The ICARUS experiment

Between LNGS and FNAL

Christian Farnese
Università di Padova
and INFN

on behalf of the ICARUS Collaboration

ICNFP 2018, Crete, July 12th
Outline

- LAr-TPC technology: ICARUS T600 performance and results @ LNGS.
- Search for sterile neutrinos at FNAL: the Short Baseline Neutrino Experiment.
- Generalities on the ICARUS T600 overhauling.
- T600 current status.
- Conclusions.

Present ICARUS Collaboration

Brookhaven National Laboratory (BNL), USA
Colorado State University, USA
Fermi National Laboratory (FNAL), USA
University of Houston, USA
INFN Sez. di Catania and University, Catania, Italy
INFN GSSI, L’Aquila, Italy
INFN LNGS, Assergi (AQ), Italy
INFN Sez. di Milano Bicocca, Milano, Italy
INFN Sez. di Napoli, Napoli, Italy
INFN Sez. di Padova and University, Padova, Italy
INFN Sez. di Pavia and University, Pavia, Italy
Los Alamos National Laboratory (LANL), USA
University of Pittsburgh, USA
University of Rochester, USA
SLAC, Stanford, CA, USA
University of Texas (Arlington), USA

+CERN and others INFN groups involved in the SBN program

Spokesman: C. Rubbia, GSSI
ICARUS T600: the first large Liquid Argon TPC (760 t of LAr)

- ICARUS-T600 LAr TPC is a high granularity uniform self-triggering detector with 3D imaging and calorimetric capabilities, ideal for ν physics. It allows to accurately reconstruct a wide variety of ionizing events with complex topology.
- Exposed to CNGS beam, ICARUS concluded in 2013 a very successful 3 years run at Gran Sasso INFN underground lab, collecting 8.6×10^{19} pot event statistics, with a detector live time >93%, and cosmic ray events.

Two identical modules: 476 t total active mass:

- 2 TPC's per module, with a common central cathode: $E_{\text{Drift}} = 0.5$ kV/cm, $v_{\text{Drift}} \sim 1.6$ mm/μs, 1.5 m drift length;
- 3 "non-destructive" readout wire planes per TPC, ≈ 54000 wires at 0°, $\pm 60^\circ$ w.r.t. horizontal: Induction 1, Induction 2 and Collection views;
- Ionization charge continuously read (0.4 μs sampling time);
- 74 8" PMT's, coated with TPB wls, for t_0, timing and triggering.
ICARUS LAr-TPC performance (CNGS ν’s and cosmics)

- **Tracking device**: precise 3D event topology, ~1 mm³ resolution for any ionizing particle;
- **Global calorimeter**: full sampling homogeneous calorimeter; total energy reconstructed by charge integration with excellent accuracy for contained events; momentum of non contained µ by Multiple Coulomb Scattering (MCS) with Δp/p ~15%;
- **Measurement of local energy deposition dE/dx**: remarkable e/γ separation (0.02 X₀ sampling, X₀=14 cm and a powerful particle identification by dE/dx vs range):

 \[
 \text{dE/dx (MeV/cm) vs. residual range (cm) for } p, \pi, \mu \text{ compared to Bethe-Bloch curves}
 \]

 - **Low energy electrons**:
 \[\sigma(E)/E = 11\% / \sqrt{E} \text{ (MeV) + 2\%} \]
 - **Electromagnetic showers**:
 \[\sigma(E)/E = 3\% / \sqrt{E} \text{ (GeV)} \]
 - **Hadron showers**:
 \[\sigma(E)/E \approx 30\% / \sqrt{E} \text{ (GeV)} \]

Validation on \(p_{MCS} \) of stopping µ’s, compared with calo estimate.
Ve CC identification in CNGS beam: Electron/gamma separation

Three “handles” to separate e/γ and reject NC background:

- reconstruction of π⁰ invariant mass
- dE/dx: single vs. double m.i.p.
- γ conversion separated from primary vertex

Evolution in Collection view from single m.i.p. to e.m. shower evident from dE/dx (MeV/cm) on individual wires.
ICARUS collected @ LNGS also atmospheric ν_e and ν_μ CC interactions

These events are particularly suitable to emulate the ν interactions expected with FNAL beams (more on this later) because of the similar energy range.

Example of upward-going ν_μ CC even with a deposited energy ~ 1.7 GeV:

- 4 m escaping μ, 1.8 ± 0.3 GeV/c from MCS;
- Two pions ($E_{\text{dep}} \sim 80$ MeV) and a proton ($E_{\text{dep}} \sim 250$ MeV) at vertex.
- Reconstructed $E_\nu \sim 2$ GeV with $\sim 78^\circ$ zenith angle.

Downward-going, quasi elastic ν_e event.

- Deposited energy: 240 MeV
- $dE/dx \sim 2.1$ MeV/cm measured on first wires corresponds to a m.i.p.
- Short proton track recognized.
Cosmic ray events recorded in ~0.48 kton γ exposure (2012-2013 run) analyzed to identify atmospheric ν events.

Incoming c-rays identified and rejected by factor ~ 100

ν CC candidates with $E_{\text{dep}} > 200$ MeV are automatically pre-selected ($\sim 80\% / \sim 25\%$ efficiency for ν_e / ν_μ), then validated by visual scanning;

Globally 6 ν_μCC and 8 ν_eCC atmospheric neutrino events identified, to be compared with 18 expected events, evaluated taking into account of the trigger, filtering and scanning efficiencies;

see C. Farnese’s poster “Atmospheric neutrino search in the ICARUS T600 detector”
ICARUS run at LNGS allowed reaching several physics/technical results demonstrating the maturity of the LAr-TPC technology:

- An exceptionally low level ~20 p.p.t. [O₂] eq. of electronegative impurities in LAr; the measured e- lifetime \(\tau_{\text{ele}} > 15 \text{ ms} \) ensured few m long drift path of ionization e- signal without attenuation;
- Demonstrated detector performance especially in \(\nu_e \) identification and \(\pi^0 \) bkg rejection in \(\nu_\mu - \nu_e \) study to unprecedented level;
- Performed a sensitive search for LSND-like anomaly with CNGS beam, constraining the LSND window to narrow region at: \(\Delta m^2 < 1 \text{ eV}^2 \), \(\sin^2 2\theta \sim 0.005 \) where all positive/ negative experimental results can be coherently accommodated at 90% C.L., confirmed by \textit{OPERA}.

Success of LAr-TPC technology with large impact on neutrino and astro-particle physics projects: SBN short base-line neutrino program at FNAL with 3 LAr-TPC's (SBND, MicroBooNE and ICARUS) and the multi-kt DUNE LAr-TPC.

Anomalies have been collected in last years in neutrino sector, despite the well-established 3-flavour mixing picture within Standard Model:

- appearance of ν_e from ν_μ beams in accelerator experiments (LSND 3.8σ evidence for oscillation, recent updates from MiniBooNE);
- disappearance of anti-ν_e, hinted by near-by nuclear reactor experiments (ratio observed/predicted event rates $R = 0.938 \pm 0.024$);
- disappearance of ν_e, hinted by solar ν experiments during their calibration with Mega-Curie sources (SAGE, GALLEX, $R = 0.84 \pm 0.05$).

Table I:

<table>
<thead>
<tr>
<th>Category</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconstrained Bkgd.</td>
<td>1590.5</td>
</tr>
<tr>
<td>Constrained Bkgd.</td>
<td>1577</td>
</tr>
<tr>
<td>External Events</td>
<td>75.2</td>
</tr>
</tbody>
</table>

The expected (unconstrained) number of events for ν_e is 381.2 ± 85.2 events. Note that the 162.0 event excess in the ν_e from K^- decay corresponds to a distribution from LSND. The significance of the combined LSND excess is 3.8σ. The expected number of events for ν_μ is 425.3 ± 192.2 events. The difference in background expectations of $38(\pm 44) \nu_e$ and $463.1 \pm 100.0 \nu_\mu$ is significant (3.4σ).

1. **MiniBooNE**
 - low-energy excess: $381.2 \pm 85.2 \nu_e$ events (4.5σ evidence)
 - $\bar{\nu}_e$: 12.84×10^{20} POT
 - total $\nu_e + \bar{\nu}_e$ excess: 460.5 ± 95.8 ev., 4.8σ

2. **BooNE neutrino and antineutrino data**
 - there are a total of 200 events in both neutrino mode and antineutrino mode, corresponding to a distribution from LSND. The allowed range of excesses is $-2 < E < 1250$ MeV, compared to a background expectation of 1577 events. The expected number of events from K^- decay is 1250 MeV, compared to a background expectation of 162.0 events. The 460.5 ± 95.8 ev., 4.8σ excess is significant.
Results hint to a new “sterile” flavor, described by $\Delta m^2 \sim \text{eV}^2$ and small mixing angle, driving oscillations at short distance:

- ICARUS constrained $\Delta m^2_{\text{new}} \leq 1 \text{ eV}^2$, small mixing;
- Planck data and Big Bang cosmology point to at most one further flavor with $m_{\text{new}} < 0.24 \text{ eV}$;
- No evidence of ν_μ disappearance in MINOS and IceCube in 0.32–20 TeV;
- Recent reactor data (especially NEOS) are intriguing but still not conclusive.
- New results are expected from ongoing and upcoming experiments at reactors.

The Experimental Scenario Calls for a Definitive Clarification!
Short Baseline Neutrino (SBN) in a nutshell

$L/E_\nu \sim 600 \text{ m} / 700 \text{ MeV} \sim \sigma(1 \text{ m}/\text{MeV})$

T600 also off-axis on NUMI beam: Asset for DUNE

FAR DETECTOR: T600 – 476 ton

MicroBooNE 89 ton

NEAR DETECTOR: SBND – 82 ton
Sensitivity to Sterile neutrino @ SBN

SBN can clarify the issue by exploiting similar LAr-TPCs at different distances from the target

- SBND will give the “initial” BNB flux/composition
- ICARUS, as far detector, will characterize the ν oscillation parameters.

$\Delta m^2 = 0.43 \text{ eV}^2 \quad \sin^2 2\theta = 0.013$

ν_e appearance: LSND 99% CL region covered at 5 σ level

Both plots: 6.6×10^{20} pot (3 years) $3-5 \sigma \nu_\mu$ disapp. SBN sensitiv.
ICARUS at FNAL is facing a more challenging experimental condition than at LNGS, requiring the recognition of ν interactions amongst 11 KHz of cosmic rays.

- A 3 m concrete overburden will remove contribution from charged hadrons/γ's.
- $\sim11 \mu$ tracks will occur per triggering event in 1 ms TPC drift readout: associated γ's represent a serious background source for ν_e search since e's produced via Compton scatt./ pair prod. can mimic a genuine ν_e CC.

Rejecting cosmic background, i.e. reconstructing the triggering events, requires to precisely know the time of each track in the TPC image:

- A much improved light detection system, with \simns time resolution;
- An external cosmic ray tagger (CRT) to detect incoming particles and measure their direction of propagation by time-of-flight:
 - Scintillating bars surrounding T600 (aim: 98% coverage) equipped with optical fibers to convey light to SiPM arrays.
 - Top coverage under INFN/ CERN responsibility. FNAL is recovering modules by MINOS/Double Chooz for side/bottom.
ICARUS T600 Overhauling at CERN (WA104/NP01)

To face the new experimental situation at FNAL (shallow depth data taking with higher beam rate) ICARUS T600 detector underwent an intensive overhauling at CERN in 2015/17 in the framework of CERN Neutrino Platform (WA104/NP01 project) before being shipped to FNAL:

- New cold vessels, purely passive insulation;
- Renovated cryogenic / LAr purification equipment;
- Flattening of TPC cathode: few mm planarity;
- Upgrade of light collection system;
- New higher performance TPC read-out electronics

T600 leaving from CERN June 12th 2017

T600 arriving at SBN Far site building @FermiLab, July 26th 2017

T600 in Antwerp: unloading from barge from Basel and loading into ship to Burns Harbor (Michigan lake)
The light collection system

In ICARUS, light collection is used to:

- Identify precisely the time of occurrence (T_0) of each interaction;
- Identify the event topology for fast selection purposes;
- Generate a trigger signal to enable the event read-out by combining:
 - Pattern/majority of hit PMT signals
 - BNB/NuMI bunched beam spill
 - Veto from CRT

The light collection system is based on 360 PMT's, 90/chamber, to have:

1. High detection coverage, to be sensitive to the lowest-expected neutrino energy deposition in the TPC (approximately 100 MeV), also using the light fast-component only;
2. High detection granularity, longitudinal resolution is better than 0.5 m (effective Q.E. = 5%).
3. Fast response time/ high time resolution (≈ 1 ns), with a PMT timing calibration provided by a laser system (Hamamatsu PLP10, $\lambda \sim 450$ nm, FWHM<100 ps, peak power ~ 400 mW) + 50 μm optical fiber.
PMT layout

- **90 PMT's per TPC layout**: 5% cathode coverage area, 15 phe/MeV deposited energy collected.

- Hamamatsu R5912-MOD (8”, 10 dynodes) rated for cryogenic temperature (cathode with platinum under-layer).
- Each PMT is enclosed in a wire screening cage to prevent induction of PMT pulses on the facing TPC wires.
- PMT glass windows coated by ~200 µg/cm² of Tetra-Phenyl-Butadiene wavelength shifter to detect the λ = 128 nm scintillation light in LAr.

Possible cosmic µ's identification provided by pattern/time recognition of PMT signals
The new TPC read-out electronics

- **ICARUS** electronics at LNGS was based on analogue low noise “warm” front-end amplifier, a multiplexed 10-bit 2.5 MHz ADC and a digital VME module for local storage, data compression, trigger information:

 \[
 S/N \sim 9 \text{ in Collection, } \sim 0.7 \text{ mm single hit resolution, resulting in a precise spatial event reconstr. and } \mu \text{ momentum measurement by MCS.}
 \]

- **Improvements concern:**
 - **Serial 12 bits ADC**, one per ch, 400 ns sampling synchronous on the whole detector;
 - **Serial bus architecture with Gbit/s optical links** to increase the bandwidth (10 MHz);
 - Both analogue/digital electronics are housed in a single board inserted in a new mini-crate directly installed on ad-hoc signal feedthrough flanges

CAEN A2795 board, 64 chs

Slide# : 17
Improved front-end electronics for T600

In the new T600 analogue front-end the adopted improvements concern:

- A faster shaping time $\sim 0.6 \, \mu s$ of analogue signals to match electron transit time in wire plane spacing;
- A drastic reduction of undershoot in the preamp response as well as of the low frequency noise while maintaining a same or better S/N;
- A same preamp for Induction1,2 and Collection wires allowing dE/dx measurement in Induction2 too.

In addition the full 400 ns synchronous signal sampling on the whole detector will allow slightly improving the resolution on μ momentum by MCS.

- Same ~ 2ADC counts ($\sim 1500 \, e^-$) noise for Collect. & Induct.;
- Unipolar Coll signal: ~ 25 ADC counts; Symmetric bipolar Ind. Signal
- After signal integration by a running sum and baseline restoring, a S/N ~ 10 is recognized in Induction view

Better event reconstruction provided!

Single 45° m.i.p. μ track
ICARUS event reconstruction @ SBN 1/2

- Common SBN framework (LarSoft) used, providing tools to simulate (Geant4), reconstruct/identify events (cosmic μ's, e.m. showers, neutrinos, ...).
- Experimental geometry setup is described in LarSoft.
- Scintillation light in LAr is parameterized to simulate PMT signals for any MC event, to study trigger and event recognition.
- MC simulations include new wire electronic response, realistic noise, as well as PMT scintillation light signals.

![Diagram of ICARUS detector hall](image)

- Detector hall
- Overburden
- Warm vessel
- TPC
- CRT
- Cryostat

Typical wire shape for 1 m.i.p. μ

- Collection
- Induction 2
- Induction 1

Simulated PMT signal

Ind.2 signal, including noise
Some advanced tools already ported in Larsoft:

- LAr purity $\lambda = 1/\tau_{\text{ele}}$ (τ_{ele}: electron lifetime) measurement from charge attenuation of cosmic μ’s tracks along the drift
 - Track selection at shallow depth difficult due to crowded events and lower energy μ’s
- Particle ID, based on dE/dx vs range
- Electromagnetic shower axis identification
 - Provides 3D reconstruction of shower

Particle ID Preliminary

- Track inclination: $0.35 \div 2.4$ cm per wire
- **Expected dE/dx**

Software is mature enough to realistically simulate events with BNB beam
BNB (MC) and real atmospheric ν_eCC events comparison

MC SBN ν_eCC interactions

- ν_eCC $E_\nu = 1.26$ GeV
- $E_{\text{dep}} = 1.2$ GeV

BNB beam (MC)

- Region overlapped to the vertex

- very alike to typical atmospheric νeCC events @ LNGS (below)

- Similar results hold for ν_μCC interactions

LNGS ν_e ATMOSPHERIC EVENT

- Quasi-elastic ν_eCC $E_{\text{Dep}} = 0.9$ GeV.

- Proton identified by dE/dx.

- Electron identified by single m.i.p. before showering
ICARUS @ FNAL 1/2 - Status

- Warm vessel floor/walls were assembled/installed in the pit in the Far Detector (FD) building in 2017.
- Bottom CRT modules (200 m² total area) already installed in 2017.
- Assembly of cold shields completed (May 2018), now under leak test.
- Installation of detector supports is in progress. Should be done by July 2018.
- Main vessels doors sealed. Helium leak tests ongoing...
Detectors insertion in Warm Vessel - July-August 2018

Top part of cold shield will be then installed and tested, followed by installation of top part of warm vessel (August - September 2018).

From Fall 2018, activities on top of detector will start (cryo, purification and vacuum systems, ext. cabling, read-out & decoupling boards, feedthrough flanges, optical fibers,...)

Vacuum pumping should start by late 2018 / early 2019 and last until ready to start cool-down.

Detector commissioning will consist of three phases:

- Cryogenic commissioning: Vacuum (1 month), Cooling (15 days), Filling (15 days), Purification (1 month), Stabilization (1 month).
- TPC and PMT system commissioning (2 months in total): HV system, PMT's supply, calibrations, DAQ & trigger commissioning.
- CRT commissioning: in parallel with the activities for the completion of cryo, TPC and PMT system commissioning.
Conclusions

- LAr-TPC detection technique taken to full maturity with ICARUS-T600.
- ICARUS completed in 2013 a successful continuous 3-year run at LNGS exposed to CNGS neutrinos and cosmic rays, and performed a sensitive search for a potential ν_e excess related to the LSND-like anomaly defining a narrow region at $(\Delta m^2, \sin^2 2\theta) \sim (1 \text{ eV}^2, 0.005)$. No excess evidence, as confirmed by OPERA.
- The T600 underwent a major overhauling at CERN and has been transported to FNAL to be exposed to Booster and NuMi neutrinos.
- SBN experiment will provide a clarification of the sterile neutrino issue, both in appearance and disappearance modes.
- Installation in the Far Site building @ FNAL is in progress
 - vacuum pumping should start at the earliest in winter 2018.
 - Detector commissioning while waiting for clearance by FNAL (by Jan - Feb 2019) to start cool-down. Then data taking for physics!
Thank you!