

Elastic and Total Cross-Section Measurements by TOTEM: Past and Future

Frigyes Nemes on behalf of the TOTEM experiment **CERN***

7th International Conference on New Frontiers in Physics (ICNFP 2018) Chania, Crete, Greece July 4. – 12., 2018

*Also at Wigner RCP, Budapest, Hungary

Experimental layout of the TOTEM experiment (LHC Run II)

The Roman Pot (RP) stations of the TOTEM experiment

RP stations:

- 2 units (Near, Far) at about 5 m (RP220) and 10 m (RP210) distance
- Unit: 3 moveable RP to approach the beam and detect very small proton scattering angles (few µrad)
- BPM: precise position relative to beam
- Overlapping detectors: relative alignment (10 μm inside unit among 3 RPs)

10 planes of edgeless detectors

ICNFP 2018 4 -12/07/2018

RP unit: 2 vertical, 1 horizontal pot + BPM

Si edgeless detector

Sketch of the LHC magnet lattice at IP5:

s: distance from IP5 (*≡IP5)

Measured

$$\begin{pmatrix} x \\ \Theta_x \\ y \\ \Theta_y \\ \xi \end{pmatrix}_{RP} = \begin{pmatrix} v_x & L_x & m_{13} & m_{14} & D_x \\ v'_x & L'_x & m_{23} & m_{24} & D'_x \\ m_{31} & m_{32} & v_y & L_y & D_y \\ m_{41} & m_{42} & v'_y & L'_y & D'_y \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x^* \\ \Theta_x^* \\ y^* \\ \Theta_y^* \\ \xi^* \end{pmatrix}$$

$$\sigma(\Theta) = \sqrt{\varepsilon / \beta_x(s)}$$

Determines angular resolution.

Introduction

List of TOTEM publications

http://totem.web.cern.ch/Totem/publ_new.html

ICNFP 2018 4 -12/07/2018

Momentum conservation is required in elastic events:

• <u>Published in EPL **95** (2011) 41001</u>

The elastic d σ /dt distribution at $\sqrt{s} = 7$ TeV ($\beta^* = 3.5$ m)

ISR

27.43 GeV

 $(Ge^{8})^{2}$

Published in EPL **95** (2011) 41001:

- |t| range spans from 0.36 to 2.5 GeV²
- Below $|t| = 0.47 \text{ GeV}^2$ exponential $e^{-B|t|}$ behavior
- Dip moves to lower |t|, proton becomes "larger"
- 1.5 2.5 GeV² power low behavior $|t|^{-n}$

TOTEM elastic scattering measurement at $\sqrt{s} = 2.76$ TeV

Strong background: elastic candidate selection from multitracks

RP alignment and LHC optics calibration

Horizontal RPs were not inserted:

- No track based top bottom RP alignment
- Horizontal and relative near-far alignment is done
- New methods to find absolute y-alignment of the 2 diagonals
- 2 diagonals: 2 constraints from elastic scattering symmetries

- Optics calibration done in the usual way (alignment independent procedure)
- Careful measurement of optics estimators:

After y* vertex cut

ICNFP 2018 4 -12/07/2018

2.76 TeV luminosity independent cross-sections ($\beta^* = 11$ m optics)

The nuclear slope B and the $\sigma_{\rm el}/\sigma_{\rm tot}$ ratio at $\sqrt{s} = 2.76$ TeV

TOTEM cross-section measurement at $\sqrt{s} = 13$ TeV

 $\beta^* = 90 \text{ m}, 5\sigma_{RP} \text{ RP}$ distance

ICNFP 2018 4 -12/07/2018

• Reconstruction of kinematics:

$$\theta_x^* = \frac{1}{\frac{\mathrm{d}L_x}{\mathrm{d}s}} \left(\theta_x - \frac{\mathrm{d}v_x}{\mathrm{d}s} x^* \right), \, \theta_y^* = \frac{y}{L_y}$$

- Clean sample after usual elastic cuts
- Optics matching → kinematics reconstruction uncertainty ~ 2 permil

• Large O(20 %) but well measurable, inefficiencies:

Correction [%]	DS1		DS2	
	Diag. 1	Diag. 2	Diag. 1	Diag. 2
$\mathcal{I}_{3/4}$	25.86 ± 0.2	22.04 ± 0.2	20.34 ± 0.1	21.37 ± 0.1
$\mathcal{I}_{2/4}$	19.91 ± 0.2	16.16 ± 0.2	16.09 ± 0.2	17.11 ± 0.2
$\mathcal{I}_{2/4\mathrm{diff.}}$	2.38 ± 0.05	1.61 ± 0.04	1.33 ± 0.02	$1.5~\pm~0.02$
$\eta_{ m d}$	80.93 ± 0.01		99.95 ± 0.01	
$\eta_{ m tr}$	99.9 ± 0.1		99.9 ± 0.1	

• Total correction per event:

$$f(\boldsymbol{\theta}^*, \boldsymbol{\theta}_y^*) = \frac{1}{\eta_{\rm d} \eta_{\rm tr}} \cdot \frac{\mathcal{C}(\boldsymbol{\theta}^*, \boldsymbol{\theta}_y^*)}{1 - \mathcal{I}} \cdot \frac{1}{\Delta t}$$

$$\mathcal{I} = \mathcal{I}_{3/4}(\boldsymbol{\theta}_{y}^{*}) + \mathcal{I}_{2/4} + \mathcal{I}_{2/4\,\mathrm{diff}}$$

• N_{inel,obs} is measured with the T2 inelastic telescope

Data set	Unit	DS1	DS2
N _{el,obs}		105729	216825
Ninel, obs		773000	1488343
$N_{\rm el}$		$4.273 \cdot 10^5 \pm 0.5 \% \pm 2.3 \%$	$6.660 \cdot 10^5 \pm 0.5 \% \pm 2.3 \%$
$ \mathrm{d}N_{\mathrm{el}}/\mathrm{d}t _{t=0}$	$[\text{GeV}^{-2}]$	$8.674 \cdot 10^6 \pm 0.4 \ \% \pm 1.6 \ \%$	$1.356 \cdot 10^7 \pm 0.4 \ \% \pm 1.6 \ \%$
N _{inel}		$1.097 \cdot 10^6 \pm 0.1 \% \pm 3.7 \%$	$1.708 \cdot 10^6 \pm 0.1 \% \pm 3.7 \%$

Cross sections at 13 TeV & summary plot

Frigyes Nemes, TOTEM experiment

ρ measurement at √s = 13 TeV

Probing the existence of colourless three-gluon bound state

 $\beta^* = 2500 \text{ m}$

ICNFP 2018 4 -12/07/2018

Basic properties of the data:

 $[\mu rad]$

 θ_x^{*L}

Analysis aims:

- Measure do_{el}/dt at the smallest possible |t|
- $A_{C+H} = Coulomb + Hadronic^{-100}$ Interference terms
- Interference: the phase ⁻²⁰⁰/₋₂₀₀ of hadronic amplitude appears

$$\frac{d\sigma}{dt} \propto \left| A_{C+H} \right|^2$$

• The ρ parameter:

$$\rho = \frac{\operatorname{Re} A^{H}}{\operatorname{Im} A^{H}} \bigg|_{t=0}$$

Interference in details and p measurements

Overview of the ρ parameter evolution with energy

Frigyes Nemes, TOTEM experiment

TOTEM differential cross-section measurement at $\sqrt{s} = 13$ TeV

 $\beta^* = 90 \text{ m}, 10\sigma_{RP} \text{ RP}$ distance

ICNFP 2018 4 -12/07/2018

- O(10⁹) observed elastic events (trigger rate **50** × Run I)
- Acceptance and beam divergence corrected
- 3/4 correction, matched optics
- Unfolded

The diffractive minimum in pp and ppbar collision

Note:

- Result confirms with unprecedented precision at the TeV scale the dip structure in elastic pp scattering (first observed at 7 TeV after the ISR) and brings to 5 sigma level the **incompatibility** at the diffractive dip between pp and ppbar, the latter measured by D0 still at the gluon-dominated TeV scale
- Not compatible with conventional (COMPETE) models (that doesn't include exchange of a colourless 3-gluon bound state)
- Compatibility with improved models where t-channel exchange of a colourless 3-gluon bound state $1^{PC} = 1^{--}$ is added

Large-t fit

- 1. Bin-by-bin MC simulation of bin-migration
- 2. Inversion of the response matrix M
- 3. Gaussian deconvolution

• The weighted average of all fills give dN/dt ratio between max / dip = 1.78 ± 0.05

- Results at $\sqrt{s} = 2.76 \text{ TeV}$
 - O First total cross-section measurement
 - $\odot~$ Change of Vs behavior of slope parameter B at around 3 TeV
- Results at Vs = 13 TeV
 - O First total cross-section measurement (<u>http://cds.cern.ch/record/2296409</u>)
 - O **First** ρ measurement (<u>https://cds.cern.ch/record/2298154</u>)
 - O Conventional models (COMPETE) not able to describe simultaneously TOTEM $\sigma_{tot} \& \rho$ measurements
 - O Data compatible with t-channel exchange of a colourless QCD 3 gluon $1^{PC} = 1^{-1}$ bound state
 - High-statistics differential cross-section measurement at $\sqrt{s} = 13$ TeV: confirming with unprecedented precision the dip structure in pp scattering at TeV scale: 5 σ level **incompatibility** of diffractive dip between pp and ppbar --> difference compatible with t-channel exchange of a colourless QCD 3 gluon $1^{PC} = 1^{--}$ bound state

Thank you for your attention !

Backup slides

Note on proton kinematics reconstruction & optics imperfections

Machine imperfections alter the optics:

- Strength conversion error, $\sigma(B)/B \approx 10^{-3}$
- Beam momentum offset, $\sigma(p)/p \approx 10^{-3}$
- Magnet rotations, $\sigma(\phi) \approx 1$ mrad
- Magnetic field harmonics, $\sigma(B)/B \approx 10^{-4}$
- Power converter errors, $\sigma(I)/I \approx 10^{-4}$
- Magnet positions Δx , $\Delta y \approx 100 \ \mu m$

→ Precise model of the LHC optics is indispensable!

Novel method from TOTEM:

- Use **measured** proton data from RPs
- Based on kinematics of elastic candidates
- Published in New Journal of Physics
- <u>http://iopscience.iop.org/1367-2630/16/10/103041/</u>

