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@ In the last decades we have withessed a tremendous progress in the
understanding of the structure of supersymmetric theories.

® Semi-realistic vacua incorporating salient features of the MSSM have
been constructed

@ [he low-energy effective supergravity action has been reconstructed
iIncorporating loop (and stringy) effects



@ In particular a thorough study of radiative corrections to gauge
couplings has been performed, both In heterotic and open strings

@ IF

olp

IS study has led-

‘0 many results with applications both In

enomenology ar

d in testing the non-perturbative string dualities



IN THIS TALK | SHALL REVIEW SOME OF THE PROPERTIES OF
SUPERSYMMETRIC HETEROTIC THRESHOLDS, | SHALL EXTEND
THEM TO THE CASE WHERE SUPERSYMMETRY IS SPONTANEQUSLY
BROKEN AND SHALL PRESENT A CHIRAL FOU-DIMENSIONAL
MODEL WHICH DOES NOT SUFFER FROM THE
“DECOMPACTIFICATION PROBLEM”



OUTLINE

A very short review of radiative corrections in heterotic vacua

Universality in (non)supersymmetric heterotic vacua

A solution of the decompactification problem



A very short review of radiative corrections in heterotic vacua

Threshold corrections to gauge couplings in heterotic vacua
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In String Theory this amounts at computing the one-loop diagram

a N — — /d2 (V*(z,2) V*(0))
Ay N AY F 15




A very short review of radiative corrections in heterotic vacua

Threshold corrections to gauge couplings in heterotic vacua
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The thresholds clearly depend on the amount of supersymmetry present in the vacuum.

Four-dimensional orbifold compactifications with N=1 supersymmetry the thresholds are
O(1) numbers, unless the orbifold group contains sectors preserving (individually) N=2

supersymmetry.

In this case, the thresholds depend on the geometric moduli of spectator two-toril.
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A very short review of radiative corrections in heterotic vacua

Threshold corrections to gauge couplings in heterotic vacua

BPS saturated in N=2 theories

In the heterotic string: {Q,Q}=2P " +2p.T;

BPS states: mi = |pp|* (NS vacuum)



A very short review of radiative corrections in supersymmetric vacua

Threshold corrections to gauge couplings in heterotic vacua
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F.wF'" is BPS saturated in N=2 theories
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BPS states 47(1—2

Q g Universal contribution
— Qt’i . due to dilaton exchange
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A very short review of radiative corrections in supersymmetric vacua
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Universality of threshold corrections in heterotic vacua

c vacuum with N=1 supersymmetry the gauge thresholds

Ag=Y(T,U)—-pgA(T,U) +c

. o > (/ model dependent term
universal contribution (model dependence via beta

function coefficient)



A very short review of radiative corrections in supersymmetric vacua

Universality of threshold corrections in heterotic vacua

herefore, In the difference of gauge thresholds

AG — AG' — (,BG — ,BG) A(T, U)

and the power of supersymmetry uniguely fixes the functional dependence on the right-
hand side. In fact, ...



A very short review of radiative corrections in heterotic vacua

Universality of threshold corrections in heterotic vacua

In the difference of gauge thresholds, the universal dilaton exchange cancels and

C_

dzT 1
F G fq

L uncharged unphysical tachyon

Universality in the difference of gauge thresholds!
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A very short review of radiative corrections in heterotic vacua

The decompactification problem in heterotic vacua

Upon computing the modular integral one gets

As— Ag x (Pg — Pg) log [TzUz |’7(T) n(U) | 4]

From this expression one can immediately see the source of the problem

n(T) = e ™2 (1=e*™T) = Ag—Agx(Bs—PBe)Tr+ ..

n=1



A very short review of radiative corrections in heterotic vacua

The decompactification problem in heterotic vacua

In the large volume (decompactification) regime the gauge coupling becomes

strongly coupled or vanishes

Ag—Ag & (Bg—Be) Ty + ...

N special cases, the universal contributio

N can cancel this large volume dependence

for a given gauge group, but in general th

IS problem Is always prese

Nt ... (see later!)



Supersymmetry breaking in String Theory

The Scherk-Schwarz reduction

The Scherk-sSchwarz mechanisms for the spontaneous breaking of supersymmetry is
the (only) viable construction in (closed) superstring theory.

The breaking of supersymmetry is due to different boundary conditions for states in the

same supermultiplet, and the scale of supersymmetry breaking is ties to the size of
compact dimensions.

In String Theory, it admits an exact CFT description in terms of freely acting orbifolds.



Supersymmetry breaking in String Theory

The Scherk-Schwarz reduction

Caution!

When breaking supersymmetry in String Theory one has to be very careful
with the stabllity of the vacuum.

Tadpoles are expected to emerge at some order in perturbation theory.

However, often tachyons appear in the classical spectrum, thus invalidating
the whole analysis.




Supersymmetry breaking in String Theory

The Scherk-Schwarz reduction

Caution!

Therefore we shall restrict our analysis to four-dimensional non-tachyonic
heterotic vacua with spontaneously broken supersymmetry.

The theory Is classically stable, and a one-loop dilaton tadpole Is generated,
calling for a proper redefinition of the (classical) vacuum.

The one-loop corrections to low-energy couplings are not affected, and
thus can be reliably computed.



Supersymmetry breaking in String Theory

The Scherk-Schwarz reduction

The vacuum

T*  T?
- >< -
VAN &)
o [he Zj rotates the two complex e The Z, implements the [toyama-
[+ coordinates by opposite phases Taylor construction
e K3 singular limit (N=2,3,4,0) ® [tis a freely-acting (spontaneous)

oreaking of the ks x ks theory down
to the non-supersymmetric O(16) x
O(16) construction

o Would yield a four-dimensional
theory with two supersymmetries

® [he spectrum Is tachyon-free



Supersymmetry breaking in String Theory

The Scherk-Schwarz reduction

The vacuum

zZ1 — g2 /N
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Supersymmetry breaking in String Theory

The Scherk-Schwarz reduction

The partition function
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Supersymmetry breaking in String Theory

The Scherk-Schwarz reduction

The light spectrum

In the gravity sector: Suv, By, @, T,U,...

In the gauge sector: SO(12) x SO(16)
uj

Gravitini have got the mass m% /o = Ry :
LU,



Supersymmetry breaking in String Theory

The Scherk-Schwarz reduction

The light spectrum

—Xxtra massless states at special points of moduli space

- 1 1
O4O4V12 04 V16 X % (FQIQ + Fz/z ) ~ (12, 16)

charged with respect
{0 gauge group

1 2 2
2 _ |§T B U‘ N ( Rs 2 ) Remember these states.

Miiohtest —
IoUy They will play an important

role later on



Radiative corrections in theories with spontaneously broken supersymmetry
One-loop gauge thresholds for SO(12) and SO(16)

A.N. Florakis, M. Tsulaia, 2014, 2015]
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In String Theory this amounts (again) at computing the one-loop diagram

a N — — /d2 (V*(z,2) V*(0))
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Radiative corrections in theories with spontaneously broken supersymmetry
One-loop gauge thresholds for SO(12) and SO(16)

[C.A., |. Florakis, M. Tsulaia, 2014, 2015]

1
F F1 is no-longer BPS saturated all states run in the loop
487

The freely acted 72 Is no-longer spectator

s
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Radiative corrections in theories with spontaneously broken supersymmetry
One-loop gauge thresholds for SO(12) and SO(16)

[C.A., |. Florakis, M. Tsulaia, 2014, 2015]

Example: N=2
A2t EyE Eg — E2
A — / — L [ 5[0 & BPS sub-sector
SO(16) - Tzz { 48 2,2[0] 1724
AR[0] R 12\ | contribution of
I55]%) 11152 12 —34 (19§ B 192 ) ﬂ%ﬁi ((Ez N 19%) ﬂg@i 87712) hypermultiplets
i =1 _
O ) 1 930 (l§§ + 5‘11) ((Jﬁz — 1931) 930, + 8’712) BPS sub-sector
‘|‘F2,2[1] 96 ;724 (only for Z.)

+(S-7)+ (ST T)} non-holomorphic




Radiative corrections in theories with spontaneously broken supersymmetry
One-loop gauge thresholds for SO(12) and SO(16)

[C.A., |. Florakis, M. Tsulaia, 2014, 2015]

Example: N=2

Similar expressions for the SO(12) group.

In the difference of gauge thresholds the dilaton
exchange cancels out and one is left with

d*t 01 [ .04 |.q4 4,2 4| q4 4,2 4| q4 42 19% 19%%
Asons) ~Asona) ~ [ T Tal) [0 164+ 01 + of 08 - 04 — ok lod +otP] 2



Radiative corrections in theories with spontaneously broken supersymmetry
One-loop gauge thresholds for SO(12) and SO(16)

[C.A., |. Florakis, M. Tsulaia, 2014, 2015]

Example: N=2

Similar expressions for the SO(12) group.

In the difference of gauge thresholds the dilaton
exchange cancels out and one is left with

d*T I
Aso(16) — Aso(12) ~ 12 R 2 [0[0] (O5 Vs +3Vy) (O Vs — Vg)

N terms of the SO(2n) characters



Radiative corrections in theories with spontaneously broken supersymmetry
One-loop gauge thresholds for SO(12) and SO(16)

[C.A., |. Florakis, M. Tsulaia, 2014, 2015]

Example: N=2
d°T 0 2 3\ (A2 T 3
Aso(16) — Aso(12) ~ 12 —5 I22[0] (O Vs +3Vg) (O Vs — V)
Fo(2)

Still, this expressions looks very non-holomorphic ... however

O% Vs — V83 = 8 (one of the MSDS identities) [Florakis, Kounnas, 2009]

SO that



Radiative corrections in theories with spontaneously broken supersymmetry
One-loop gauge thresholds for SO(12) and SO(16)

[C.A., |. Florakis, M. Tsulaia, 2014, 2015]

Example: N=2

d*T P12
Aso(16) — Aso(12) = %/]-"0(2) = o (8 17%2>

The integrand is purely holomorphic, and can be “easily” computed

Similar expressions for the other K3 orbifolds.



Radiative corrections in theories with spontaneously broken supersymmetry
One-loop gauge thresholds for SO(12) and SO(16)

[C.A., |. Florakis, M. Tsulaia, 2014, 2015]

Asois) — Asonz) = & log [Tl [n(T)y (W) |*] + B log [Tolly [84(T)8a(U)[*

+ 7 log |[72(T/2) — J2(U) * j2(U) — 24|4_

Universality in the difference of gauge thresholds!

(even for non-supersymmetric vacua)



Radiative corrections in theories with spontaneously broken supersymmetry
One-loop gauge thresholds for SO(12) and SO(16)

[C.A., |. Florakis, M. Tsulaia, 2014, 2015]

Asois) — Asonz) = & log [Tl [n(T)y (W) |*] + B log [Tolly [84(T)8a(U)[*

+ log [[12(T/2) = (W) lja(U) — 241

The coefficients are O(1) numbers related to the difference of beta functions

This expression is invariant under I'(2) 1 x Iy(2)y, i.e. the left-over duality group.



Radiative corrections in theories with spontaneously broken supersymmetry
One-loop gauge thresholds for SO(12) and SO(16)

[C.A., |. Florakis, M. Tsulaia, 2014, 2015]

Asois) — Asonz) = & log [Tl [n(T)y (W) |*] + B log [Tolly [84(T)8a(U)[*

+ log [[12(T/2) = (W) lja(U) — 241

The term In the second line develops logarithmic singularities at T = 2U

and at their IH(2) images. Extra massless states appear there!



Radiative corrections in theories with spontaneously broken supersymmetry
One-loop gauge thresholds for SO(12) and SO(16)

[C.A., |. Florakis, M. Tsulaia, 2014, 2015]

Back to the (universal) expression

d*T P12
Aso(16) — Bso(12) = %/J.EO(Z) T—zzfz,z[?] (8 : >

The integrand is purely holomorphic.

s this amplitude BPS saturated”

If so, BPS states originate from the right-moving sector!

This is consistent with the MSDS identity, that seems to imply a
hidden spectral flow In the right-moving sector of the heterotic string!




Solving the decompactification problem in heterotic vacua

Preliminary observations

|C.A., |. Florakis, to appear]

Remember the origin of the problem ...

d’T
Aa—Ab:/ “ T Do (T, U)
F G

In the lattice unfolding approach to the evaluation of the integral, the linear volume
dependence comes from the vanishing orbit

To solve the problem one should change the integrand so that the vanishing orbit is
missing and one is left (at most) with logarithmic dependence




Solving the decompactification problem in heterotic vacua

Preliminary observations

|C.A., |. Florakis, to appear]

This clearly happens if supersymmetry is (partially) broken a la Scherk-Schwarz,
the orbifold action is freely acting. In this case the non-universal term reads

®,

A J duT,, [V |(T, U)
F (V)

and indeed it does not grow linearly with the volume, since the lattice shift implies
that the vanishing orbit is missing.




Solving the decompactification problem in heterotic vacua

Preliminary observations

|C.A., |. Florakis, to appear]

WEell ... is this the end of the story”? After all, model with spontaneous (partial) breaking of
supersymmetry have been studied since the 90’s!

ne main problem is, however, that this spontaneous breaking of supersymmetry is often
In conflict with four-dimensional chirality.

Take for instance the Z2 X Z2 orbifold, much studied in the literature. In this case,
chiral fermions emerge only from the twisted sector.

In the freely acting variant, twisted sectors are shorter and only enjoy N=2 supersymmetry,
thus being non-chiral.



Solving the decompactification problem in heterotic vacua

A chiral model without decompactification problem

|C.A., |. Florakis, to appear]

Therefore, If we want to get a chiral spectrum and, at the same time, avoid the
decompactitication problem, the freely-acting orbifold should admit a chiral untwisted sector

s this possible?

7125 x Z, U = e*'"'°
g:(é’é’g) > The CY Z orbifold
(; = (% _|_53, :_13 | 53,53) > The freely acting K3
O3: /L — 7 1 (1+ U) > An order-3 shift compatible with the structure of Z3 fixed points

3



Solving the decompactification problem in heterotic vacua

A chiral model without decompactification problem

|. Florakis, to appear]

C.A.,
1 1 1 1 1 1 1




Solving the decompactification problem in heterotic vacua

A chiral model without decompactification problem

|C.A., |. Florakis, to appear]

The gauge group Is

GIEGXESXU(DZ

and the untwisted sector comprises chiral multiplets in the (27,1) chiral representation



Solving the decompactification problem in heterotic vacua

A chiral model without decompactification problem

|C.A., |. Florakis, to appear]

Threshold corrections can be computed (almost explicitly) using the methods developed by
C.A. . Florakis and B. Pioline, and read

Ag=Y(T,U)—-pgA(T,U) +c

A=[ dufz,z[(l)](T,U)=%f dufz,z(%T,%(l+U))—%[ ApuT (T, U)
Z0(3) F F



Solving the decompactification problem in heterotic vacua

Threshold corrections can be co

A chiral model without decompactification problem

|C.A., |. Florakis, to appear]

Mputed (almost explicitly) using the methods developed by

C.A. I. Florakis and B. Pioline, ar

Ag=Y(T,U)—-pgA(T,U) +c

A =—log

d read

I, U>

n°(T/3) n°(U/3)

ntl) nU)

+ COSt



Solving the decompactification problem in heterotic vacua

A chiral model without decompactification problem

|C.A., |. Florakis, to appear]

Similarly

r & =9 S - - =3 B — - -
v dul 21T E>(E{Xs—2E4Be) 2] —3X3EaFy

= —— — 1152
144 Z0(3) | 2\ 2N\

= —241og|j(T) - j(U)|* - 242 logiTgUz \n(T)n(U)|4:

+exponentially suppressed terms



CONCLUSIONS

Surprisingly enough, radiative corrections may be still under
control even when supersymmetry is broken (universality)

[t IS possible to evade the decompactification problem
In chiral four-dimensional heterotic vacua



THANK YOU
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Very little progress in the understanding of non-supersymmetric string vacua

STILL, SUPERSYMMETRY IS ELUSIVE AT THE LHC ENERGIES

® Is supersymmetric spontaneously broken at very high scales?
® [s supersymmetry hardly broken at the string scale?
® [s supersymmetry at all realised in Nature?






