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• Motivation

• (Some) theoretical proposals
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In 1873, Maxwell makes the connection between electricity 
and magnetism - the first Grand Unified Theory!



Magnetic monopoles: symmetrising Maxwell
• As no magnetic monopole had ever been seen, Maxwell kept isolated magnetic 

charges out from his equations – making them asymmetric
• A magnetic monopole restores the symmetry to Maxwell’s equations 

• Symmetrised Maxwell’s equations invariant under rotations in (E, B) plane of 
the electric and magnetic field

• Duality ➤ distinction between electric and magnetic charge is only a matter of 
definition
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Dirac’s monopole
Paul Dirac in 1931 • hypothesised that the 
magne8c monopole exists
In his concep8on the monopole was the end of •
an infinitely long and infinitely thin solenoid
Dirac’s • quan8sa8on condi8on:

where ▫ g is the magne&c charge and α is the fine 
structure constant 1/137

This means that • g = 68.5e (when n=1)! 
If magne8c monopole exists then •
charge is quan8sed:
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Dirac String



GUT monopoles
• ‘t Hooft and Polyakov (1974) 

showed that monopoles are 
fundamental solutions to non-
Abelian gauge grand unification 
theories (GUTs)

• Topological solitons: stable, non-
dissipative, finite-energy solutions

• Mass: 
▫ 1013 GeV < M < 1019 GeV 
▫ in intermediate stages of 

symmetry breaking: 
107 GeV < M < 1013 GeV 

➜ cannot be produced in 
accelerators

• Size: extended object
▫ radius > few femtometers
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Electroweak monopole
• In 1986 Cho & Maison [Phys.Lett. B391 

(1997) 360], envisioned a spherically-
symmetric electroweak (EW) monopole 
arising from the framework of the 
Weinberg-Salam model

• Non-trivial hybrid between the Dirac and 
the ‘t Hooft & Polyakov monopole

• Properties
▫ charge 2gD

▫ mass predicted to be ~4 ÷10 TeV
➜ accessible to LHC !   

• “The Price of an Electroweak Monopole”
Point-singularity makes estimate of mass 
classically impossible ➜ finite-energy 
solution needed [Ellis, Mavromatos, You, 
Phys.Lett. B756 (2016) 29] 
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Monopolium
Dirac or other monopoles may not be free states but bound states 
➜monopolium (MM)

Epele, Fanchiotti, Garcia-Canal, VAM, Vento, EPJ Plus 127 (2012) 60 [arXiv:1205.6120 [hep-ph]]

Production cross section 
@ LHC, √s = 14 TeV
vs. monopole mass

Binding energy fixed = 2m/15 , e.g. 
for m=750 GeV, binding energy = 100 GeV
à monopolium mass M = 1400 GeV

V.A. Mitsou
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Monopolium might break up into 
highly-ionising Dyons

Monopolium detection
• Via its decay to two photons [Epele, Fanchiotti, Garcia-Canal, VAM, Vento, arXiv:1607.05592]

• Monopolium is neutral in its ground state thus, if produced in such a state, it is difficult  
to detect it directly

• However… it may be produced in an excited state, 
which could be a magnetic multiple ➜ highly ionising

In presence of magnetic fields ➤ huge polarisability

V. Vento, in MoEDAL Physics Review, Int.J.Mod.Phys. A29 (2014) 1430050
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Its decay via photon 
emission would produce a 

peculiar trajectory 
in the medium, 

if the decaying states 
are also magneTc 

mulTpoles

☞ talk by Vicente Vento 
in “Avatars” workshop



• Single magnetic charge (Dirac charge): gD = 68.5e 
▫ higher charges are integer multiples of Dirac charge:  g = ngD,   n = 1, 2, ... 
▫ if carries electric charge as well, is called Dyon

• Large coupling constant:  g/Ћc ~ 34
• Monopoles would accelerate along field lines – and not curve as electrical 

charges in a magnetic field – according to the Lorentz equation 

• Dirac monopole is a point-like particle; GUT monopoles are extended objects 
• Monopole spin is not determined by theory ➙ free parameter
• Monopole mass not predicted within Dirac’s theory; other theories predict 

masses from O(TeV) (electroweak) to ≳ 1017 GeV (GUT) ➙ free parameter
• Monopole interaction with matter:  high ionisation, Cherenkov radiation, 

transition radiation and multiple scattering

Magnetic monopole properties in a nutshell
V.A. Mitsou
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Detection techniques•
Past results•
Currently operating •
experiments
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Illustration by Sandbox Studio, Chicago with Corinne Mucha

☞ talk by Laura Patrizii
on July 7th



Monopole origin

• Cosmic monopoles
▫ only way to probe GUT-scale 

monopoles
• Monopoles produced in high-

energy collisions
▫ only ≲ TeV masses accessible
▫ plus: indirect detection of virtual 

monopoles yielding multi-
photon events

• Various detection techniques
can be (have been) deployed to 
detect both cosmic and collider 
monopoles
▫ certain limitations apply
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Detection techniques
• High ionisation in gaseous detectors – transition radiation
▫ MACRO, ATLAS, …

• Induction technique in superconductive coils (SQUID)
▫ initially for cosmic monopoles; not competitive with other 

techniques nowadays
▫ for monopoles trapped in material: rocks, beam pipes, …

• Cherenkov light in scintillators
▫ cosmic monopoles 
▫ balloon-borne experiments
▫ deep-sea/ice experiments: ANTARES, IceCube

• Energy loss in nuclear track detectors
▫ cosmic (SLIM, …) 
▫ colliders: PETRA, Tevatron (D0), LEP (MODAL, OPAL), LHC (MoEDAL)

• Catalysis of nucleon decay
▫ GUT monopoles may catalyse B-number violating decays 

via the Callan-Rubakov mechanism
▫ Soudan, MACRO, IMB
▫ ν-telescopes: IceCube, Super-Kamiokande

V.A. MitsouICNFP2018
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velocity: β = v/c

Energy loss
charge

High ionisation (HI) possible when:
▫ multiple electric charge (H++, Q-balls, etc.) = n � e
▫ very low velocity & electric charge

▫ magnetic charge (monopoles, dyons) = ngD = n � 68.5 � e  
� a singly charged relativistic monopole has ionisation ~4700 times MIP!!

▫ any combination of the above 

= z/β
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Electric charge
Bethe-Bloch formula

Magne.c charge
Ahlen formula
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☞ talks by Igor Ostrovskiy & by 
Stanislav Pospisil in “Avatars” workshop



Nuclear Track Detectors (NTDs)
• Passage of a highly ionising particle through the 

plastic NTD marked by an invisible damage zone 
(“latent track”) along the trajectory

• The damage zone is revealed as a cone-shaped 
etch-pit when the plastic sheet is chemically 
etched

• Plastic sheets are later scanned to detect etch-pits

V.A. Mitsou
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Looking for 
aligned etch pits 

in multiple sheets
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NTD analysis procedure

• Electrically-charged particle: dE/dx ~ β-2 ➔ slows down appreciably within NTD 
➔ opening angle of etch-pit cone becomes smaller

• Magnetic monopole:  dE/dx ~ lnβ
▫ slow MM: slows down within an NTD stack ➔ its ionisation falls ➔ opening angle of the 

etch pits would become larger
▫ relativistic MM: dE/dx essentially constant ➔ trail of equal diameter etch-pit pairs

• The reduced etch rate is simply related to the restricted energy loss 
REL = (dE/dx)10nm from track

V.A. Mitsou
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see, e.g. Cecchini, Patrizii, Sahnoun, Sirri, Togo, arXiv:1606.01220



Induction technique

• Binding energy of monopoles in nuclei with finite 
magnetic dipole moments → O(100 keV)

• Monopole trapping volumes analysed with 
superconducting quantum interference device (SQUID)

• Persistent current: difference between resulting 
current after and before 
▫ first subtract current measurement for empty holder 
▫ if other than zero → monopole signature

V.A. Mitsou
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Typical sample &  pseudo-monopole curves



Induction – evidence?
• Data from Cabrera’s apparatus taken on St. Valentine’s day in 1982 
▫ the trace shows a jump consistent with a monopole traversing the coil

• In August 1985 a group at Imperial College London reported the “observation of 
an unexpected event” also compatible with a monopole traversing the detector 
▫ however their analysis conclude that “it is increasingly likely that Cabrera’s original 

candidate event was spurious”

V.A. MitsouICNFP2018
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Phys.Rev.Lett. 48 (1982) 1378

Cabrera’s event

ICL event

Nature 317 (1985) 234



Monopoles of cosmic origin
Searches in bulk ma0er•

terrestrial magne3c materials▫
meteorites▫
moon rocks: One of the first scien3fic ▫
experiments with moon rocks was to search 
for a concentra3on of magne3c monopoles

Searches in cosmic rays•
passive detectors, e.g. NTDs▫
Cherenkov detectors▫
scin3llators▫
streamer tubes▫
nucleon▫ -decay catalysis

Galac3c • magne3c field implies 
that monopole flux has to 
respect an upper limit 
➜ Parker bound

V.A. MitsouICNFP2018

20



Cosmic monopole searches
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Focus on “fast” (β>0.1) monopoles 
V.A. MitsouICNFP2018
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arXiv:1610.06397

☞ talk by Anna 
Pollmann in 
“Avatars” 
workshop



Monopole production at colliders

Various high ionisa,on techniques (including NTDs) and induc,on (D0, •
CDF, HERA) have been used to search for monopoles at colliders

Dirac monopole produc,on with • σ > 0.05 pb at LEP was excluded by

OPAL for 45 < mass < 102 GeV [Phys.LeU. B663 (2008) 37]

CDF • @ Tevatron excluded MM pair produc,on at the 95% CL for cross-

sec,on < 0.2 pb and monopole masses  200 < mM < 700 GeV 

[Phys.Rev.LeU. 96 (2006) 201801]
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Drell Yan mechanism Photon fusion

Production 
mechanisms 
in colliders

Box diagram



ATLAS @ LHC
• Distinct signals in Transition Radiation Tracker (high-

threshold hit) and EM calorimeter (large localised
energy deposit)

• Upper cross-section limits set for Dirac monopoles 
of mass of 200 – 2500 GeV

• Magnetic charges probed: 0.5 < |g|< 2.0 gD

V.A. MitsouICNFP2018
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energy-dispersion variable in EM calorimeter

☞ talk by Judita Mamuzic
in “Avatars” workshop



Monopole & Exotics Detector At LHC

MoEDAL is unlike any other LHC experiment:
▫ mostly passive detectors; no trigger; no readout
▫ the largest deployment of passive Nuclear Track Detectors  

(NTDs) at an accelerator
▫ the 1st time trapping detectors are deployed as a detector

DETECTOR SYSTEMS
� Low-threshold NTD 

(LT-NTD) array 
• z/β > ~5 – 10 

� Very High Charge 
Catcher NTD 
(HCC-NTD) array 
• z/β > ~50

� Monopole Trapping 
detector (MMT)

� TimePix radiation 
background 
monitor

MoEDALLHCb

V.A. Mitsou
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MoEDAL

MoEDAL physics program
Int. J. Mod. Phys. A29 (2014) 

1430050 
[arXiv:1405.7662] 

☞ talk by Jim Pinfold in 
“Avatars” workshop



Latest MoEDAL results

• Mass limits are highly
model-dependent
▫ Drell-Yan production does 

not take into account non-

perturbative nature of the 

large monopole-photon 

coupling

• World-best collider limits 

for |g| ≥ 2 gD

V.A. MitsouICNFP2018
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DY lower mass limits [GeV]
Magne8c charge |g|

gD 2gD 3gD 4gD 5gD

MoEDAL
13 TeV

2015+2016 
exp.

spin 0 600 1000 1080 950 690

spin ½ 1100 1540 1600 1400 —

spin 1 1100 1640 1790 1710 1570

spin 0, β-dep. 490 880 960 890 690

spin ½, β-dep. 850 1300 1380 1250 1070

spin 1, β-dep. 930 1450 1620 1600 1460

MoEDAL
13 TeV

2015 exp.

spin 0 460 760 800 650 —

spin ½ 890 1250 1260 1100 —

MoEDAL
8 TeV

spin 0 420 600 560 — —

spin ½ 700 920 840 — —

ATLAS 
8 TeV

spin 0 1050 — — — —

spin ½ 1340 — — — —

βg

Detector: 222 kg of Al bars

Exposure: 2.11 fb-1 of pp collisions

More • exposure (× 5.7) including 2016

New • interpretaUons w.r.t. previous

analyses

spin▫ -1 monopoles
▫ β-dependent γMMU coupling

PLB 782 (2018) 510 [arXiv:1712.09849]

for γ-fusion ☞ talks by 
Stephanie Baines & Arka

Santra in “Avatars” workshop



Collider searches summary (as of August 2017)

V.A. MitsouICNFP2018
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g = gD

RPP, Chin.Phys. C40 (2016) 100001



• Monopoles continue to excite interest and 
have been the subject of numerous 
experimental searches
• There are several strong arguments to 

expect that magnetic monopoles exist
• The MoEDAL experiment at the LHC is one 

of the key players in this quest
• Stay tuned for upcoming results !

Outlook
V.A. Mitsou
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Magnetic monopole mass
• No real prediction for classical Dirac monopole mass
▫ if monopole radius ~ electron radius ⇒ mmonopole ≈ n × (2.4 GeV)

• There are other models where monopoles could appear in a mass range 
accessible to the LHC. e.g.:  
▫ the electroweak Cho-Maison monopole 

[PLB 391 (1997) 360]
▫ the Troost-Vinciarelli monopole had a 

matter field: 50-100 GeV [PLB 63 (1976) 453]

• GUT monopoles
▫ ‘t Hooft and Polyakov (1974) showed that  monopoles are fundamental 

solutions to non-Abelian gauge “GUT” theories – in any theory with an 
unbroken U(1) factor embedded
▫ m(MGUT) ≥  mX/G > 1016 GeV � 1017 GeV ~ 0.02 �g - not producible by particle 

accelerators
• We consider the magnetic monopole mass a free parameter

V.A. Mitsou
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EW monopole
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MMT 2015-2016 results 
V.A. MitsouICNFP2018

32

Detector: prototype of 222 kg of Al bars
Exposure: 2.11 fb-1 of 13 TeV pp collisions 2015&2016

PLB 782 (2018) 510 [arXiv:1712.09849]
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Cosmic monopoles
V.A. MitsouICNFP2018
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F. Lauber, ICNFP2017


