DIRECT PHOTON RESULTS FROM PHENIX AT RHIC

Yorito Yamaguchi (RBRC, RIKEN)
for the PHENIX collaboration
ICNFP2018
July 7, 2018
DIRECT PHOTON

- Definition: photons NOT originating from hadron decays

Major production processes:

- Penetrating probe w/o strong interaction in QCD medium
 - Carry the medium information at the production point

Produced throughout the collision history
 - γ_{thermal} yield: $N_\gamma = \int_{\tau_0}^{\tau_c} R_\gamma \times V dt$, R_γ: rate, V: volume
THERMAL PHOTON MEASUREMENT

- Experimental data = Integral of all photon production
 → Need “p_T-window” to measure target photons
 ✓ Low p_T region ($p_T < 3-4\text{GeV/c}$) for thermal photons

- γ_{decay} always makes γ_{dir} measurements challenging
 ✓ ~80% from π^0 & ~10% from η of inclusive photon yield
 ✓ γ_{dir} = Reminder after γ_{decay} subtraction

- Importance of p+p & p+A data as a baseline
 ✓ Hard photon production & nuclear effects@low p_T
PHOTON MEASUREMENTS AT PHENIX

3 independent measurements at PHENIX

1. EMCal method: Suitable for high p_T (>4GeV/c)
2. Conversion photon method: Utilizing photon conversions and covering a wide p_T range from less than 1GeV/c
3. Virtual photon method: Measuring $\gamma_{\text{dir}}^* \rightarrow e^+e^-$ with reduced BG and works for 1<p_T<5-6GeV/c
• Successful direct photon measurements for p+p & d+Au at PHENIX
 ✓ **p+p**:
 Consistent with pQCD calculations for 1-20GeV/c → binary scaled p+p result
 → hard photons in A+A
 ✓ **d+Au (MB)**:
 Consistent with binary-scaled p+p result
 → Very small nuclear effects
Au+Au AT \(\sqrt{s_{NN}}=200\text{GeV}\)

PRC91, 064904 (2015)

- **p_T>4 GeV/c**: Consistent with the binary scaled p\+p
- **p_T<4 GeV/c**: Enhanced yield over the binary scaled p\+p
 - Thermal photons from the medium
- However, observation of a surprisingly large \(v_2\) as well
 - Sensitive to production process & production time

PRC94, 064901 (2016)

Puzzle

- Current theoretical scenarios have difficulties investigating the centrality dependence in more detail.
- The enhancement has a significantly smaller inverse slope than the symbol size.
- From each distribution we calculate uncertainties agrees with the calculated central value to better than the symbol size.
- From 0\%–20%, 20\%–40%, 40\%–60%, and 60\%–92%. Widths of filled boxes indicate bin widths in this analysis.
- The green bands show a \(N_{\text{coll}}\)-scaled fit to the data, and the solid line the parametrization of the photon yields measured in
 - Including new data in the fit
 - Over the past few years, a new data set, \(\sqrt{s_{NN}} = 200\text{GeV}\)
 - Kinematic features observed with the PHENIX experiment
 - \(|\eta|<0.6\) for
 - Minimum-bias and our previously published Au+Au data
 - Open squares are from
 - Conversion method
 - Calorimeter method

Shapes

- For the generator needs to be included
- At this point a systematic uncertainty of 10\% on the shape of the input pion spectra, as described above.
- As
 - Using data and the uncertainty in
 - Conversion method
 - Calorimeter method
DIRECT PHOTON PUZZLE

PRC94, 064901 (2016)

- No simultaneous description for both large yield & v_2
 - Need more systematic study on photon production
 - Collision system & energy
NEW RESULTS

• **Cu+Cu 200GeV(MB, 0-40%)**
 - Different collision species
 - Covering small N_{part} region

• **Au+Au 39(MB) & 62.4GeV(0-20%, 20-40%, MB)**
 - Study of $\sqrt{s_{NN}}$ dependence
 1. Direct photon yield
 2. Inverse slope of exp. fit (T_{eff})

ArXiv: 1805.04066
TRANSLATION OF N_{coll} TO dN_{ch}/d\eta

- \textbf{dN}_{ch}/d\eta: Useful measured observable for study of direct photon production across a wide range of \sqrt{S_{NN}} systems

\textbf{Observed N_{coll}-scaling for high p_T photons}
- Dominated by initial hard scatterings

\textbf{Attempt to translate N_{coll} to dN_{ch}/d\eta for different energy systems}
- Introduction of \sqrt{S_{NN}} dependent constant

\rightarrow N_{coll}(\sqrt{S_{NN}}) = (dN_{ch}/d\eta)^{1.25}

\textbf{arXiv: 1805.04084}
Normalization by \((dN_{ch}/d\eta)^{1.25}\) for different centralities & \(\sqrt{S_{NN}}\) data

- High \(p_T\): separation by \(\sqrt{S_{NN}}\)
- Low \(p_T\): surprisingly consistent for all centralities & \(\sqrt{S_{NN}}\)
dNγ/dy FOR p_T>5GeV/c

arXiv: 1805.04084

- Integrated yield for p_T>5GeV/c
 - Dominated by hard photons
 - Larger yields with higher \(\sqrt{s_{NN}} \), but same trend with \(dN_{ch}/d\eta \)

![Graph showing dNγ/dy for different collision systems and energies, with a fit to the data for p+p collisions at 200 GeV.](image-url)
dN_\gamma/dy FOR p_T>1GeV/c

- Integrated yield for p_T>1GeV/c
 ✓ Dominated by thermal photons
 ✓ Unique scaling with dN_{ch}/d\eta for all HI data
 → Large contribution near phase transition to HG?
• Theory calculation predicts unique multiplicity scaling of thermal photons as well.
 ✓ Expected transition at $N_\pi < 20$
 – No data point so far
 ✓ Different slopes for thermal and hard photons
 – Same slope in data
QGP FORMATION IN SMALL SYSTEM?

- Experimental results suggesting collective motion in small systems with high multiplicity

→ Possible formation of QGP even in small systems

PRC95, 014906 (2017)

- Thermal photons as an evidence of QGP formation in small systems

- Theoretical prediction of thermal enhancement:
 - $R^\gamma_{XX} = \gamma_{dir}^{XX} / (N_{coll} \times \gamma^{hard})$
 - Less visibility at larger systems
 - $R^\gamma_{pPb} > R^\gamma_{pAu} > R^\gamma_{dAu} > R^\gamma_{HeAu}$

→ Available 0-5% & MB p+Au data at RHIC energy
DIRECT PHOTONS IN p+Au

- Successful measurement for MB & 0-5% in p+Au
 - MB: consistent with binary-scaled p+p baseline
 - Same for d+Au MB
 - 0-5%: enhancement over binary-scaled p+p baseline
• Consistent with theory calculations for both MB & 0-5%, but not conclusive.
✓ Need more data for systematic study in small systems
SUMMARY

- Enhanced yield and a large v_2 of the direct photon in the low p_T region
 ✓ Photon puzzle: no model can reproduce both yield & v_2 simultaneously so far
- Unique scaling with respect to $dN_{ch}/d\eta$ for all HI results with a wide range of $\sqrt{s_{NN}}$
 ✓ Possible explanation by a large photon production near the phase transition to Hadron
- Observation of enhanced photons in 0-5% p+Au
 ✓ Positive indication for QGP formation in small system