鯣

Dark matter sterile neutrino & scalar field

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

Workshop on Heavy Neutral Leptons New Frontiers in Physics, ICNFP 2018, Kolymbari, Crete, Greece

Dmitry Gorbunov (INR)

Dark matter sterile neutrino & scalar field

3 Sterile neutrino as Dark Matter

DM sterile neutrino coupled to scalar

Outline

- 2) Sterile neutrinos
- 3 Sterile neutrino as Dark Matter
- 4 DM sterile neutrino coupled to scalar

Description of neutrino oscillations (I)

• Two bases: gauge $|v_{\alpha}\rangle$, $\alpha = e, \mu, \tau$ and mass $|v_i\rangle$, i = 1, 2, 3

$$|v_i\rangle = U_{\alpha i} |v_{\alpha}\rangle$$
 with unitary PMNS 3 × 3 matrix $U_{\alpha i}$

• Neutrino mass matrix is then

$$M_{lphaeta} = \langle v_lpha | M | v_eta
angle = (UM^{(m)}U^\dagger)_{lphaeta}$$
, where $M^{(m)}_{ij} = m_i \delta_{ij}$.

• Free neutrino evolution in time and space

$$|v_j(t)\rangle = e^{-im_jt}|v_j(0)\rangle \quad \rightarrow \quad |v_j(t,L)\rangle = e^{-i(E_jt-p_jL)}|v_j(0)\rangle ,$$

in ultrarelativistic case \longrightarrow Hamiltonian

$$p_j = \sqrt{E^2 - m_j^2} = E - \frac{m_j^2}{2E} 2E \rightarrow |v_j(L)\rangle = e^{-i\frac{m_j^2}{2E}L}|v_j(0)\rangle.$$

Dmitry Gorbunov (INR)

Neutrino oscillations

Description of neutrino oscillations (II)

Neutrino effective Hamiltonian

$$|v_j(L)\rangle = e^{-i\frac{m_j^2}{2E}L}|v_j(0)\rangle \rightarrow \hat{H}_{eff} = \frac{\hat{M}^2}{2E}$$

• Transition amplitude of neutrino v_{α} to neutrino v_{β} is

$$\mathcal{A}(\alpha \to \beta) = \sum_{j} \langle \mathbf{v}_{\beta} | \mathbf{v}_{j}(L) \rangle \langle \mathbf{v}_{j}(0) | \mathbf{v}_{\alpha} \rangle = \sum_{j} \langle \mathbf{v}_{\beta} | \mathbf{v}_{j} \rangle e^{-i\frac{m_{j}^{2}}{2E}L} \langle \mathbf{v}_{j} | \mathbf{v}_{\alpha} \rangle = \sum_{j} U_{\beta j} e^{-i\frac{m_{j}^{2}}{2E}L} U_{\alpha j}^{*}$$

and the transition probability

$$\begin{split} \mathcal{P}(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta}) &= |\mathcal{A}(\alpha \rightarrow \beta)|^{2} \\ &= \delta_{\alpha\beta} - 4\sum_{j>i} \operatorname{Re}[U_{\alpha j}^{*}U_{\beta j}U_{\alpha i}U_{\beta i}^{*}]\sin^{2}\left(\frac{\Delta m_{j j}^{2}}{4E}L\right) \\ &+ 2\sum_{j>i} \operatorname{Im}[U_{\alpha j}^{*}U_{\beta j}U_{\alpha i}U_{\beta i}^{*}]\sin\left(\frac{\Delta m_{j j}^{2}}{2E}L\right), \end{split}$$

Dark matter sterile neutrino & scalar field

 $\Delta m_{ii}^2 \equiv m_i^2 - m_i^2$

Neutrino oscillations

Description of neutrino oscillations (III)

- 2-neutrino oscillations: 2-level QM system $(L \leftrightarrow t)$
 - transition probability

$$P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta \neq \alpha}) = \sin^2 2\theta \cdot \sin^2 \left(\frac{\Delta m^2}{4E}L\right) ,$$

survival probability

$$P(\mathbf{v}_{\alpha} \to \mathbf{v}_{\alpha}) = 1 - \sin^2 2\theta \cdot \sin^2 \left(\frac{\Delta m^2}{4E}L\right)$$

oscillation length

$$L_{osc} = \frac{4\pi E}{\Delta m^2} = (2.5 \text{ km}) \cdot \frac{E}{\text{GeV}} \frac{\text{eV}^2}{\Delta m^2}$$

Neutrino matter effect:

asymmetry

BOREXINO measurements of solar neutrino flux

Dmitry Gorbunov (INR)

Dmitry Gorbunov (INR)

Dark matter sterile neutrino & scalar field

Outline

2 Sterile neutrinos

3 Sterile neutrino as Dark Matter

4 DM sterile neutrino coupled to scalar

Seesaw mechanism: $M_N \gg 1 \text{ eV}$

With $m_{active} \lesssim 1 \text{ eV}$ we work in the seesaw (type I) regime:

$$\mathscr{L}_{N} = \overline{N}i\partial N - f\overline{L}_{e}^{c}\widetilde{H}N - \frac{M_{N}}{2}\overline{N}^{c}N + \text{h.c.}$$

Higgs gains $\langle H \rangle = v / \sqrt{2}$ and then

$$\mathscr{V}_{N} = \frac{1}{2} \left(\overline{v}_{e}, \overline{N}^{c} \right) \begin{pmatrix} 0 & v \frac{f}{\sqrt{2}} \\ v \frac{f}{\sqrt{2}} & M_{N} \end{pmatrix} \begin{pmatrix} v_{e} \\ N \end{pmatrix} + \text{h.c.}$$

For a hierarchy $M_N \gg M^D = v \frac{f}{\sqrt{2}}$ we have

flavor state $v_e = Uv_1 + \theta N$ with $U \approx 1$ and

active-sterile mixing:
$$\theta = \frac{M^D}{M_N} = \frac{v f}{2M_N} \ll 1$$

and mass eigenvalues

$$\approx M_N$$
 and $-m_{active} = \theta^2 M_N \ll M_N$

Dmitry Gorbunov (INR)

Dark matter sterile neutrino & scalar field

Seesaw mechanism: $M_N \gg 1 \text{ eV}$

With $m_{active} \lesssim 1 \text{ eV}$ we work in the seesaw (type I) regime:

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial N_{I} - f_{\alpha I} \overline{L}_{\alpha}^{c} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

When Higgs gains $\langle H \rangle = v / \sqrt{2}$ we get in neutrino sector

$$\mathscr{V}_{N} = \frac{1}{2} \left(\overline{v}_{1}, \dots, \overline{N}_{1}^{c} \dots \right) \begin{pmatrix} 0 & v \frac{\hat{f}}{\sqrt{2}} \\ v \frac{\hat{f}^{T}}{\sqrt{2}} & \hat{M}_{N} \end{pmatrix} (v_{1}, \dots, N_{1} \dots)^{T} + h.c.$$

Then for $M_N \gg \hat{M}^D = v \frac{\hat{t}}{\sqrt{2}}$ we find the eigenvalues:

active-sterile mixina:

$$\simeq \hat{M}_N$$
 and $\hat{M}^v = -(\hat{M}^D)^T \frac{1}{\hat{M}_N} \hat{M}^D \propto f^2 \frac{v^2}{M_N} \ll M_N$

Mixings: flavor state $v_{\alpha} = U_{\alpha i} v_i + \theta_{\alpha l} N_l$

active-active mixing: $U^{\dagger} \hat{M}^{v} U = diag(m_1, m_2, m_3)$

$$\theta_{\alpha I} = \frac{(M^D)_{\alpha I}^T}{M_I} \propto \hat{f}^T \frac{v}{M_N} \ll 1$$

Dmitry Gorbunov (INR)

Dark matter sterile neutrino & scalar field

Sterile neutrino: a vast region of mass

Within the seesaw paradigm, as far as

$$m_a \sim rac{f^2 v^2}{M_N^2} M_N \sim heta^2 M_N$$

Any set (mass scale M_N , Yukawa coupling f) is viable

And with special tunning or symmetry larger (but not smaller) mixing is viable

$$\hat{m}_a \sim \hat{f}^T \frac{1}{\hat{M}_N} \hat{f} v^2$$

NR

Sterile neutrino lagrangian

Most general renormalizable with 2(3...) right-handed neutrinos N_l

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial N_{I} - f_{\alpha I} \overline{L}_{\alpha} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

Parameters to be determined from experiments

9(7): active neutrino sector	11: $N = 2$ sterile neutrinos	18: $N = 3$ starile neutrinos:
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(works if $m_v = 0$!!!) 2: Majorana masses M_{N_l} 9: New Yukawa couplings $f_{\alpha l}$ which form 2: Dirac masses $M^D = f\langle H \rangle$ 3+1: mixing angles 2+1: CP-violating phases 4 new parameters in total	3:Majorana masses M_{N_l} 15:New Yukawa couplings $f_{\alpha l}$ which form3:Dirac masses $M^D = f \langle H \rangle$ $3+3$: $3+3$:CP-violating phases9 new parameters in total

Profit: can suggest why neutrinos are so light, $m_v \sim 0.1 - 0.01 \text{ eV}$

3 Sterile neutrino as Dark Matter

Sterile neutrino: well-motivated keV-mass Dark Matter

massive fermions giving mass to active neutrino through mixing (seesaw)

$$m_a \sim \frac{f^2 v^2}{M_N^2} M_N \sim \theta^2 M_N$$

• unstable, $N \rightarrow vvv$ is always open but exceeding the age of the Universe if

(applicable for $M_N < M_W$)

$$\tau_{N\to 3\nu} \sim 1/\left(G_F^2 M_N^5 \theta_{\alpha N}^2\right) \implies \theta^2 < 1.5 \times 10^{-7} \left(\frac{50 \,\text{keV}}{M_N}\right)^5$$

• with seesaw constraint $m_a \sim \theta^2 M_N$

$$au_{N
ightarrow 3
u} \sim 1/\left(G_F^2 M_N^4 m_{
u}
ight) \sim 10^{11}\,{
m yr}\,(10\,{
m keV}/M_N)^4$$

Sterile neutrino as Dark Matter

Sterile neutrino: indirect searches

$$m_a \sim rac{f^2 v^2}{M_N^2} M_N \sim heta^2 M_N$$

unstable, but exceeding the age of the Universe if

$$\frac{\theta^2}{3\times 10^{-3}} < \left(\frac{10\,\text{keV}}{M_N}\right)^5$$

 DM sterile neutrinos can be searched at X-ray telescopes because of two-body radiative decay
 give limits in absence of the feature

a narrow line
$$(\delta E_{\gamma}/E_{\gamma} \sim v \sim 10^{-3})$$

at photon frequency $E_{\gamma} = M_N/2$
 $\frac{\theta^2}{10^{-11}} \lesssim \left(\frac{10 \text{ keV}}{M_N}\right)^4$

Sterile neutrino as Dark Matter

... 4 years ago: Dark Matter decay observed in X-ray?

Sterile neutrino production in the early Universe

• before the EW transition, $T > T_{EW}$

$$H \rightarrow L + N$$
, $\frac{\Gamma_{H \rightarrow v_a N}}{H} \simeq \frac{f_v^2}{16\pi} \frac{T}{H} \ll 1$,

after the EW transition, T < T_{EW}
 r.h. neutrino production in scatterings

$$v_L + X \rightarrow N_R + Y$$
, $\Gamma \propto \frac{M_D^2}{T^2}$

Production in oscillations

$$\frac{\partial}{\partial t}f_{s}(t,\mathbf{p})-H\mathbf{p}\frac{\partial}{\partial \mathbf{p}}f_{s}(t,\mathbf{p})=\Gamma_{\alpha}P(v_{\alpha}\rightarrow v_{s})f_{\alpha}(t,\mathbf{p}).$$

 $\Gamma_{\alpha} \propto G_F^2 T^4 E$ is the weak interaction rate in plasma

$$P(v_{\alpha} \rightarrow v_{s}) = \sin^{2} 2\theta_{\alpha}^{\text{mat}} \cdot \sin^{2} \left(\frac{t}{2t_{\alpha}^{\text{mat}}}\right),$$

$$t_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{vac}}}{\sqrt{\sin^{2} 2\theta_{\alpha} + (\cos 2\theta_{\alpha} - V_{\alpha\alpha} \cdot t_{\alpha}^{\text{vac}})^{2}}},$$

$$\sin 2\theta_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{mat}}}{t_{\alpha}^{\text{vac}}} \cdot \sin 2\theta_{\alpha}, \quad t_{\alpha}^{\text{vac}} = \frac{2E}{M_{N}^{2}}$$

sign of the effective plasma potential matters:

 $V_{\alpha\alpha} < 0 \implies$ mixing gets suppressed $V_{\alpha\alpha} > 0 \implies$ amplification via resonance

Dark matter sterile neutrino & scalar field

DM from oscillations:

 $(\cos 2\theta_{\alpha} - V_{\alpha\alpha} \cdot t_{\alpha}^{vac})^2$

non-resonant:

$$V_{lpha lpha} \sim - \# G_F^2 T^4 E$$

resonant production in the lepton asymmetric plasma

$$V_{lpha lpha} \sim + \# G_F T^2 \mu_{L_{lpha}}$$

1601.07553

... present searches

- upper limits on mixing: from X-ray searches
- lower limits on mass: from structure formation with $p_N \sim T$, DM free streaming

too fast at T = 1 eV

Outline

2 Sterile neutrinos

3 Sterile neutrino as Dark Matter

DM sterile neutrino coupled to scalar

Closing sterile neutrino DM?

In a minimal variant, may be... But situation changes with just 1 new d.o.f.

• reopening large mixings with $\Omega_N < \Omega_{DM}$

to avoid X-ray bounds:

$$\theta_{X-ray}^2 = \theta_{\alpha I}^2 \frac{\Omega_N}{\Omega_{DM}}$$

• reopening of small masses with $v_N \ll v_{WDM}$, e.g. cold sterile neutrino

production not from the SM plasma particles

Dark matter sterile neutrino & scalar field

Larger mixing: Suppression of production

Form only a fraction of DM !!

$$\begin{split} P(v_{\alpha} \to v_{s}) &= \sin^{2} 2\theta_{\alpha}^{\text{mat}} \cdot \sin^{2} \left(\frac{t}{2t_{\alpha}^{\text{mat}}}\right), \quad \sin 2\theta_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{mat}}}{t_{\alpha}^{\text{vac}}} \cdot \sin 2\theta_{\alpha}, \\ t_{\alpha}^{\text{mat}} &= \frac{t_{\alpha}^{\text{vac}}}{\sqrt{\sin^{2} 2\theta_{\alpha} + (\cos 2\theta_{\alpha} - V_{\alpha\alpha} \cdot t_{\alpha}^{\text{vac}})^{2}}, \quad t_{\alpha}^{\text{vac}} = \frac{2E}{M_{N}^{2}} \end{split}$$

Most efficient production occurs at

$$T_{max} pprox 133 \,\mathrm{MeV} \left(rac{1\,\mathrm{keV}}{M_N}
ight)^{1/3}$$

It is suppressed if $T_{reh} \ll T_{max}$

G.Gelmini, S.Palomares-Ruiz, S.Pascoli (2004)

(DW)

Suppression of cosmological production

Add more ingredientse.g.Scalar? Majoron? $\bar{L}\tilde{H}N + M_N\bar{N}^cN \rightarrow \bar{L}\tilde{H} + \phi\bar{N}^cN$ (lepton symmetry)

$$P(v_{\alpha} \to v_{s}) = \sin^{2} 2\theta_{\alpha}^{\text{mat}} \cdot \sin^{2} \left(\frac{t}{2t_{\alpha}^{\text{mat}}}\right), \quad \sin 2\theta_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{mat}}}{t_{\alpha}^{\text{vac}}} \cdot \sin 2\theta_{\alpha},$$
$$t_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{vac}}}{\sqrt{\sin^{2} 2\theta_{\alpha} + (\cos 2\theta_{\alpha} - V_{\alpha\alpha} \cdot t_{\alpha}^{\text{vac}})^{2}}, \quad t_{\alpha}^{\text{vac}} = \frac{2E}{M_{N}^{2}}$$

Coupling to scalar can change the effective neutrino Hamiltonian in the primordial plasma

$$\left(\begin{array}{cc} V_{\alpha\alpha} & M_D \\ M_D & V_{NN} + M_N \end{array}\right)$$

DM sterile neutrino coupled to scalar

N

Suppression of production with $\phi \bar{N}^c N$

 strong coupling to scalar or Majoron, which decreases the active-sterile mixing in primordial plasma

e.g. L.Bento, Z.Berezhiani (2001)

$$\phi NN \to G\bar{N}N\bar{N}N \to V_{NN}$$

 homogeneous \(\phi = \phi(t)\) makes sterile neutrino mass changing in cosmology, which suppresses the early-time oscillations

F.Bezrukov, A.Chudaykin, D.G. (2017)

$$\phi(t)NN \to M_N = M_N(t) = M_N(T)$$

- sterile neutrinos are massless in the early Universe
- sterile neutrinos are superheavy in the early Universe

Massless in the early Universe

$$\mathscr{L} = rac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\mu} \phi - V(\phi) + rac{f}{2} \phi \bar{N}^{c} N + ext{h.c.}$$

And may be more scalar fields in the hidden sector... to make the phase transition:

$$T > T_c \implies \langle \phi \rangle = 0, \quad M_N = 0$$

$$T < T_c \implies \langle \phi \rangle = v_\phi, \quad M_N = f v_\phi$$

So the neutrino is pure Dirac fermion at the beginning...

The production in oscillations will be suppressed, if

$$T_c < T_{max} \approx 133 \,\mathrm{MeV} \left(rac{1 \,\mathrm{keV}}{M_N}
ight)^{1/3}$$

there is always a chirality flip contribution $\propto M_D^2/E^2$

Results for details see 1705.02184

Important:

 $m_a \sim \theta^2 M_N$

- **1** seesaw light sterile neutrino (dashed lines: $m_a \sim 0.008 0.2 \text{ eV}$)
- 2 can be directly tested !! (between green and white lines)

DM sterile neutrino coupled to scalar

ИI ЯN ИR

Direct searches for m_v : cut in *e*-spectrum

$$egin{array}{lll} {\sf T} o \ ^3{\sf He} & + e + ar v_e \ (pnn) o (ppn) + e + ar v_e \end{array}$$

INR RAS, 1990-2000 years: $m_{\bar{\nu}_e} \lesssim 2 \text{ eV}$

the same technique for sterile neutrinos

Dmitry Gorbunov (INR)

Dark matter sterile neutrino & scalar field

09.07.2018, OAC Crete 30 / 39

Direct searches are deep inside the forbidden region

Dmitry Gorbunov (INR)

Dark matter sterile neutrino & scalar field

09.07.2018. OAC Crete 31/39

Results

for details see 1705.02184

Important:

- **(1)** seesaw light sterile neutrino (dashed lines for $m_a = 0.2 \text{ eV}$ and $m_a = 0.009 \text{ eV}$)
- 2 can be directly tested !! (green and white lines)

produced sterile neutrinos are warm (not thermal-like spectrum !!), and hence most probably can form only a fraction of DM DM sterile neutrino coupled to scalar

Sterile neutrinos: a part of dark matter

 10^{5} 0.0 165 10^{4} 150 $P(k)[(Mpc/h)^3]$ -1.5135 10^{5} $\log_{10} f_{\rm ncdm}$ 12010 -3.0 $105\,\mathrm{g}$ 10^{1} 90 $10^{(}$ 75-4.560 10^{-1} 45-6.0 10^{-2}_{-10} 10^{1} 10^{2} $\log_{10} m_{\rm ncdm}/{\rm eV}$ Irlb /March 10^{0} Fermion 挺 10^{-10} Bosons * 10^{-1} $\simeq 160$ Į♥ jĮ 10^{-2} 10^{1} $dN_{sat}/d\ln M$ $f_{
m ncdm}$ 10° $10^{(}$ 10^{-1} ŧ 10^{-1} 10^{-5} 10^{-1} $10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}10^{0}10^{1}10^{2}10^{3}10^{4}10^{5}$ 10^{-2} 10^{8} 10^{9} 10^{10} 10^{12} 10^{11} $m_{\rm ncdm} \, [eV]$ $M[M_{\odot}/h]$

Dmitry Gorbunov (INR)

Dark matter sterile neutrino & scalar field

1701.03128

DM sterile neutrino coupled to scalar

Production not by the mixing: at a very early stage

Dark Matter production from inflaton decays in plasma at $T \sim m_X$

 $M_N \bar{N}^C N \leftrightarrow f X \bar{N}^C N$

Not seesaw neutrino!

M.Shaposhnikov, I.Tkachev (2006)

"moderately" Warm (250 MeV $< m_X < 1.8 \,\text{GeV}$)

F.Bezrukov, D.G. (2009)

$$M_{
m 1} \lesssim 15 imes \left(rac{m_{X}}{
m 300~MeV}
ight)
m keV$$

or classical inflaton oscillations...

Not seesaw neutrino!

Dmitry Gorbunov (INR)

Dark matter sterile neutrino & scalar field

09.07.2018, OAC Crete 34 / 39

Back to oscillations: superheavy at early times

$$\mathscr{L} = rac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\mu} \phi - rac{1}{2} m_{\phi}^2 \phi^2 + rac{f}{2} \phi \bar{N}^c N + \mathrm{h.c.}$$

homogeneous scalar field in FLRW expanding Universe

 $\ddot{\phi} + \mathbf{3}H\dot{\phi} + m_{\phi}^2\phi = 0$

two-stage evolution:

$$\begin{array}{ll} m_{\phi} < H(t) & \Longrightarrow & \phi = \phi_i = {\rm const} \\ m_{\phi} > H(t) & \Longrightarrow & \rho = \langle E_k \rangle - \langle E_\rho \rangle = 0 \,, \quad \rho \sim m_{\phi}^2 \phi^2 \propto 1/a^3 \end{array}$$

- At $m_{\phi} < H(t)$ sterile neutrino mass is $M = M_N + f\phi_i \gg M_N$
- At present sterile neutrino mass is $M_N \sim 1 \text{ keV}$
- If at $m_{\phi} > H(t)$ sterile neutrinos are nonrelativistic,

$$m_{\phi} = H_{OSC} = rac{T_{OSC}^2}{M_{Pl}^*}$$

$$M(t) = M_N + f\phi_j \frac{T^3}{T_{osc}^3} > T$$

production never happens any mixing is allowed only direct searches matter

Cold sterile neutrinos: by oscillating scalar field

sterile neutrino mass

$$M(t) = M_N + f\phi(t) = M_N + f\phi_i \frac{T^3}{T_{osc}^3} \cos(m_\phi t)$$

sometimes crosses zero, which allows for sterile neutrino production even by a 'slow' oscillator $M_N \gg m_\phi$

the produced sterile neutrinos are almost at rest

Cold Dark Matter

avoiding limits from structure formation on light sterile neutrinos avoiding X-ray limits by choosing small mixing angle

Subtleties with Effective neutrino mass

 $-\rho_{\phi} > \rho_N$, so the scalar is DM or, in case of rapid production, must account for the backreaction - Yukawas induce $\lambda \phi^4 \sim f^4/(16\pi^2)\phi^4$ which may dominate instead - Both L_{osc} and θ_{eff} change with M(t), which oscillates !!

very complicated system: three oscillators with time-dependent couplings

Work in progress: a region where we can do it

Summary and Outlook

- At moderate mixing DM production can be suppressed
- At small abundance (Ω_N < Ω_{DM}) direct searches can supersede those of X-ray satellites
- Direct tests of the seesaw prediction (Troitsk, KATRINE) become justified
- Sterile neutrinos can be indeed responsible for neutrino oscillations via seesaw mechanism and form a noticable fraction, \simeq 10% of Dark Matter
- Small masses generically are forbidden due to free-streaming
- However, it is possible to make sterile neutrino DM in Superheavy case, where they are supercool, and form CDM
- Sterile neutrinos in SN explosion: many controversal results in literature even w/o hidden sector, but might compete with direct searches

Backup slides

船

Limits form SN

1102.5124

1603.05503

船

A sketch of model parameter space

0,1: allowed even w/o scalar field

2: scalar helps to avoid X-ray bound and make $\Omega_N = \Omega_{DM}$, but free-streaming...

3,4: Ω_N is determined by *X*-ray bound

 $M, \, \mathrm{keV}$

DM from Heavy scalar (Majoron?) decay

Decoupling of relativistic Dark Matter

Assumptions

- DM particles are in equilibrium in plasma
- 2 DM decouple from plasma at temperature $T_d \gtrsim M_X$, so they are relativistic

 $n_X(T_d) = g_X \cdot \begin{pmatrix} 1 \\ \frac{3}{4} \end{pmatrix} \cdot \frac{\zeta(3)}{\pi^2} T_d^3$

Later on

 $n_X a^3 = \text{const}, \quad sa^3 = \text{const} \implies \frac{n_X}{s} = \text{const} = \# \frac{g_X}{g_*(T_d)}$

DM particle mass M_X fixes Ω_X :

$$\Omega_X = \frac{M_X \cdot n_{X,0}}{\rho_c} = \frac{M_X \cdot s_0}{\rho_c} \frac{n}{s} \approx 0.2 \times \frac{M_X}{100 \text{ eV}} \left(\frac{g_X}{2}\right) \cdot \left(\frac{100}{g_*(T_d)}\right)$$

NO heavy stable feebly coupled to SM particles !
 NO realistic DM models:

Pauli blocking prevents fermionic DM

too energetic for the proper structure formation

Dmitry Gorbunov (INR)

 $\frac{p_X}{M_X} \propto \frac{a_d}{a} \sim \frac{3T}{M_X} \left(\frac{g_*(T)}{g_*(T_d)}\right)^{1/3}$

Dark matter sterile neutrino & scalar field

(e.g. neutrino)

useful

船

Sterile neutrino spectra from resonant production

Sterile neutrino Dark Matter

A.Schneider (2016)

Sterile neutrino Dark Matter: ... gone?

A.Schneider (2016)

brown: MW satellite counts green and yellow: Lyman- α

production by inflaton

Dmitry Gorbunov (INR)

Dark matter sterile neutrino & scalar field

09.07.2018, OAC Crete 48 / 39