Upgrade of the NA61/SHINE facility for physics programme beyond 2020

Dag Toppe Larsen Jagiellonian University

for the NA61/SHINE Collaboration

ICNFP 2018-07-07

Time scheduele

Updates should be ready by end of long shutdown (2020)

The NA61/SHINE facility

- VD: high-precision determination of primary vertex
- VTPC: 1.5 T magnetic field, momentum measurement, resolution: 10-4

- loss
- ToF: Time-of-flight measurements, improves particle identification
- PSD: zero-degree calorimeter, determine forward energy

Data taking capabilities

- Ion beams:
 - Primary: Ar, Xe, Pb 13A 150/160A GeV/c
 - Secondary: Be from Pb fragmentation, 13A 150/160A GeV/c
- Hadron beams:
 - Primary: proton 400 GeV/c
 - Secondary: hadron beams: pion, kaon, proton 13 400 GeV/c
- Targets:
 - Solid state from ~1 mm to ~1 m
 - Liquid hydrogen target 20 cm
- Data taking rate: 1 M events/day (currently)

Physics programme – current

- SHINE Sps Heavy Ion and Neutrino Experiment
- Strong interaction programme:
 - Search for critical point
 - Study of onset of deconfinement
- Cosmic ray programme:
 - Measurements for simulations of cosmic ray shower (Pierre Auger Observatory, CASCADE)
- Neutrino programme:
 - Measurement for simulations of initial neutrino flux (T2K, Fermilab)

Physics programme – updated

- NA61/SHINE has submitted an addendum for further physics measurements using the NA61/SHINE facility
 - Strong interactions: open charm measurements
 - Cosmic rays: light ion fragmentation with intergalactic matter
 - Neutrino: further reference measurements for T2K, Hyper-K, Dune targets
- Open charm requires significantly more statistics than current programmes
 - 80 Hz \rightarrow 1 kHz
 - Also beneficial for other programmes
- An order of magnitude higer data taking rate must be accomodated by all detectors and sub-systems
 - The implications for each detector/system will be discussed on the following slides
 - Also much higer radiation dose must be accounted for

Beam detectors & trigger system – current

- Positive counters (S1, S2) scintillators with PMTs, 30ps resolution
- Veto counters (V0, V1) define beam profile
- Target
- Interaction counters (S4, S5) lack of signal indicates interaction
- PSD centrality trigger
- Beam-Position Detectors (BPD-1, BPD-2, BPD-3)
 - Multiwire proportional chambers, 0.1 mm resolution on target

Beam detectors & trigger system – update

- New trigger system based on VME FPGA logic module
 - Basic functionality will remain, but more compact (2 racks → 1 VME crate)
- New functionality:
 - On-line off-time rejection (remove events with off-time particles, saves 20-30 % of bandwidth/disk space)
 - Read-out of trigger counter ADCs changed from CAMAC to DRS4
 - Trigger delays programmable cable lengths no longer critical
- BPDs will be replaced with scintillating fibre detectors
 - Can sustain higher beam intensities than current BPDs
 - Can be in vacuum, no need for entry/exit windows; less material

Time projection chambers – current

- 8 TPCs
 - VTPC (2), MTPC (2), GTPC (1), FTPC (3)
 - Measurement of momentum and dE/dx
 - 200 000 channels
 - Data taking rate 80 Hz
- VTPCs in magnetic field, others not
- Main tracking detectors of NA61/SHINE facility

Time Projection Chambers - updated

- Current TPC electronics must be replaced to be able to read out 1 kHz
 - Current ALICE electronics capable of ~1kHz will be replaced during LS2
 - Re-using current ALICE electronics for NA61/SHINE most technically and economically feasible path
 - Agreement reached with ALICE to take over needed components
- Mechanically challenging to upgrade
 - VTPCs have to be temporarily removed from detector
 - Tight space for new electronics since new boards are larger than current
 - Custom adapter boards between NA61/SHINE TPC connectors and ALICE TPC connectors

TPC upgrade implementation

ALICE Front-End Card

Present NA61 Front-End Card

32 channels **1 NA61/SHINE TPC** connector

ALICE Front-End Card

Kapton cables

Adapter boards

11

4 NA61/SHINE TPC connectors

Time-of-Flight – current

- Important for particle identifcation
- Three walls:
 - ToF-left & ToF-right: pixel scintilators and PMTs
 optimised for identifying kaons at mid-rapidity
 - Forward-ToF:

scintilator bars and PMTs - optimised for low momentum particle identification

- Drawbacks:
 - ToF-left & ToF-right performance quickly decays due to ageing
 - Forward-ToF only operates at low multiplicities

Time-of-Flight – update

- Completely new detector
- Based on MRPC (gas detector)
- 50ps time resolution achieved in test of prototype in NA61/SHINE experiment

Projectile-Spectator Detector – current

- Zero-degree calorimeter
 - Forward energy determination (collision violence)
 - event plane determination
- 446 measurements of deposited energy
 - 44 transverse modules with 10 longitudinal sections
 - Additional small short module with 6 sections in front

Projectile-Spectator Detector - update

- Increase of read-out rate requires faster signal read-out
 - New read-out electronics
 - Readout either by DRS4, or by custom chips from Dubna
- Increased beam intensity may damage PSD
 - Design needs to be modified (next slide)

Replacement of PSD inner modules

- Currently, PSD has 16 smaller inner modules
 - These will be replaced by 4 larger modules with chamfered corners to allow a 60x60mm hole for the beam
 - This hole will reduce the PSD sensitivity to radiation damage from the higher beam intensity
- A new Forward PSD module to be placed after current PSD (Main PSD) to measure particles going through hole
 - Forward PSD and Main PSD will have different dynamical ranges (Main PSD will measure produced particles, Forward PSD measure beam)

Data acquisition system – current

- The upgrades will significantly increase the data rates to be handled by DAQ
- Current DAQ can not easily be expanded to handle NA61 beyond 2020 requirements
 - Difficult to add more detectors
 - Can not take advantage of parallel architectures
 - Generally challenging to expand and improve
- Conclusion:
 - New system needed

Data acquisition system - update

- New system capable of 1kHz read-out-rate
- Based on Ethernet both for read-out and control
- Event aggregation from various nodes throgh commercial Ethernet swiches
- Clear separation between DAQ framework and detectors
- Event builder with buffer to store data for >3 days in case delays in transfer to CASTOR
- On-line reconstruction needed to reduce data volumes

Vertex Detector – current

- Small-Acceptance Vertex Detecor (SAVD)
- TPCs can not resolve primary vertex with good enough precision to reconstruct D^o
 - TPC resolution ~1 cm, required ~0.05 mm
- SAVD commissioned December 2016
 - 16 sensors, 4 stations, ~50 % D^o phase space covered
 - Successfully used to take Pb+Pb, p+Pb and Xe+La data
 - D^o peak observed

Vertex Detector - update

- Upgraded Vertex Detector
 - Expanded version of current VD
 - 16 \rightarrow 46 sensors, 80 Hz \rightarrow 1 kHz read-out rate
 - Stations at spaced every 5 cm from target
 - General SAVD infrastructure will be reused
- Change of sensor technology from Mimosa26 \rightarrow ALPIDE
 - Mimosa26 has too long read-out—time
 - Also relatively high noise levels
- Higher statistics will make spectra possible
- Longer detector will eneable reconstruction of (strange) particles with "long" life-time that will decay after 1st station
- See separate VD presentation by A. Merzlaya from 05.07

Summary

- Current physics programme is close to completed, a new is proposed in an addendum
- The open charm measurements will require significantelly higher statistics
 - Data to be read out at 1k events/s
 - Practically all detectors and sub-systems must be upgraded
 - Will also benefit other programmes
- New or significantly improved detectors like LAVD will be introduced
- NA61/SHINE is currenty preparing detailed plans for each of these upgrades

Contributors

- DAQ:
 - Jagiellonian University, Warsaw University of Technology, JINR Dubna
- DRS4 readout:
 - University of Geneva, University of Pittsburgh, University of Silesia, University of Warsaw
- SciFi BPDs:
 - University of Geneva, University of Silesia
- Trigger:
 - University of Silesia, University of Warsaw
- PSD:
 - INR Moscow
- ToF:
 - JINR Dubna
- LAVD:
 - Jagiellonian University, University of Frankfurt, University of St. Petersburg, University of Silesia
- TPC:
 - Jagiellonian University, University of Frankfurt, University of Warsaw, Warsaw University of Technology, University of Bergen