Search for neutrinos in Super-Kamiokande associated with gravitational wave events

2018 July 9th (Mon) ICNFP2018 & Workshop on Frontiers in Gravitation, Astrophysics and Cosmology @Kolymbari, Crete Greece

Yuuki Nakano for the Super-Kamiokande collaboration (Kamioka Observatory, ICRR, The University of Tokyo)

Contents

- Brief Introduction
 - Gravitational wave events
 - Motivation of this study
- Super-Kamiokande
 - Detector and brief history
 - Its performance
- Analysis strategies and Results
 - BH-BH merger: Astrophys. J. Lett. 830, L11 (2016)
 - NS-NS merger: Astrophys. J. Lett. 857, L4 (2018)
- Future prospect and summary

Observation of gravitational wave events

p. 3

Motivation of this study

Era of multi-messenger

- LIGO-Vergo detected the gravitational wave events in 2015. \rightarrow GW150914, GW151226....
- Many efforts of astronomical counterparts.
- Experimental search for neutrinos
- No significant neutrino signal has been observed yet.
- Test astrophysical mechanisms of neutrino emission.
- New physics if the coincidence of neutrino signal is observed.

Experiment	keV	MeV	GeV	TeV	PeV	EeV
Borexino			250 keV	~15 MeV		
KamLAND			1.8 MeV	~111 MeV		
Super- Kamiokande			3.5 MeV~1(00 PeV		
ANTARES			100 0	eV~100 Pe		
IceCube			100 0	GeV~100 Pe	V	
Pierre Auger			100 PeV~	25 PeV		

Super-Kamiokande

p. 6 Super-Kamiokande collaboration

Kamioka Observatory, ICRR, Univ. of Tokyo, Japan INFN Padova, Italy RCCN, ICRR, Univ. of Tokyo, Japan **INFN Roma, Italy University Autonoma Madrid, Spain** Kavli IPMU, The Univ. of Tokyo, Japan University of British Columbia, Canada **KEK**, Japan **Boston University, USA** Kobe University, Japan University of California, Irvine, USA **Kyoto University, Japan California State University, USA** University of Liverpool, UK LLR, Ecole polytechnique, France **Chonnam National University, Korea Duke University, USA** Miyagi University of Education, Japan Fukuoka Institute of Technology, Japan ISEE, Nagoya University, Japan NCBJ, Poland Gifu University, Japan **GIST**, Korea **Okayama University, Japan** University of Hawaii, USA **Osaka University, Japan** Imperial College London, UK University of Oxford, UK **Queen Mary University of London, UK INFN Bari, Italy INFN Napoli, Italy** Seoul National University, Korea

~165 people 45 institutes, 9 countries

University of Sheffield, UK Shizuoka University of Welfare, Japan Sungkyunkwan University, Korea Stony Brook University, USA Tokai University, Japan The University of Tokyo, Japan Tokyo Institute of Technology, Japan Tokyo University of Science, japan University of Toronto, Canada TRIUMF, Canada Tsinghua University, Korea The University of Winnipeg, Canada Yokohama National University, Japan

Super-Kamiokande (SK)

- Detector
- Located at Kamioka Japan.
- 50 kton of ultra pure water tank.
 - 20-inch PMTs, 11,129 for ID.
 - 22.5 kton for analysis fiducial volume.
- Water Cherenkov light technique.
- Long term operation since 1996 (~22 yrs).
- Physics target
 - Atmospheric neutrino
 - Astrophysical neutrino (solar, supernova)
 - Proton decay
 - Long base line neutrino (T2K)
 - Dark matter search etc...

Solar ν 3.5-20 MeV Supernova v 20-100 MeV

Atmospheric ν and proton decay ~100 MeV GeV TeV PeV

p. 7

p. 8 History of Super-Kamiokande

- Brief history and current status
- SK-I started on 1996 April and SK-IV ended on 2018 May.
- Total live time is more than 5,500 days.
- Refurbishment works toward SK-Gd have started since May 31st.

96	97	98	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
SK-I			SK	-11		SK-III			SK-IV						SK-	Gd								
PMT 11,146 (40%*) 5,18			82	(199	%*)					1	1,12	29 (4	10%	*)										
4.5 MeV** 6.5 MeV			/**	4.0) Me	V **				3	.5 N	/leV	**											

* Photo coverage [%], ** Recoil electron kinetic energy [MeV].

Inside of the detector

Neutrino analysis in SK

p. 10

- Analysis targets in SK
- SK has sensitivity to a wide neutrino energy range:
 - \rightarrow From multi-MeV region to 100 PeV.
- Interactions occuring in SK depends on its energy.

- Analysis targets in SK
 - 3 analysis samples are available according to its energy.
 → Difference of topology of event in SK.

Sample name	Energy range	Specific category
Low energy	3.5-15.5 MeV	Solar neutrino
	15.5-100 MeV	Relic neutrino
High energy	100 MeV – 100 PeV	Fully Contained (FC) Partially Contained (PC) Up-going muon (UPMU)

Typical event in SK

BH-BH merger (GW150914 & GW151226)

p. 13 Search for ν from BH-BH merger

Observation of BH-BH merger

- No counterpart except for Fermi-LAT.

GW150914: Phys. Rev. Lett. 118, 061102 (2016) GW151226: Phys. Rev. Lett. 116, 241103 (2016) Fermi: Astrophys. J. Lett. 826, L6 (2016)

GW event	Time [UTC]	Astronomical counterpart
GW150914	9:50:45	Fermi-LAT ~0.4 second later
GW151226	3:38:53	

Theoretical models

- No theory of neutrino generation associated with BH-BH merger.
 - → Possibility of high energy v emission from relativistic jet when accretion disk is formed around source. Nature 340, 126 (1989)

Astrophys. J. 405, 273 (1993)

Data acquisition status in SK

- Physics data-taking was operated at the time when both mergers.
- Searching for neutrino-like event within ±500 seconds.

p. 14 Neutrino signal in SK (BH-BH)

GW150914

- 4 events remain below 15.5 MeV (in solar sample).
 - No.1 & 2: Spallation event (Next page) No.3: Radon daughter event
- Expected BG: 2.90±0.01 event/1000 sec

- No.4: Solar neutrino event
- 4 or more events passing the reduction cuts \rightarrow 33.0%.

GW151226

- No event is found around GW151226 in SK.
- 0 events passing the reduction cuts \rightarrow 5.5%.

p. 15 Event No.1 & 2 (spallation BG)

Time difference between the event and preceding muon

p. 16 Fluence limits for BH-BH (MeV region)

Fluence limits for BH-BH (Above 100 MeV)

p. 17

Fluence limit for high energy sample

- Assumption of energy spectrum: power spectrum with index -2.
- FC+PC sample: basically same as low energy sample
- UPMU sample: Zenith angle dependence Aeff(z)

Shadow effect of the earth S(z,E)

S	Sample Energy rang		Fluence ca	calculation		
F	C+PC	100 MeV- 10 GeV	$\Phi_{\rm FC,PC} = \frac{1}{N_T \int dE_\nu \sigma}$	$\frac{N_{90}}{(E_{\nu})\epsilon(E_{\nu})\lambda(E_{\nu}^{-2})}$		
l	JPMU	$\frac{N_{90}}{E_{\nu})S(z, E_{\nu})\lambda(E_{\nu}^{-2})}$				
	GW Φ_{ν}	(cm^{-2}) GW	$7151226 \Phi_{\nu} (\mathrm{cm}^{-2})$	Combined $\Phi_{\nu} \text{ (cm}^{-2}\text{)}$		
$egin{array}{l} u_{\mu} \ ar{ u}_{\mu} \ u_{e} \ ar{ u}_{e} \end{array}$	From F 5.6 1.3 4.8 1.2	$FC+PC \text{ only}$ 6×10^{4} 3×10^{5} 8×10^{4} 2×10^{5}	5.6×10^4 1.3×10^5 4.8×10^4 1.2×10^5	$\begin{array}{l} 2.8 \times 10^{4} \\ 6.5 \times 10^{4} \\ 2.4 \times 10^{4} \\ 6.0 \times 10^{4} \end{array}$		
$ \nu_{\mu} $ $ \overline{ \nu} $	From U	UPMU only 14–37 19–50	14–37 19–50			

p. 18 Fluence limits for BH-BH (Above 100 MeV)

Fluence limit for high energy sample

NS-NS merger

Search for v from NS-NS merger

GW170817: Astrophys. J. Lett. 848, L12 (2017)

GW170817 (GRB170817A)

- Binary neutron star merger
- Radiation energy
 → 4.5×10⁵² erg.
- Multi-messenger detection
 - → Short gamma-ray burst kilonova/micronova

p. 21 Search for v from NS-NS merger

- Models of neutrino emission
- Many models of neutrino emission are proposed.
 - \rightarrow High energy v (10¹⁴ eV) in relativistic ejecta.
 - → Similar mechanism as for core-collapse SN (simulation base).

- Searching for neutrino-like event within ± 500 seconds.
- \rightarrow Fortunately, data-taking was operated at the time of merger.
- \rightarrow However, we had taken LINAC calibrations from Aug 3rd to 22nd.
- 14-day time window relevant for longer-lived emission process.

Neutrino signal (NS-NS) in $\pm 500s$

- GW170817 (±500 seconds)
- No event is found in all samples in ± 500 seconds.
 - → 7 events are found on the surface of the LINAC beam pipe. Just after extending the beam pipe (No beam).
 - \rightarrow They are removed by the calibration source cut (2m).

Fluence limits in ±500s ^{p. 23}

Fluence of GW170817 (±500 seconds)

- Same method used in BH-BH merger.
- Expected neutrino energy spectrum is simulated in case of BNS merger.
 - → Newly analyze Fermi-Dirac spectrum in low energy sample.

Sample	Energy range	Energy spectrum	Fluence calculation
LOWE	3.5 MeV 100 MeV	Flat (index 0) Fermi-Dirac (Eave=20 MeV)	$\Phi_{\text{low}e} = \frac{N_{90}}{N_T \int dE_{\nu} \lambda(E_{\nu}) \sigma(E_{\nu}) R(E_e, E_{\text{vis}}) \epsilon(E_{\text{vis}})}$
FC+PC	100 MeV 10 GeV	Index -2	$\Phi_{\rm FC,PC} = \frac{N_{90}}{N_T \int dE_\nu \sigma(E_\nu) \epsilon(E_\nu) \lambda(E_\nu^{-2})}$
UPMU	1.6 GeV 100 PeV	Index -2	$\Phi_{\rm UPMU} = \frac{N_{90}}{A_{\rm eff}(z) \int dE_{\nu} P(E_{\nu}) S(z, E_{\nu}) \lambda(E_{\nu}^{-2})}$

Fluence limits in ±500s p. 24

total energy(MeV)

p. 25 Observed events in following 14 days

Following 14-day time window

- Due to the calibration, solar sample has large background.
 - → Many radioactive impurities in SK pure water.
- Other samples are checked.
 - \rightarrow No significant neutrino signal over the background is observed.

Sample	Livetime	Observed [event/livetime]	Expected [event/livetime]
Solar	After LINAC calibration	Many radioactive impurities	
Relic	9.15	2±1.41	(1.93±0.08)×10 ⁻³
FC	11.30	76±8.72	91.44±0.57
РС	11.30	8±2.83	7.35±0.23
UPMU	11.30	13±3.61	16.05±0.23
UPMU (<5°)*	11.30	0	(6.11±0.04)×10 ⁻²

(*)The UPMU events are higher in energy than the other topologies and therefore the detected lepton points back to the incoming neutrino with more accuracy, allowing for a smaller search cone. See detail: Astrophys. J. Lett. 850 (2017) 116.

p. 26 Following 14 days for all sky

Relic sample (2)

FC sample (76)

Future prospects and summary

Future prospects

p. 28

SK-Gd project

- Current SK observation is not enough to distinguish v_e/\overline{v}_e .
- Adding Gd enhances the detection efficiency of $\overline{\nu}_e + p \rightarrow e^+ + n$.
 - \rightarrow Delayed coincidence technique by neutron tagging.
- More precise measurement of neutrino flux is expected.

Summary

Era of Multi-messenger

- The observation of the gravitational wave events opens new window for understanding our universe.
- Multi-messenger astrophysics has been started.

Super-Kamiokande

- Multi-purpose detector.
- Chance to search for neutrino from Multi-MeV to PeV region.

GW150814 & GW151226

- 4 events remain within ± 500 seconds (consistent with BG).
- Set the 90% neutrino fluence limits for both merge events.

GW170817

- No events remain within ± 500 seconds.
- No significant signal over BG is observed in following 14 days.
- Set the 90% neutrino fluence limits for GW170817.

Back up slides

p. 31 Topologies of atmospheric v events

Spallation products in SK

p. 32

Isotope	$\tau_{1/2}$ [sec]	decay mode	Kinetic Energy [MeV]
$^{8}_{2}\text{He}$	0.119	β^{-}	$9.67 + 0.98(\gamma)$
		β^{-} n	16%
⁸ ₃ Li	0.838	β^{-}	~ 13
$^{8}_{3}B$	0.77	β^+	13.9
⁹ ₃ Li	0.178	β^{-}	13.6(50.5%)
		β^{-} n	$(\sim 50\%)$
$^{9}_{6}C$	0.127	β^+ n	$3 \sim 15$
¹¹ ₃ Li	0.0085	β^{-}	$16 \sim 20 (\sim 50\%)$
		β^{-} n	$\sim 16 (\sim 50\%)$
$^{11}_{4}\text{Be}$	13.8	β^{-}	11.51(54.7%)
			$9.41 + 2.1(\gamma)(31.4\%)$
$^{11}_{4}\text{Be}$	13.8	β^{-}	11.71
${}^{12}_{5}\text{B}$	0.0236	β^{-}	13.37
$^{12}_{7}N$	0.0110	β^+	16.32
$^{13}_{5}B$	0.0174	β^{-}	13.44
$^{13}_{8}O$	0.086	β^+	13.2 or 16.7
${}^{14}_{5}B$	0.0138	β^{-}	$14.55 + 6.09(\gamma)$
$^{15}_{6}C$	2.449	β^{-}	9.77(36.8%)
			$4.47 + 5.30(\gamma)$
$^{16}_{6}C$	0.747	β^{-} n	~ 4
$^{16}_{7}N$	7.13	β^{-}	10.42(28.0%)
			$4.29 + 6.13(\gamma)(66.2\%)$

LINAC calibration

