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Newtonian Gravitational Instabilities

Extremization of Boltzmann Entropy &
Poisson eq. give Emden.

1
r2

d

dr

(

r2 d

dr
φ(r)

)

= 4πGρ0e
−mβ(φ(r)−φ(0))

⇔
Hydrostatic equilibrium & ideal equa-
tion of state P = ρ/mβ.

dP(r)
dr

= −ρ(r)GM(r)

r2

The solutions of Emden eq. are called isothermal spheres.
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What happens to this 
direction of the spiral?
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At point A: Canonical instability “Isothermal Collapse”.

At point B: Microcanonical instability “Gravothermal Catastrophe”.



Constant Energy & Volume: Constant Temperature & Volume:

Instability at big radii. Instability at small radii.
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The Newtonian Gravitational Instability applies to big, low-energy systems.
Counter-intuitive to the relativistic paradigm!



Gravothermal Instability with Dark Energy 1, 2, 3

The reentrant radius defines the maximum size of a perturbation that can lead to

structure formation, i.e. the maximum turnaround radius. Quintessence increases

the reentrant radius, while phantom dark energy decreases it. Therefore, a

quintessence universe is expected to present richer large-scale structures, with

more and larger bounded systems, than a phantom universe.
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1ROUPAS, Axenides, Georgiou, Saridakis, PRD 89 (2014)
2Axenides, Georgiou, ROUPAS, Nucl Phys B, 871 (2013)
3Axenides, Georgiou, ROUPAS, PRD, 86 (2012)
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TOV equation from Maximum Entropy
TOV equation (hydrostatic equilibrium) is derived in G.R. by Einstein’s equations.
I have derived it from a maximum entropy principle as follows.
Let us preassume only the expression for the proper volume

d3x = 4πr2grr
1
2 dr , grr =

(

1− 2GM̂

rc2

)

−1

and not the whole set of Einstein’s equations.
For constant mass-energy M and number of particles N , the entropy

S =
∫

R

0
s(r)

(

1− 2GM̂(r)
rc2

)

−

1
2

4πr2dr , ds = c
2

T
dρ− µ

T
dn, (1)

attains an extremum if
δS − β̃c2δM + αδN = 0. (2)

This condition gives for the Lagrange multipliers

α =
µ(r)

T (r)
= const. (3)

β̃ =
1

T
(grr )

1
2 +

4πG

c4

∫

R

r

ρ(r̄ )c2 + P(r̄ )

T (r̄)
(grr (r̄ ))

3
2 r̄ d r̄ = const. (4)

and by use of standard thermodynamic relations and after some algebra we get

TOV equation and gtt .



Theorema

aROUPAS, Classical and Quantum Gravity (2013) and 32, 119501 (2015)

For static spherically symmetric perfect fluids in General Relativity, thermal

equilibrium requires these conditions to hold:

1 TOV equation:

dP

dr
= −(P/c2 + ρ)

(

GM(r)
r2

+ 4πGPr/c2
)(

1− 2GM(r)
rc2

)−1

2 Tolman’s & Klein’s relations:

T (r)
√
gtt = T̃ ≡ const. and µ(r)

√
gtt = µ̃ ≡ const.

3 The function gtt equals:

gtt = e
−2

∫

∞

r
dr

(

GM̂

r̄2
+4πG P

c2
r̄

)(

1− 2GM̂

r̄c2

)

−1

.

Thus, I was able to derive from entropy maximum, the equation of
hydrostatic equilibrium (TOV), Tolman’s effect and the time-time
component of the metric with no use of Einstein’s equations,
besides the proper volume.



Tolman-Ehrenfest effect: the ‘weight of heat’
In General Relativity, thermal energy rearranges itself to counterbalance its own
gravitational attraction. Hence, at thermal equilibrium, not only local density, but also
local temperature, are inhomogeneous. This is expressed by Tolman relation
T (r)

√
gtt = const., which may be expressed differentially in our case

dT (r)

dr
= −T (r)

(

GM(r)

r2
+ 4πGPr/c2

)(

1− 2GM(r)

rc2

)

−1

In the Newtonian limit this equation reads

∇T

T
=

~g

c2
, (5)

Let us derive it from the maximum entropy principle. Assume that a quantity of heat
|dE1| flows from one subsystem to another at a gravitational potential lower by ∆φ. The
energy received by the second subsystem equals to dE2 = −(dE1 +m∆φ) with
m = −dE1/c

2 the gravitational mass corresponding to the transferred heat. Now,
assuming that the two systems achieve equilibrium, the entropy is dS = dS1 + dS2 = 0
which after differentianting by dE2 and using 1/T = dS/dE gives

dS1

dE1
− dS2

dE2
= − dS2

dE2

∆φ

c2
⇒ ∆T

T
= −∆φ

c2
, (6)

which expresses equation (5). Evidently, the temperature gradient is a result of the

“mass of heat” m = |dE1|/c2.



Relativistic Equation of State
Using the relativistic one-particle energy:

ǫ = mc2
{

(

1 +
p2

m2c2

)
1
2

− 1

}

the Boltzmann distribution f = A(~r)e−βε leads to the equation of state:

The Relativistic Ideal Gas

P(r) = mc2
n(r)

b(r)
⇔ P =

1

b(1 + F(b))
ρc2

Newtonian limit b → ∞ : F ≃ 3
2b , ρ ≃ mn + 3m

2b , P ≃ ρ
β

Ultra-relativistic limit b → 0 : F ≃ 3
b
, P ≃ 1

3ρc
2

where b = mc2/kT and:

F(b) =
K1(b)

K2(b)
+

3

b
− 1 , Kn(b) =

∫

∞

0
e−b cosh ζ cosh(nζ)dζ

For a generally covariant proof see [W. Israel, J. Math. Phys. 1963]



Solutions of the following system are in dynamical and thermal equilibrium
in General Relativity:

dP

dr
= −(

P

c2
+ ρ)

(

GM̂

r2
+ 4πG

P

c2
r

)(

1− 2GM̂

rc2

)−1

dM̂

dr
= 4πρr2

db

dr
= − b

P + ρc2
dP

dr

P =
1

b(1 + F(b))
ρc2

with initial conditions: ρ(0) = ρ0, b(0) = b0, M̂(0) = 0 for r ∈ [0,R ].
We will also impose the constraint of fixed total rest mass

M ≡ mN =

∫

R

0
mn(r)

(

1− 2GM̂

rc2

)−
1
2

4πr2dr .



Relativistic Gravothermal Instability 4

Ultra max rest mass = 0.35Rc2/2G Relativistic Spiral
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where ξ = 2G
Rc2

Mrest and E = M −Mrest = thermal + gravitational energy

4ROUPAS, Classical and Quantum Gravity 32 135023 (2015)



Gravitational Collapse due to the Weight of Heat

A stable equilibrium at lower temperature. Relativistic Gravothermal Instability.
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Relativistic Fermi Gas

The equations of thermal equilibrium, normalized to:

ρ∗ =
8πm4

c
3

h3
, P∗ = ρ∗c

2 , r∗ =
(

4πG
c2

ρ∗
)−

1
2 , M∗ = r∗

c
2

G

become for the relativistic Fermi gas

P =
1

3

∫

∞

0

sinh4 θdθ

e−α+b cosh θ + 1
,
db

dr
= b

(

M̂

r2
+ Pr

)(

1− 2M̂

r

)−1

ρ =

∫

∞

0

sinh2 θ cosh2 θdθ

e−α+b cosh θ + 1
,
dM̂

dr
= ρr2

This is the system to be solved with initial conditions:

b(0) = b0 , M̂(0) = 0

and boundary condition:
ρR = 0.5ρN



Thermal Mass Limit of Neutron Cores 5
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1.27

Mmax = 2.43M⊙ at T̃ = 1190MeV with R = 15.2km

For Mobs = 2M⊙ it is T̃ = 180MeV with R = 14.4km

Relevant to hot proto-neutron stars and core-collapse supernovae.

5ROUPAS, Physical Review D, 91, 023001 (2015)



Conclusions

Gravitation is characterized by the presence of a double spiral in the
energy-temperature space. Thermal equilibria of a self-gravitating gas
are subject to a Newtonian gravitational instability at ‘low’ energies
and ‘big’ radii and a relativistic gravitational instability at ‘high’
energies and ‘small’ radii.

This relativistic instability of a hot gas is due to the weight of heat,
namely it occurs when the gravity of heat overcomes its stabilizing
effect against gravitational collapse.

There is an upper limit of the amount of rest mass that an ideal
self-gravitating gas can attain under any conditions, namely
Mrest < 0.35Rc2/2G .

TOV equation, Tolman’s relation and the time component of the
metric may be derived by maximum entropy principle and the proper
volume with no use of Einstein’s equations.

Hot protoneutron stars are subject to the relativistic gravitational
instability with Mmax = 2M⊙ at R = 14.4km.
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