

Searches for magnetic monopoles: A review

Vasiliki A. Mitsou

Mini-workshop on Highly Ionising Avatars of New Physics

Fundación **BBVA**

ICNFP 20187th International Conference on New Frontiers in Physics4 – 12 July 2018, Kolymbari, Crete, Greece

Magnetic monopoles

- Motivation
- (Some) theoretical proposals

talk by Sarben Sarkar in "AvaEars" workshop

ICNFP2018 V.A. Mitsou Gravity Motion of Planets Magnetism Electricity Molecular Forces Light Electromagnetism Newton Gravitation Weak Force Nucleus Proton **Electroweak Force Strong Force** MICTOCOSM CER Grand-Unification of Super-Unification Fermilab W **Electroweak and Strong Forces**

ICNFP2018 V.A. Mitsou

Super-Unification

Electroweak and Strong Forces

Magnetic monopoles: symmetrising Maxwell

- As no magnetic monopole had ever been seen, Maxwell kept isolated magnetic charges out from his equations – making them *asymmetric*
- A magnetic monopole restores the symmetry to Maxwell's equations

Name	Without Magnetic Monopoles	With Magnetic Monopoles
Gauss's law:	$\vec{\nabla} \cdot \vec{E} = 4\pi \rho_e$	$\vec{\nabla} \cdot \vec{E} = 4\pi \rho_e$
Gauss' law for magnetism:	$ec{ abla} \cdot ec{B} = 0$	$\vec{\nabla} \cdot \vec{B} = 4\pi\rho_m$
Faraday's law of induction:	$-\vec{\nabla}\times\vec{E}=\frac{\partial\vec{B}}{\partial t}$	$-\vec{\nabla}\times\vec{E}=\frac{\partial\vec{B}}{\partial t}+4\pi\vec{J}_m$
Ampère's law (with Maxwell's extension):	$\vec{\nabla} \times \vec{B} = \frac{\partial \vec{E}}{\partial t} + 4\pi \vec{J_e}$	$\vec{\nabla} \times \vec{B} = \frac{\partial \vec{E}}{\partial t} + 4\pi \vec{J_e}$

- Symmetrised Maxwell's equations invariant under rotations in (E, B) plane of the electric and magnetic field
- Duality >> distinction between electric and magnetic charge is only a matter of definition

Dirac's monopole

- Paul Dirac in 1931 hypothesised that the magnetic monopole exists
- In his conception the monopole was the end of an infinitely long and infinitely thin solenoid
- Dirac's quantisation condition:

$$ge = \left[\frac{\hbar c}{2}\right]n \quad OR \quad g = \frac{n}{2\alpha}e \quad (from \quad \frac{4\pi eg}{\hbar c} = 2\pi n \quad n = 1, 2, 3..)$$

- where **g** is the **magnetic charge** and α is the fine structure constant 1/137
- This means that g = 68.5e (when n=1)!
- If magnetic monopole exists then charge is quantised: [tc]

Dirac String

Imau

GUT monopoles

- 't Hooft and Polyakov (1974) showed that monopoles are fundamental solutions to non-Abelian gauge grand unification theories (GUTs)
- **Topological solitons**: stable, nondissipative, finite-energy solutions
- Mass:
 - $10^{13} \text{ GeV} < M < 10^{19} \text{ GeV}$
 - in intermediate stages of symmetry breaking: 10⁷ GeV < M < 10¹³ GeV
 - → cannot be produced in accelerators
- Size: extended object
 - radius > few femtometers

Electroweak monopole

- In 1986 Cho & Maison [Phys.Lett. B391 (1997) 360], envisioned a sphericallysymmetric electroweak (EW) monopole arising from the framework of the Weinberg-Salam model
- Non-trivial hybrid between the Dirac and the 't Hooft & Polyakov monopole
- Properties
 - charge 2g_D
 - mass predicted to be ~4 ÷10 TeV
 - → accessible to LHC !
- *"The Price of an Electroweak Monopole"* Point-singularity makes estimate of mass classically impossible → finite-energy solution needed [Ellis, Mavromatos, You, Phys.Lett. B756 (2016) 29]

A. Rajantie

Monopolium

Dirac or other monopoles may not be free states but bound states → monopolium (MM)

$$\sigma(2\gamma \to M) = \frac{4\pi}{E^2} \frac{M^2 \,\Gamma(E) \,\Gamma_M}{\left(E^2 - M^2\right)^2 + M^2 \,\Gamma_M^2}$$

Binding energy fixed = 2m/15, e.g. for m=750 GeV, binding energy = 100 GeV → monopolium mass M = 1400 GeV

Monopolium detection

- Via its decay to **two photons** [Epele, Fanchiotti, Garcia-Canal, VAM, Vento, arXiv:1607.05592]
- Monopolium is neutral in its ground state thus, if produced in such a state, it is difficult to detect it directly
- However... it may be produced in an excited state, which could be a magnetic multiple \rightarrow highly ionising

talk by Vicente Vento in "Avatars" workshop

In presence of magnetic fields \blacktriangleright huge polarisability

V. Vento, in MoEDAL Physics Review, Int.J.Mod.Phys. A29 (2014) 1430050

Magnetic monopole properties in a nutshell

- Single magnetic charge (Dirac charge): g_D = 68.5e
 - higher charges are integer multiples of Dirac charge: g = ng_D, n = 1, 2, ...
 - if carries electric charge as well, is called Dyon
- Large coupling constant: g/Ћс ~ 34
- Monopoles would accelerate along field lines and not curve as electrical charges in a magnetic field – according to the Lorentz equation

$$\vec{F} = g\left(\vec{B} - \vec{v} \times \vec{E}\right)$$

- Dirac monopole is a point-like particle; GUT monopoles are extended objects
- Monopole spin is not determined by theory \rightarrow free parameter
- Monopole mass not predicted within Dirac's theory; other theories predict masses from $\mathcal{O}(\text{TeV})$ (electroweak) to $\gtrsim 10^{17} \text{ GeV}$ (GUT) \rightarrow free parameter
- Monopole interaction with matter: high ionisation, Cherenkov radiation, transition radiation and multiple scattering

Searches for magnetic monopoles

- Detection techniques
- Past results
- Currently operating experiments

Illustration by Sandbox Studio, Chicago with Corinne Mucha

Monopole origin

- Cosmic monopoles
 - only way to probe GUT-scale monopoles
- Monopoles produced in highenergy collisions
 - only \leq TeV masses accessible
 - plus: indirect detection of virtual monopoles yielding multiphoton events
- Various detection techniques can be (have been) deployed to detect both cosmic and collider monopoles
 - certain limitations apply

Detection techniques

- High ionisation in gaseous detectors transition radiation
 - MACRO, ATLAS, ...
- Induction technique in superconductive coils (SQUID)
 - initially for cosmic monopoles; not competitive with other techniques nowadays
 - for monopoles trapped in material: rocks, beam pipes, ...
- Cherenkov light in scintillators
 - cosmic monopoles
 - balloon-borne experiments
 - deep-sea/ice experiments: ANTARES, IceCube
- Energy loss in nuclear track detectors
 - cosmic (SLIM, ...)
 - colliders: PETRA, Tevatron (D0), LEP (MODAL, OPAL), LHC (MoEDAL)
- Catalysis of nucleon decay
 - GUT monopoles may catalyse B-number violating decays via the Callan-Rubakov mechanism
 - Soudan, MACRO, IMB
 - v-telescopes: IceCube, Super-Kamiokande

High ionisation (HI) possible when:

- multiple electric charge (H⁺⁺, Q-balls, etc.) = $n \times e$
- very low velocity & electric charge
- magnetic charge (monopoles, dyons) = $ng_D = n \times 68.5 \times e$
 - a singly charged relativistic monopole has ionisation ~4700 times MIP!!
- any combination of the above

$$-\frac{dE}{dx} = K \frac{Z}{A} g^2 \left[\ln \frac{2m_e c^2 \beta^2}{I_m} + \frac{K |g|}{2} - \frac{1}{2} - B(g) \right]$$
Magnetic
Ahlen form

c charge

mula

stanislav Pospisil in "Avatars" workshop

Nuclear Track Detectors (NTDs)

- Passage of a highly ionising particle through the plastic NTD marked by an invisible damage zone ("latent track") along the trajectory
- The damage zone is revealed as a cone-shaped etch-pit when the plastic sheet is chemically etched

Plastic sheets are later scanned to detect etch-pits

CR39 3 sheets each 500 µm thick ALMROFOL 3 sheets each 20 µm thick I duminium face plate 25 cm x 25 cm

Looking for aligned etch pits in multiple sheets

NTD analysis procedure

- <u>Electrically-charged particle</u>: dE/dx ~ β⁻² → slows down appreciably within NTD
 → opening angle of etch-pit cone becomes smaller
- <u>Magnetic monopole</u>: dE/dx ~ lnβ
 - slow MM: slows down within an NTD stack → its ionisation falls → opening angle of the etch pits would become larger
 - relativistic MM: dE/dx essentially constant \rightarrow trail of equal diameter etch-pit pairs
- The reduced etch rate is simply related to the *restricted energy loss* REL = (dE/dx)_{10nm from track}

see, e.g. Cecchini, Patrizii, Sahnoun, Sirri, Togo, arXiv:1606.01220

Induction technique

- Binding energy of monopoles in nuclei with finite magnetic dipole moments $\rightarrow O(100 \text{ keV})$
- Monopole trapping volumes analysed with superconducting quantum interference device (SQUID)
- Persistent current: difference between resulting current after and before
 - first subtract current measurement for empty holder
 - if other than zero \rightarrow monopole signature

Typical sample & pseudo-monopole curves

Induction – evidence?

- Data from Cabrera's apparatus taken on St. Valentine's day in 1982
 - the trace shows a jump consistent with a monopole traversing the coil
- In August 1985 a group at Imperial College London reported the "observation of an unexpected event" also compatible with a monopole traversing the detector
 - however their analysis conclude that *"it is increasingly likely that Cabrera's original candidate event was spurious"*

Nature 317 (1985) 234

Monopoles of cosmic origin

- Searches in bulk matter
 - terrestrial magnetic materials
 - meteorites
 - moon rocks: One of the first scientific experiments with moon rocks was to search for a concentration of magnetic monopoles
- Searches in cosmic rays
 - passive detectors, e.g. NTDs
 - Cherenkov detectors
 - scintillators
 - streamer tubes
 - nucleon-decay catalysis
- Galactic magnetic field implies that monopole flux has to respect an upper limit
 - → Parker bound

Cosmic monopole searches

Annu. Rev. Nucl. Part. Sci. 65:279-302 Patrizii L, Spurio M. 2015.

ICNFP2018 V.A. Mitsou

Focus on "fast" (β >0.1) monopoles

Monopole production at colliders

- Various high ionisation techniques (including NTDs) and induction (D0, CDF, HERA) have been used to search for monopoles at colliders
- Dirac monopole production with σ > 0.05 pb at LEP was excluded by OPAL for 45 < mass < 102 GeV [Phys.Lett. B663 (2008) 37]
- CDF @ Tevatron excluded MM pair production at the 95% CL for crosssection < 0.2 pb and monopole masses 200 < m_M < 700 GeV [Phys.Rev.Lett. 96 (2006) 201801]

ICNFP2018 V.A. Mitsou

ATLAS @ LHC

PRD 93, 052009 (2016)

- Distinct signals in Transition Radiation Tracker (highthreshold hit) and EM calorimeter (large localised energy deposit)
- Upper cross-section limits set for Dirac monopoles of mass of 200 – 2500 GeV
- Magnetic charges probed: 0.5 < |g| < 2.0 g_D

ICNFP2018 V.A. Mitsou

Monopole & Exotics Detector At LHC

25

MoEDAL is unlike any other LHC experiment:

- mostly passive detectors; no trigger; no readout
- the largest deployment of passive Nuclear Track Detectors (NTDs) at an accelerator
- the 1st time **trapping detectors** are deployed as a detector

DETECTOR SYSTEMS

(1) Low-threshold NTD (LT-NTD) array • $z/\beta > ^{5} - 10$

- Very High Charge Catcher NTD (HCC-NTD) array
 z/β > ~50
 - $z/\beta > ~50$
- ③ Monopole Trapping detector (MMT)
- ④ TimePix radiation background monitor

MoEDAL physics program Int. J. Mod. Phys. A29 (2014) 1430050 [arXiv:1405.7662]

Latest MoEDAL results

- More exposure (× 5.7) including 2016
- New interpretations w.r.t. previous analyses
 - spin-1 monopoles

• β -dependent $\gamma M \overline{M}$ coupling

DY lower mass limits [GeV]		Magnetic charge g					
		g _D	2g _D	3g _D	4g _D	5g _D	
	spin 0	600	1000	1080	950	690	
MoEDAL	spin ½	1100	1540	1600	1400	—	
13 TeV	spin 1	1100	1640	1790	1710	1570	
2015+2016	spin 0, β-dep.	490	880	960	890	690	
exp.	spin ½, β-dep.	850	1300	1380	1250	1070	
	spin 1, β-dep.	930	1450	1620	1600	1460	
MoEDAL	spin 0	460	760	800	650	—	
2015 exp.	spin ½	890	1250	1260	1100	—	
MoEDAL	spin 0	420	600	560	_	—	
8 TeV	spin ½	700	920	840	—	—	
ATLAS	spin 0	1050	—	—	—	—	
8 TeV	spin ½	1340	_	_	_	_	

Detector: **222 kg** of Al bars Exposure: **2.11 fb**⁻¹ of *pp* collisions

Mass limits are highly
 model-dependent

- Drell-Yan production does not take into account nonperturbative nature of the large monopole-photon coupling
- World-best collider limits for |g| ≥ 2 g_D

PLB 782 (2018) 510 [arXiv:1712.09849]

for γ-fusion ☞ talks by Stephanie Baines ∉ Arka Santra in "Avatars" workshop

Collider searches summary (as of August 2017)

Outlook

- Monopoles continue to excite interest and have been the subject of numerous experimental searches
- There are several strong arguments to expect that magnetic monopoles exist
- The MoEDAL experiment at the LHC is one of the key players in this quest
- Stay tuned for upcoming results !

Thank you for your attention!

ICNFP2018 V.A. Mitsou

Magnetic monopole mass

- No real prediction for classical Dirac monopole mass
 - □ if monopole radius ~ electron radius \Rightarrow m_{monopole} \approx n × (2.4 GeV)
- There are other models where monopoles could appear in a mass range accessible to the LHC. e.g.:
 - the electroweak Cho-Maison monopole [PLB 391 (1997) 360]
 - the Troost-Vinciarelli monopole had a matter field: 50-100 GeV [PLB 63 (1976) 453]
- GUT monopoles

- 't Hooft and Polyakov (1974) showed that monopoles are fundamental solutions to non-Abelian gauge "GUT" theories – in any theory with an unbroken U(1) factor embedded
- □ $m(M_{GUT}) \ge m_{\chi}/G > 10^{16} \text{ GeV}$ 10¹⁷ GeV ~ 0.02 g not producible by particle accelerators
- We consider the magnetic monopole mass a free parameter

MMT 2015-2016 results

Detector: prototype of **222 kg** of Al bars Exposure: **2.11 fb**⁻¹ of **13 TeV** *pp* collisions 2015&2016

PLB 782 (2018) 510 [arXiv:1712.09849]

Cosmic monopoles

F. Lauber, ICNFP2017