate per single channel
 - High kaon rate (~45MHz)
- New photo-detectors + readout
- Very good timing ~100 ps to match with downstream decay

9

Incoming particle momentum: GTK

13.2 m

GTK1

- 3 stations of Silicon pixel detectors
- Operating in the evacuated beam pipe inside an achromat
- Overall Rate 750 MHz, in the beam centre 140 kHz/pixel

- 300 x 300 μm² or 300 x 400 μm²
- 18'000 pixels/ station, 54'000 pixels in total
- **Time** : $\sigma \approx 200$ ps per station
- Direction: $\sigma_{dx,dy} \approx 0.016$ mrad, Momentum: $\Delta P/P < 0.4\%$
- CHANTI is placed just after GTK3 to veto inelastic scattering

GTK2

9.6 m

GTK3

Final-state momentum: the straw spectrometer

Final state particle ID: the RICH

Photon vetos: LAVs and SAVs

LAV: 8.5 – 50 mrad

- 12 stations along the vacuum tank, each station:
 - 4 5 layers
 - 160 256 lead glass blocks
- □ LAV12 is in Level-0 trigger
- IRC and SAC cover very small angle <1 mrad</p>

Liquid Krypton Calorimeter

NA48 LKr calorimeter performance:

- □ Time resolution: ~500 ps
- Spatial resolution: 1 mm

Readout

- 14 bit FADC, 40 Ms, 32 ch / module
- 432 modules, 28 VME crates
- Photon veto coverage 1÷8.5 mrad
- LKr is in Level-0 trigger

Chod and muon-veto system

NA48 "old" CHOD

- Plastic scintillator hodoscope
- ~1ns time resolution
- Used in Level-0 trigger as control

CHOD

- Plastic tile scintillator
- ~200 ps time resolution
- Used in Lelvel-0 trigger

MUV0 and HASC

D Hermeticity for π and μ

MUV1/MUV2

- Hadronic calorimeters
- Readout with LKr electronics
- Can be used as hadron trigger

- Placed after an iron wall
- Requires very fast detector: time resolution $\sigma_T \le 0.5$ ns
- Used in Level-0 trigger: reduction factor >10
- Rate: 10 MHz muon

Trigger and data acquisition

- Acquisition boards store data in local buffers
- A subset of detectors continuously send primitives to LOTP
 - L0 trigger is generated with a maximum latency of 1 ms
- All detectors except Calorimeters and GTK respond to L0
 - They send data to PC-Farm
- GTK and Calorimeters send data after L1 request
 - L1 Algorithms are run, if positive verdict data is stored

Trigger	Rate
Primitives	10 MHz
L0 (FPGA)	1MHz
L1 (software)	100KHz

Analysis Steps (2016 data sample)

- Kaon decay selection
- Determination of the single-event sensitivity
- Estimation and validation of the expected background
- Un-blinding of the signal regions and results

Kaon decay selection

K⁺ decay events in the fiducial decay region

- Selected K⁺ decays, before:
 - π⁺ identification
 - Photon/multi-track rejection

- Single track decay topology
- \square π^+ identification
- Photon rejection
- Multi-track rejection
- Performance
 - $\epsilon_{\mu^+} = 1 \cdot 10^{-8}$ (64% π^+ efficiency)
 - $\epsilon_{\pi^0} = 3 \cdot 10^{-8}$
 - $\sigma(m_{miss}^2) = 1 \cdot 10^{-3} \text{GeV/c}^4$
 - $\Box \ \sigma_T \sim O(100 \ ps)$

Signal region definition

- Three ways to compute the m²_{miss}
 - m²_{miss}(STRAW, GTK)
 - m²_{miss} (RICH, GTK)
 - m²_{miss} (STRAW, Beam)
- Protects against mis-reconstruction
- Kinematic suppression
 - Measured using data
 - **D** Samples of $K_{\pi\pi}$ and $K_{\mu\nu}$
 - Selected using calorimeters
- Fraction of events in signal regions
 - $K^+ \to \pi^+ \pi^0 \sim 1 \cdot 10^{-3}$
 - $\Box \quad K^+ \to \mu^+ \nu_\mu \sim 3 \cdot 10^{-4}$

Single Event Sensitivity (SES)

- Normalization acceptance: 10 %
- **D** Control triggered $K^+ \rightarrow \pi^+ \pi^0$ used for normalization
- Number of kaon decays in the fiducial volume : $N_{K} = 1.21(2) \times 10^{11}$

$$SES = (3.15 \pm 0.01_{stat} \pm 0.24_{syst}) \cdot 10^{-10}$$

$K^+ \rightarrow \pi^+ \pi^0(\gamma)$ and $K^+ \rightarrow \mu^+ \nu_\mu(\gamma)$ background

Data-driven background estimation

Validation for k2π: 1 event observed (1.5 expected)

 $N_{\pi\pi(\gamma)}^{bg} = 0.064 \pm 0.007_{stat} \pm 0.006_{syst}$

Validation for kµ2: 2 event observed (1.1 expected)

 $N_{\mu\nu(\gamma)}^{bg} = 0.020 \pm 0.003_{stat} \pm 0.003_{syst}$

$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$ background (K_{e4})

- Background estimated with 400 million MC generated $K^+ \rightarrow \pi^+ \pi^- e^+ v_e \text{ decays}$
- Good agreement across the 5 validation samples

$$N_{K_{e4}}^{bg} = 0.018_{-0.017}^{+0.024}|_{stat} \pm 0.009_{syst}$$

Upstream background

- Accidental particles from the beam line
- Pions from interactions with GTK material
- Against this background
 - K-π matching
 - Geometrical cuts
 - Z vertex
 - CHANTI
- Data driven estimation:

 $N_{upstream}^{bg} = 0.50_{-0.030}^{+0.090} \Big|_{stat}$

Process	Expected events in Region1 + Region2
$K^+ ightarrow \pi^+ u \overline{ u}$ (SM)	$0.267 \pm 0.001_{stat} \pm 0.029_{syst} \pm 0.032_{ext}$
$K^+ \rightarrow \pi^+ \pi^0(\gamma)$ IB	$0.064 \pm 0.007_{stat} \pm 0.006_{syst}$
$K^+ o \mu^+ \nu_\mu(\gamma) B $	$0.020 \pm 0.003_{stat} \pm 0.003_{syst}$
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$
$K^+ \to \pi^+ \pi^- \pi^+$	$0.002 \pm 0.001_{stat} \pm 0.002_{syst}$
Upstream background	$0.050^{+0.090}_{-0.030} _{stat}$

Total background

 $0.15 \pm 0.09_{stat} \pm 0.01_{syst}$

Results on 2016 data sample

RICH ring for the event

Results and prospects on ${\rm K}^+ \to \pi^+ \nu \bar{\nu}$

- One event observed in Region 2
- Preliminary BR:
 - **D** $BR(K^+ \to \pi^+ \nu \bar{\nu}) < 11 \times 10^{-10} @90\% \text{ CL}$
 - **D** $BR(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10} @95\% \text{ CL}$
- These results are compatible with the Standard Model
 - $\square BR(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} = (0.84 \pm 0.10) \times 10^{-10}$
- □ For comparison: $BR(K^+ \to \pi^+ \nu \bar{\nu}) = 2.8^{+4.4}_{-2.3} \times 10^{-10} @~68\%$ CL
- □ State of the art: $BR(K^+ \to \pi^+ \nu \bar{\nu}) = 1.73^{+1.15}_{-1.05} \times 10^{-10}$ (BNL E949/E787)
- Processing of 2017 data is ongoing
 - Expected reduction of upstream background
 - Improvements of the reconstruction efficiency under study
- 2018 data taking in progress
 - 218 days including stops
 - Ongoing studies to improve the signal acceptance
- ~20 SM events expected from 2017+2018 data samples before LS2

Exotics searches at NA62

- With the discovery of the Higgs boson, all the building blocks of the SM have been found
- No evidence for New Physics (NP) at LHC
- However, SM does not explain:
 - Dark Matter, Dark Energy
 - Baryon asymmetry
 - Neutrino masses and oscillations
- New Physics could be in the MeV GeV range
- Light dark matter with light mediators, weakly coupled to SM (hidden/dark)
- NA62 is particularly suitable for NP searches:
 - High-intensity beam
 - Trigger system flexibility
 - High-frequency tracking of beam particles
 - Redundant PID
 - Ultra high-efficiency photon vetoes
- New Physics analyses at NA62:
 - Heavy neutral leptons (HNLs)
 - Axion-like particles (ALPs)
 - Invisible vector bosons (dark photons)
 - Lepton number/flavour violation (LNV, LFV)

Heavy neutral leptons at NA62 (1/2)

Heavy neutral leptons at NA62 (2/2)

- For each HNL mass hypothesis, no signal observed
- Results improve existing limits on HNL production searches
- New upper limits:
 - m_N in (170, 448) MeV/c²:
 - □ |U²_e| in (10⁻⁷, 10⁻⁶)
 - m_N in (250, 373) MeV/c²:
 - $\square |U_{\mu}^{2}| \text{ in } (10^{-7}, 10^{-6})$

Opportunity to further improve by analysing 2016-2018 data sample

Can reach a sensitivity better than 10⁻⁸ for both channels

Search for dark photons at NA62 (1/2)

31

- Peak searches in squared missing mass spectrum: $m_{miss}^2 = (P_K - P_{\pi} - P_{\gamma})^2$
- Peak expected at m²_A,
- Main background from $\pi^0 \rightarrow \gamma \gamma$ with lost photon
- Data-driven background estimation
- No signal observed in 2016 partial data sample (ongoing analysis)
 New upper limits at 90% CL

Searches for DP invisible decay: $K^+ \rightarrow \pi^+ \pi^0$ $\pi^0 \rightarrow A'v$

A'
$$\rightarrow$$
 invisible

$$X^+ \rightarrow \pi^+ A'$$

A' \rightarrow invisible

Search for dark photons at NA62 (2/2)

- DP produced in proton beam interactions with target (Bremsstrahlung and meson decays)
- Zero-background hypothesis and 10¹⁸ Protons On Target (POT) expected to evaluate NA62 sensitivity to DP visible decays
- Expected better sensitivity including TAX and QCD productions (only target production considered for now)
- 3 · 10¹⁷ POT collected in 2016/2017 with di-muon trigger and 5 · 10¹⁶ POT with di-electron trigger

Searches for DP visible decay: $pN \rightarrow X\pi^0$ $\pi^0 \rightarrow A'\gamma$ $A' \rightarrow |^+|^$ $pN \rightarrow XA'$ $A' \rightarrow |+| 10^{-8}$ 10^{-11} Orsay, U7 CHARM, NuCal 10^{-14} meson decays cluded regions (only brem E137, SND Belle II, 50 ab 202 HCb, 15 fb ⁻¹, 2023 10^{-17} PS. 2016-2020 APEX. 2018+ SeaQuest, 2017-201 SN VEPP, proposed Mu3e, 2017+ 10^{-20} MESA, 2020+ 10^{2} 10^{3} 10 **m(A') (MeV**

Axion-like particle searches at NA62

- Candidate for cold dark matter
- Decay searches for A $\rightarrow \gamma\gamma$ in the 10⁻² MeV-GeV mass range
- Produced via elastic scattering of beam proton with high-Z material (Primakoff effect)
- Proton beam dumped onto NA62 Cu collimators (TAXes)
- ALP produced with low transverse momentum → good acceptance coverage for detector far from production point

- Ongoing analysis of 2017 data taken in beam-dump mode (closed TAXes) with 5 · 10¹⁵ POT
- \blacksquare Zero-background hypothesis to evaluate NA62 sensitivity to A $\rightarrow \gamma\gamma$

Conclusions

$\Box K^+ \to \pi^+ \nu \overline{\nu}$

- **D** The new decay-in-flight technique to study $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ works
- One event observed in 2016 data sample
- □ $BR(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10} @95\% CL$
- ~20 events expected from 2017+2018 data sample

Searches for exotic particles

- 2018 data taking ongoing
- Heavy neutral leptons
 - new limits in ($|U_e|^2$, m_{HNL}) and ($|U_\mu|^2$, m_{HNL})
 - 2016-2018 data analysis ongoing
- Dark photon
 - New limits in (ϵ , $m_{A'}$) using 4% of 2016 sample
 - Waiting for new results with 2016-2018 data samples
 - Fully operational GTK: ~3 times better m_{miss} resolution
- Axion-like particles: analysis ongoing

Thank you for your attention

°°