7th International Conference on New Frontiers in Physics (ICNFP2018)

Contribution ID: 336

Type: Oral presentation

Causal evolution of probability measures

Thursday, 5 July 2018 15:20 (20 minutes)

The causal structure of a spacetime \mathcal{M} is usually described in terms of a binary relation \leq between events called the casual precedence relation (often referred to as J^+). In my talk I will present a natural extension of \leq onto the space $P(\mathcal{M})$ of (Borel) probability measures on \mathcal{M} , designed to rigorously encapsulate the common intuition that probability can only flow along future-directed causal curves.

Using the tools of the optimal transport theory adapted to the Lorentzian setting, one can utilize thus obtained notion of 'causality between measures' to model a causal time-evolution of a spatially distributed physical entity in a globally hyperbolic spacetime. I will define what it means that a time-dependent probability measure $\mu_t \in P(\mathcal{M})$ evolves causally. I will discuss how such an evolution can be understood as a 'probability measure on the space of worldlines'. I will also briefly present some preliminary results concerning the relationship between the causal time-evolution of measures and the continuity equation.

Primary author: MILLER, Tomasz (Warsaw University of Technology)
Presenter: MILLER, Tomasz (Warsaw University of Technology)
Session Classification: Special session on Astro-Cosmo-Gravity