

Single-top quark production at CMS

<u>Priyanka</u>

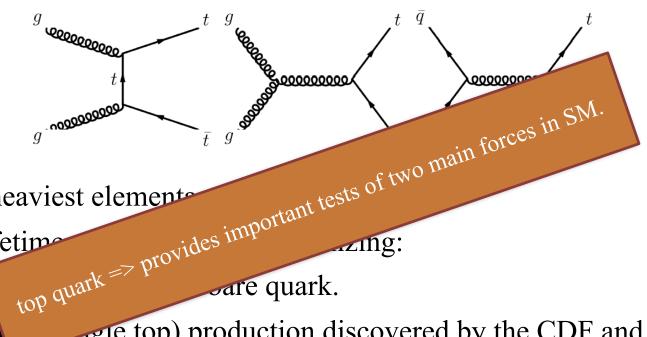
(On behalf of CMS Collaboration)

Dept. of Physics & Astrophysics, University of Delhi

7th International Conference on New Frontiers in Physics (ICNFP2018)

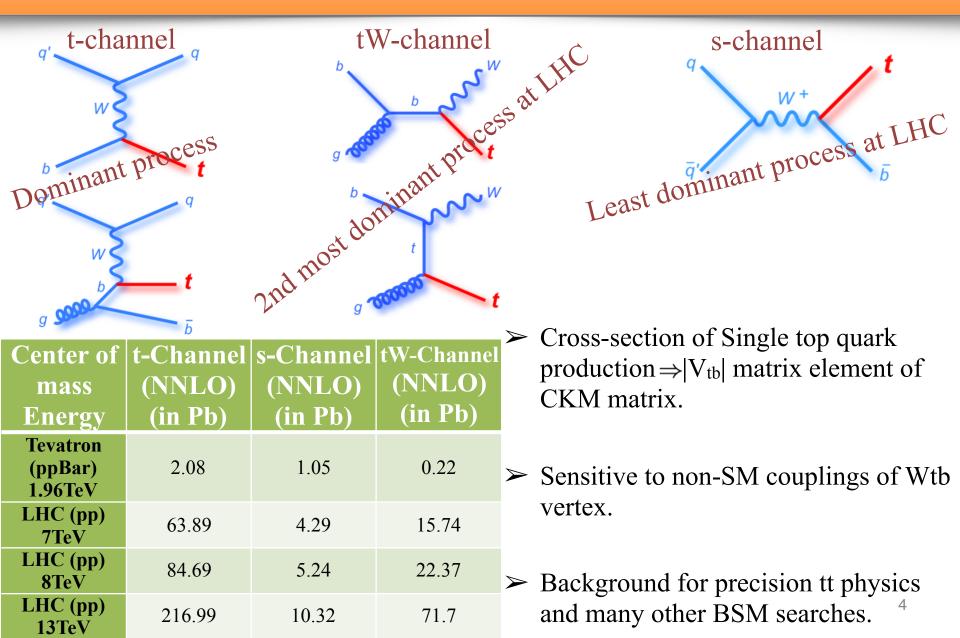
4 - 12 July 2018, Kolymbari, Creta, Greece.

- Discovered by the CDF and DØ collaborations at the Tevatron in 1995 in pair production (strong interaction).
- Dominantly produced via strong interaction.

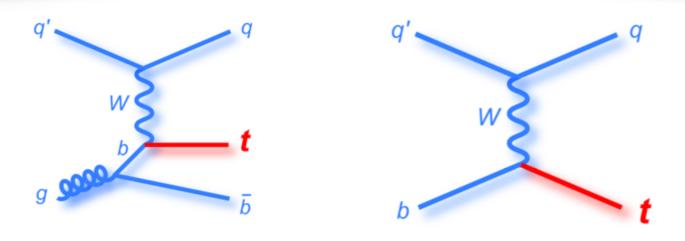


- It is the heaviest elementary particle.
- Short Lifetime=>decay before hadronizing: unique way to observe a bare quark.
- Electroweak (single top) production discovered by the CDF and DØ collaborations at the Tevatron in 2009 (evidence by DØ in 2006).

Introduction to top quark


TOP quark decay predominantly $(\sim 100\%)$ to a W Boson and a b-quark

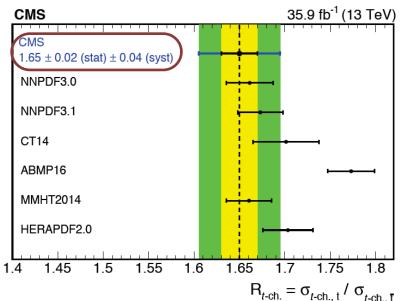
- Discovered by the CDF and DØ collaborations at the Tevatron in 1995 in pair production (strong interaction).
- Dominantly produced via strong interaction.



- It is the heaviest elements
- Short Lifetime uniqu
- agie top) production discovered by the CDF and DØ Electrow collaborations at the Tevatron in 2009 (evidence by DØ in 2006).

Single top-quark production at LHC

t-channel

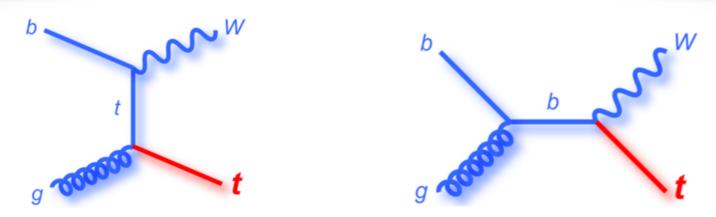


- ●Contains ~73% of the total single top quark production at LHC.
- ullet Direct measurement of $|V_{tb}|$ matrix element of CKM matrix.
- New physics beyond the SM would alter the couplings and affect the polarisation.
- Also suited for testing the proton PDF and comparing the various models with data.

CMS-PAS-TOP-17-011 t-channel@13TeV

Singnature: 1lepton(e/ μ), 2 jets, 1 b tag,MET

$$\sigma_{t-ch.,t+\bar{t}} = 219.0 \pm 1.5(stat) \pm 32.9(syst)pb \ |f_{LV}V_{tb}| = 1.01 \pm 0.05(exp) \pm 0.02(theo)$$


With

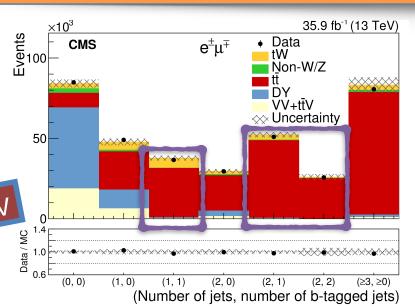
$$\begin{split} \mathcal{B}(\mathrm{t} \to \mathrm{Wb}) &\approx 1 \Rightarrow f_{\mathrm{LV}}^2 \mathrm{V_{tb}^2} = \sigma_{\mathrm{meas.}}/\sigma_{\mathrm{theo.}} \\ \sigma_{t\text{-ch.,t+}\bar{\mathrm{t}}}^{\mathrm{th}} &= 217.0^{+6.6}_{-4.6}(\mathrm{scale}) \pm 6.2\,(\mathrm{PDF} + \alpha_{\mathrm{S}}) \,\,\mathrm{pb}\,(\mathrm{NLO}) \end{split}$$

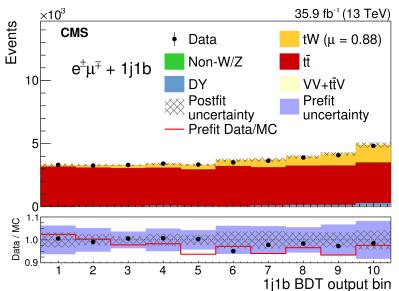
R's exp. uncertainty~PDF model's theoretical uncertainties: proton structure

- Simultaneous ML fit on multivariate discriminators, separately for signal region(2j1t) and 2 control regions (3j1t,3j2t) NjMt region, lepton flavour, and lepton charge (12 discriminator distributions fitted simultaneously).
- ➤Fit repeated two times:
 - 1) First fit: top channel signal strength and anti-top channel signal strength are free parameters.
 - 2)Second fit: Anti-top channel signal strength and R_{t-ch} free parameters.
- Main systematic: Signal modeling.

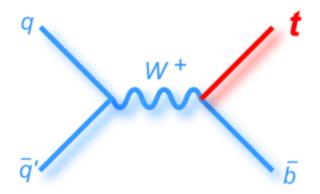
tW-channel

- ●Contains ~25% of the total single top quark production at LHC.
- Challenge for tW-Channel: Interference at NLO level with topquarks pair production for extraction of tW signal.
- Two configurations to subtract overlapping diagrams: diagram subtraction(DS) & diagram removal(DR)
 DR
 DC


$$\mathcal{M} = \mathcal{M}^{(tw)} + \mathcal{M}^{(tt\sim)}$$
$$|\mathcal{M}|^2 = |\mathcal{M}^{(tw)}|^2 + 2\operatorname{Re}\left\{\mathcal{M}^{(tw)}\mathcal{M}^{(tt\sim)*}\right\} + |\mathcal{M}^{(tt\sim)}|^2$$

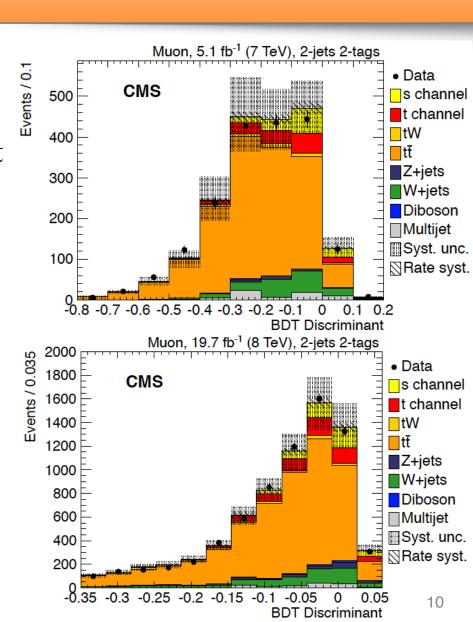

- Signature: 2 OS leptons (eµ), 1 jet, 1 btag
- Three regions defined for signal extraction: 1j1t (main signal region). First measurement at 13TeV 2j1t, 2j2t

- Signal strength determined from a ML fit to BDT distribution in 1j1t and 2j1t regions and sub-leading jet p_T in 2j2t.
- Main systematic: JES, lepton identification, tt modeling.

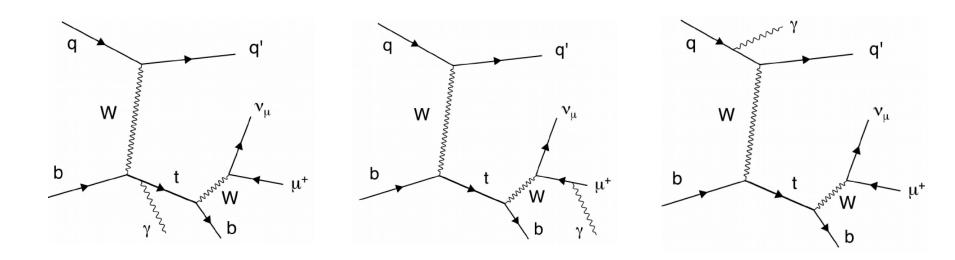

$$\sigma_{tW} = 63.1 \pm 1.8 \text{ (stat)} \pm 6.4 \text{ (syst)} \pm 2.1 \text{ (lumi) pb}$$

 $SM:\sigma_{...}(NNLO) = 71.7 \pm 1.8 \text{ (scale)} \pm 3.4 \text{ (PDF)} \text{ pb}$

s-channel



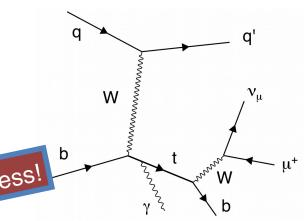
- Contains \sim 3% of the total single top quark production at LHC \Rightarrow Challenging final state.
- Grows much slower with CME than other top production modes.
- Sensitive to new physics (Searches for W', charged Higgs).

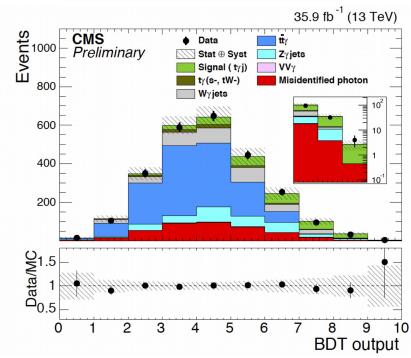

JHEP 09 (2016) 027 S-channel a 7&8TeV

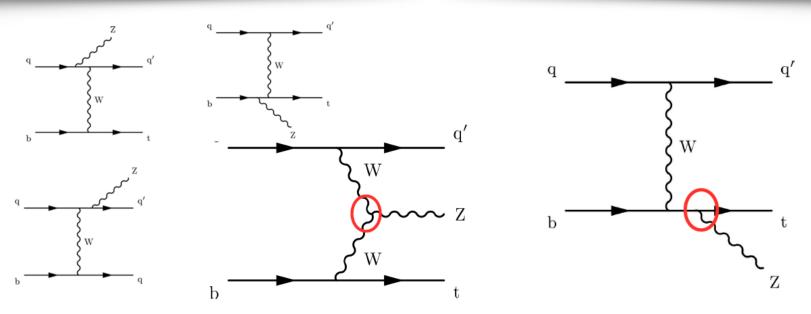
- Signature: 1 lepton, 2 jets, 2 b-tag
- Binned likelihood fit on BDT output in 2j2t (signal), 3j2t (tt) and 2j1t (t-channel and w+jets) regions.
- Observed(expected) significance (combination): $2.5(1.1) \sigma$
- Main systematic: JES, generator, btagging.

$$\sigma_{s-ch}(7 \text{ TeV}) = 7.1 \pm 8.1 \text{ (stat+syst) pb}$$
 $\sigma_{s-ch}(8 \text{ TeV}) = 13.4 \pm 7.3 \text{ (stat+syst) pb}$
 $\sigma_{s}(7 \text{ TeV}) = 4.56 \pm 0.07 \text{ (scale)} \pm 0.17 \text{ (PDF) pb}$
 $\sigma_{s}(8 \text{ TeV}) = 5.55 \pm 0.08 \text{ (scale)} \pm 0.21 \text{ (PDF) pb}$
(NNLO)

ty-production in t-channel mode

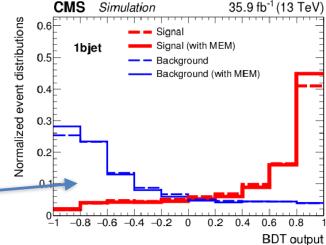

- Extremely rare process: couplings through electroweak loop corrections opens up the possibility to search for new physics in the top quark sector.
- Sensitive to the top quark electric charge and the top quark electric and magnetic dipole moments.

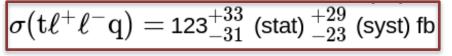

ty@13TeV


- Signature: t-channel 1 μ , 1 γ , MET, \geq 2 jets, 1 b tagged jet
- Binned likelihood fit on BDT output on signal 1-tag region and control 2-tag region tt+γ.
- Observed(expected including all sources of systematic uncertainties) significance: $4.4(3.0) \sigma$
- Main systematic: JES and signal modeling.

$$\mathcal{B}(t \to \mu \nu b) \sigma(t \gamma j) = 115 \pm 17 (\mathrm{stat})^{+33}_{-27} (\mathrm{syst}) \ \mathrm{fb}$$
 $\sigma_{_{\mathrm{tv}}}(\mathrm{NLO})$ = 81 ± 4(scale+PDF) fb

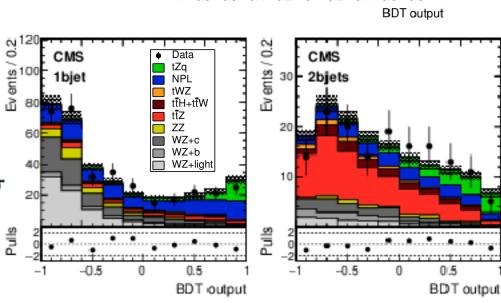
tZ-production in t-channel mode

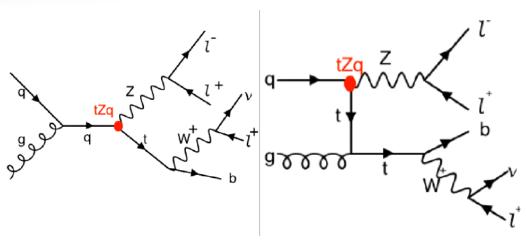


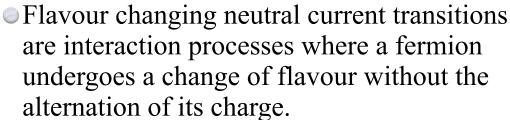

- Extremely rare process: 2 orders of magnitude smaller than tW.
- Sensitive to ttZ and triple gauge boson (WWZ) couplings: possible deviations may indicate physics BSM.
- Main backgrounds from ttV, WZ and non-prompt lepton production.

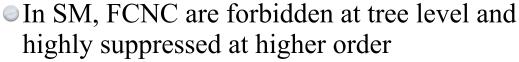
PLB 779 (2018) 358

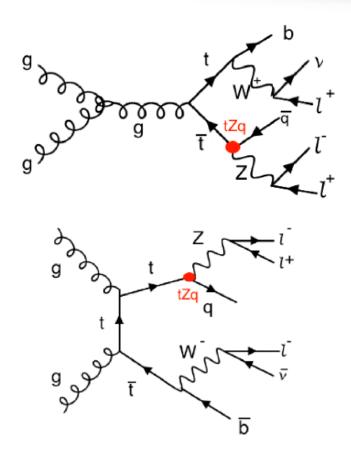
tZ@13TeV


- Signature: 3 leptons (2 OS leptons within ±10GeV around Z mass)
- Three regions defined for binned maximum-likelihood fit to 12 distributions: 1b-tag (main signal region), 2b-tag (ttZ) and 0b-tag (non-prompt leptons)
- BDT trained against WZ, ttV and ZZ using top and Z reconstruction: ME weights added to increase performance



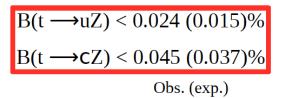

$$\sigma_{tz(II)q}(NLO) = 94.2 \pm 3.1 \text{ fb}$$


- Observed(expected) significance: $3.7(3.1)\sigma$
- Main systematic: Background normalization and signal modeling.

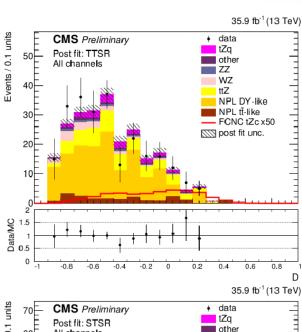

FCNC tZq

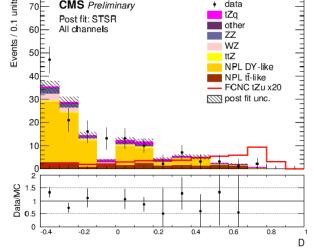
$$\gg$$
 BR(t \rightarrow u/c Z) $\approx 10^{-14}$

FCNC interaction might happen at the production or at the top quark decay.

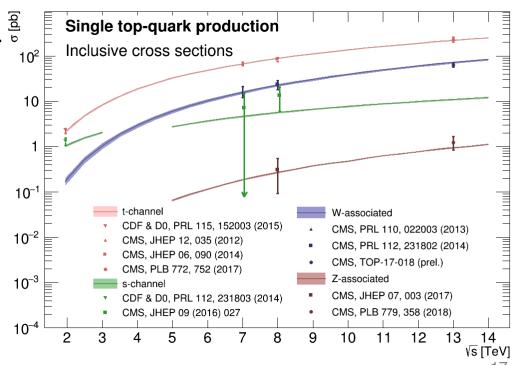

Several SM extensions enhance these BRs.

CMS-PAS-TOP-17-017 FCNC tZq@13TeV


- Search focused on single top & tt FCNC interactions observable in 31 final states, FCNC interaction happens at the production or at the top quark decay.
- Same selection as tZ analysis.
- Two simultaneous likelihood fits: one for single top and another one for tt FCNC.


4 lepton channels and 5 regions used.

	WZ	single top	top quark	single top	top quark
		quark	pair	quark	pair
	control region	signal region	signal region	control region	control region
	(WZCR)	(STSR)	(TTSR)	(STCR)	(TTCR)
Number of jets	$\geq 1, \leq 3$	1	\geq 2, \leq 3	1	$\geq 2, \leq 3$
Number of b jets	0	1	≥ 1	1	≥ 1
$ M(Z_{\text{reco}}) - M_Z $	Yes	Yes	Yes	No	No
< 7.5 GeV					
		the state of the s			


Main systematic: modeling, JES, b-tagging

Summary

- CMS single top covers a broad range of analysis.
- From precission measurements: t and tW channels.
- To evidences of new processes: s channel, tZ and tgamma.
- And searches for BSM processes: FCNC. $\frac{\overline{a}}{5}$
- Many more new results are coming soon.

Acknowledgement

- Thanks to Single top and Top group convenors and Single top team.
- Thanks to conference organisers.
- Thanks to my supervisors (Prof. Kirti Ranjan, Dr. Ashutosh Bhardwaj).
- Special thanks to Larissa and Sonia for an unforgettable help.

Thank you for your kind attention!