

The CMS Trigger Performances during LHC Run 2

Nadir Daci CERN

On behalf of the CMS Collaboration

Nadir DACI - ICNFP 2018

Introduction

Triggering at the LHC

LHC provided a luminosity up to 2.0e34 cm⁻²s⁻¹ which allows to study rare physics events (*Higgs production: 0.4 Hz*).
 Trigger systems: designed to sort out a tiny fraction (< 0.02 %) of events with interesting physical contents.

Nadir DACI - ICNFP 2018

Particle identification in CMS

A two-level trigger system

Level-1 Trigger

Level-1 architecture

Level-1: custom on/off-detector electronics

- Process basic inputs (calo trigger towers, muon hits)
- Local matching (ECAL+HCAL towers, CSC/DT/RPC hits)

- Build coarse trigger objects (e/γ, jets, μ, energy sums)
- Global Trigger gathers objects to make decisions based on L1 algorithms
- Kinematic selections, cross-triggers, geometric correlations, invariant mass...

Level-1 electrons & photons

♦ L1 electron/photon in 2018

- > The **isolation** variable is a function of the candidate's E_{τ} , η , and a **pile-up** estimator.
- 3 levels of isolation are available: none, loose, tight.
- > Most **EG** algorithms are restricted in $|\eta|$ to remain within the tracker coverage (offline & HLT reco).

Level-1 taus

cluster seed

TT region

used to build

the cluster

Allowed shapes

- ♦ Cluster ECAL/HCAL towers
- > Define a **region** of **10 towers** around seed tower
- Define a list of allowed cluster shapes to identify energy deposits from hadronic tau decays

- ♦ Hadronically-decaying taus used in tau final states: Higgs, Z', W'...
- High p_T taus are covered by Ditau and SingleTau algos without isolation.

Level-1 jets

chunky donut area

- > L1 Jets reconstruction: sliding window (9x9 towers, $\Delta \eta \times \Delta \phi = 0.78 \times 0.78$)
- > Pile-up energy density estimator: energy in 3 lowest- E_T surrounding 3x9 regions.
- > This **density** is then **scaled** to the L1 Jet **area** and **subtracted** to its E_{T} .
- > Jet energy **corrections** are applied in bins of η and E_{T} .

➤ The 120 (180) thresholds are 90% efficient at:
⇒ offline forward jet $p_T > 140$ (190) GeV

Nadir DACI - ICNFP 2018

Level-1 energy sums

- ◆ Energy sum triggers widely used in analyses based on hadronic final states
 ⇒ e.g. dijet resonances, dark matter in X+MET final states, etc.
- > Challenge: mitigate the effects from pile-up and instrumental noise.

- > H_T : scalar E_T sum of L1 jets (E_T > 30 GeV, $|\eta|$ < 2.4).
 - The 320 (450) thresholds are 90% efficient at:
 ⇒ offline HT > 420 (550) GeV

- > ME_{T} : vector E_{T} sum of calorimeter trigger towers ($|\eta| < 5$)
- L1 object suffering the most from lack of tracker info.
- Pile-up mitigation: dynamic η-dependent E_T threshold calculated using an estimation of the event pile-up.
- The 100 GeV threshold is 90% efficient at:

 \Rightarrow offline PF ME_T > **210** GeV

Level-1 VBF

VBF production mode very **sensitive** for searches such as **Higgs ditau** and **invisible** final states. Level-1 implements the calculation of **invariant mass** since **2017**.

VBF trigger strategy: target VBF-induced jets rather than Higgs bosons decay products.

> Efficiency evaluated in the VBF H($\tau\tau$) topology in a data sample recorded by a single muon trigger algorithm.

> The **addition** of the **VBF** algorithms increased the **acceptance** on the VBF $H(\tau\tau)$ signal by more than **40%**.

- ♦ 2016 upgrade: move from a detector-oriented to a coordinate-based architecture.
- L1 muons are reconstructed separately in 3 eta regions, thus exploiting the redundancy created by muon detector overlaps. The L1 Global Muon System subsequently sorts candidates in pT and quality, and suppresses duplicates.

- ♦ 2017 improvements: add RPC segments in BMTF & EMTF; project coordinates to the collision vertex.
- ♦ The upgrade reduced the rates by a factor two at constant efficiency.

Level-1 dimuon resonances

- ♦ The L1 system allows to target specific dimuon resonances.
- This has been made possible by introducing the muon track extrapolation to the collision vertex in 2017.

- These plots display the L1 mass distribution in 3 offline mass ranges, with and without extrapolation.
- The extrapolation improves significantly the L1 dimuon invariant mass response and resolution.

High-Level Trigger

HLT reconstruction

- Match pixels in successive layers to produce "seeds" for tracking algorithms.
- > Match tracks to energy deposits, perform global tracking fits for muons.
- Run the Particle Flow (PF) algorithm and produce particle candidates.
- Reconstruct more advanced **observables** and **topologies** from the individual particles.

HLT reconstruction

♦ HLT Menu

- > O(600) independent algorithms are run in parallel for each event.
- Common producers are shared by several paths, in order to optimize the event processing time.
- The selected events are written out in various data streams, with various event contents.

HLT timing

- ♦ Main constraint intrisic to the HLT CPU farm: timing
- ▶ Process **100 kHz** (L1) with **32k** cores (since 2018) \implies Naive timing budget: **320 ms/event**
- > Extra CPU features such as Hyperthreading
- \Rightarrow Actual budget is larger (by at least **10%**)
- The HLT menu currently used online complies with these constraints.

Bandwidth constraints

Nadir DACI - ICNFP 2018

- **Bandwidth** constraints \Rightarrow **average** output **rate** of **1** kHz (main physics data streams)
- Transfer from LHC Point 5 to CERN Tier-0 Computing Centre: max 5 GB/s.
- Storage space on Tapes and Disks.

 \diamond

Offline reconstruction: the main physics data streams are promptly reconstructed, ie as soon as the data is stored on disks on the LHC computing grid.

- ♦ Extra strategies to enlarge the recorded phase space:
- ♦ Scouting
- Save only trigger particle candidates + event observables.
- Allows looser HLT thresholds: pure HT, dimuon algorithms.
- Peak bandwidth (2.0e34 cm⁻²s⁻¹): 13 kHz for 100 MB/s.
- Average bandwidth approx. 20% lower
- Parking: record extra data on tape, reconstruct it later (LS2)
- Allows looser HLT algorithms, esp. for B Physics in 2018.

Physics bandwidth sharing

> **Pure**: rate from events triggered **only** by the group.

The B Physics group has the purest rate due to its very particular phase space.

2018 HLT Menu

- ♦ HLT menu for pp collisions: O(600) algorithms, including O(350) dedicated to physics analyses.
- > Non-exhaustive extract here: leptons (multileptons, J/Psi), photons (H($\gamma\gamma$)), and hadrons (H($\tau\tau$), VBF H(inv)).

	Signature	HLT kinematic thresholds	Rates (2.0e34)
			indicative values
	Single muon (isolated)	p _T > 24 GeV	306 Hz
	Single electron (isolated)	p _T > 32 GeV	186 Hz
	Double muon (isolated)	p _T > 17 , 8 GeV Μμμ > 3.8 GeV	42 Hz
	Double electron (isolated)	p _T > 23 , 12 GeV	27 Hz
Leptons	Muon + electron (isolated)	p _T (e) > 23 GeV pT(μ) > 8 GeV	14 Hz
		p _T (e) > 12 GeV pT(μ) > 23 GeV	7 Hz
	Triple muon	p _T > 5 , 3 , 3 GeV Μ μμ > 3.8 GeV	11 Hz
	Double muon + electron (isolated)	p _T (μ) > 4 GeV pT(e) > 9 GeV	4 Hz
	Displaced J/Psi(μμ)	p _T > 4 GeV 2.9 < Μ μμ < 3.3	34 Hz
	Single photon (isolated)	p _T > 110 GeV η < 1.479 (barrel)	13 Hz
Photons	Single photon (non-isolated)	p _T > 200 GeV	14 Hz
	Double photon (isolated)	p _T > 30 , 22 GeV Μ γγ > 90 GeV	50 Hz
	Double tau (isolated)	p _T > 35 GeV η < 2.1	46 Hz
Hadrons	Missing transverse energy	MET > 120 GeV MHT > 120 GeV	23 Hz
	Hadronic transverse energy	HT > 1050 GeV	12 Hz
	VBF + Missing energy	p _T (jet 1, 2) > 110 , 35 Mjj > 650 MET > 110	31 Hz
	Boosted jet (anti-kT 0.8)	p _T > 400 Mj> 30	31 Hz
	Boosted jet (anti-kT 0.8, double b)	p _T > 330 M j> 30	5 <mark>8 Hz</mark>

HLT tracking: pixel upgrade

- Successive iterations target progressively looser tracks. Hits used in a track are removed for the next iteration.
- ♦ HLT tracking in **2017** \rightarrow **3 iterations** targeting:
- High-pT tracks with 4 hits, low-pT tracks with 4 hits, tracks with 3 hits around calorimeter jets or other tracks.

- 2017 operation: several issues caused a non-negligible fraction of non-active pixel modules.
- > 2017-**2018** technical stop: **new DCDC converters** were installed and the initial performance was restored.
- > To safeguard against possible detector failures, an **additional recovery iteration** was added.
- Track seeds consisting of just two pixel hits are created in regions of the detector where two inactive modules overlap (iteration restricted to tracks with pT > 1.2 GeV).

HLT muons

- ♦ Main isolated single muon thresholds in 2018: L1=22 GeV HLT=24 GeV
- Plateau > 90% around 30 GeV, dominated by isolation and L1 efficiency.
- Efficiency for muons (pT>26 GeV) above 80% in endcaps.

- Muon update in 2018: more pixel seeds + extra tracking iteration + ID.
- > Allowed to maintain efficiency/purity while decreasing the HLT rate.

HLT dimuons

- ♦ HLT algorithm selecting **dimuons** with $p_T > 17$, 8 GeV and invariant mass > 3.8 GeV.
- ♦ The excellent invariant mass resolution allows to reject efficiently J/Psi background events.
- > The invariant mass threshold **reduces** the **rate** by **30%**.
- Leading muon p_T threshold is 7 GeV lower than the lowest-pT single muon algorithm.

HLT electrons

- ♦ Single electron (pT > 32 GeV) efficiency for barrel ($|\eta|$ < 1.48) and endcap ($|\eta|$ > 1.48) electrons.
- In 2017, the single electron identification criteria were retuned, thus leading to a significant efficiency recovery in the endcaps (at constant rate).

- The new 4-layer pixel detector helped reducing the rate of the dielectron algorithm (pT > 23, 12 + isolation) by 70% at a small efficiency cost (1-2 %).
- The impact of the 2017 pixel operation issues on electron-photon trigger efficiencies was estimated to be in the 1-2 % range.

HLT photons

- ♦ HLT Higgs diphoton algorithm: two photons with ET > 30 and 22 GeV, mass threshold at 90 GeV
- > Efficiency displayed in **categories** of eta (ECAL barrel/endcap) and R9 (photon identification variable).
- ♦ HLT single photon algorithm: isolated barrel photon ($E_T > 110$ GeV) and non-isolated ($E_T > 200$ GeV).
- ♦ The former reaches a plateau efficiency of 90% at 120 GeV, while the latter is above 95% at 220 GeV.

HLT jets

The efficiency of a single jet threshold of 500
 GeV is above 90% at offline jet pT > 550 GeV.

Nadir DACI - ICNFP 2018

HLT hadronic taus

- ♦ HLT hadronic tau reconstruction before 2018: cone-based algorithm
- Signal cone (∆R from 0.08 to 0.12) that contains the tau decay products: hadrons and photons w/in the cone are included in the reconstructed tau candidate.
- > Two HLT algorithms are studied here: $\mu \tau$ (pT(μ)>20, pT(τ)>27, isolation) and $\tau \tau$ (pT>35 + isolation)

- ◆ 2018 update: introduction of the Hadron Plus Strips (HPS) algorithm that is used in offline reconstruction.
- HPS: reconstructs decay modes; charged hadrons and photons w/in the signal cone are combined in multiple ways and ranked based on their consistency with a genuine tau decay.
- > HPS is able to maintain a consistently looser isolation accross the full tau pT spectrum wrt cone-based.
- > HPS: similar rate for the $\mu\tau$ HLT algorithm and 20% lower rate for the $\tau\tau$ HLT algorithm.

HLT leptons + HT

Conclusion (I)

- The upgraded L1 system has been successfully commissionned in 2016.
- In 2017 and 2018, CMS has been exploiting further the features of the upgraded system
- Invariant mass, more evolved correlations, VBF dijet algorithm...

Conclusion (II)

- ♦ The HLT has been regularly updated in order to cope with varying LHC and detector operation conditions.
- Phase-1 pixel upgrade fully exploited at HLT, including dynamic mitigation strategies for problematic modules.
- Reconstruction algorithms at HLT were adapted accordingly: tracking, muons, electrons...

- ♦ 2018 updates: muon reconstruction, MET noise mitigation, switch to HPS taus.
- Extra data taking strategies are in place to fully exploit the Run 2 physics potential: parking and scouting.
- So far the **2018 trigger performances** are **satisfying**, thus making the 2018 data taking campaign **promising**.

32

Thanks for your attention

BACKUP

Calorimeter Trigger

Muon Trigger

Level-1 VBF

VBF production mode very **sensitive** for searches such as **Higgs ditau** and **invisible** final states.

Level-1 allows the calculation of advanced observables such as invariant mass since 2017.

36

Level-1 MET

The **100 GeV** threshold is > **90%** efficient at: \geq

 \Rightarrow offline Calo ME_T > **150** GeV *(including forward calo)*

HLT tracking: pixel upgrade

- CMS Phase-1 Pixel Upgrade: added 1 extra layer (3+1=4)
- Cellular Automaton: track seeding algorithm
- Creates hit doublets in adjacent layers
- Joins compatible doublets to form triplets then quadruplets

- ✤ Successive iterations target progressively looser tracks. Hits used in a track are removed for the next iteration.
- ♦ HLT tracking in **2017** \rightarrow **3 iterations** targeting:
- High-pT tracks with 4 hits, low-pT tracks with 4 hits, tracks with 3 hits around calorimeter jets or other tracks.

