Dark Matter and Baryon Asymmetry Production during Inflation

Dmitry Gorbunov

New Frontiers in Physics ICNFP 2018

Institute for Nuclear Research of RAS, Moscow

OAC Kolymbari, Crete, Greece

Dmitry Gorbunov (INR) [DM and BAU production at inflation](#page-15-0) 12.07.2018, OAC Crete 1/16

ИI ЯN ИR

Interplay: Standard Model and Cosmology

Gauge fields (interactions): γ, *W*±, *Z*, *g* Three generations of matter: $\mathcal{L} = \left(\frac{\mathsf{v}_L}{\mathsf{e}_L}\right)$, \boldsymbol{e}_R ; $\boldsymbol{Q} = \left(\frac{\mathsf{u}_L}{\mathsf{d}_L}\right)$ *dL* , *dR*, *u^R*

- **SM Describes**
	- \blacktriangleright all experiments dealing with electroweak and strong interactions
- SM fails to describe (PHENO) (THEORY)
	- \triangleright Neutrino oscillations
	- **► Dark matter (Ω**_{DM})
	- **E** Baryon asymmetry (Ω_B)
	- \blacktriangleright Inflationary stage

Cosmology asks for new physics Ω_{DM} ∼ Ω_B Can all the three have the same origin. . . ?

- \blacktriangleright Dark energy (Ω_Λ)
- \triangleright Strong CP-problem
- \triangleright Gauge hierarchy
- \triangleright Quantum gravity

Astrophysical and cosmological data are in agreement

$$
\left(\frac{\dot{a}}{a}\right)^2 = H^2(t) = \frac{8\pi}{3} G \rho_{\text{density}}^{\text{energy}}
$$

$$
\rho_{\text{density}}^{\text{energy}} = \rho_{\text{radiation}} + \rho_{\text{matter}}^{\text{ordinary}} + \rho_{\text{matter}}^{\text{dark}} + \rho_{\Lambda}
$$

 $\rho_{\text{radiation}} \propto 1/a^4(t) \,, \ \ \rho_{\text{matter}} \propto 1/a^3(t) \,, \ \ \rho_{\Lambda} = \text{const}$ $\frac{3H_0^2}{8\pi G} = \rho_{\text{density}}^{\text{energy}}(t_0) \equiv \rho_c \approx 0.53 \times 10^{-5} \, \frac{\text{GeV}}{\text{cm}^3}$

Radiation: $\frac{\rho_\gamma}{\rho_c}=$ 0.5 \times 10^{−4} Baryons (H, He): $\frac{\rho_{\textrm{B}}}{\rho_{c}}=$ 0.05 Neutrino: $\frac{\sum \rho_{v_i}}{\rho_c} < 0.01$ $N_v \simeq 3$, $\sum m_v \lesssim 0.2$ eV Dark matter: $\frac{\rho_{\sf DM}}{\rho_c} =$ 0.27

Dark energy:

 $\frac{\rho_{\Lambda}}{\rho_{c}}=$ 0.68

Dark Matter Properties

- $-$ dust-like pressureless component, $p = 0$
- clumping substance, gets confined in structures

If particles (or compact macroscopic objects):

- **1** stable on cosmological time-scale
- ² electrically neutral
- ³ decoupled from visible matter

ЯN ИR

Dark Matter properties from astrophysics

¹ stable on cosmological time-scale 2 (almost) collisionless to form ellipsoidal halos • (almost) electrically neutral to be Dark 4 stability of globular stellar clusters $M_X \lesssim 10^3 M_{\odot} \approx 10^{61}$ GeV otherwise too strong tidal forces ⁵ confinement in a galaxy: quantum physics! de Broglie wavelength: $\lambda = 2\pi/(M_{\rm x}v_{\rm x}) < l_{\rm galaxy}$, for bosons in a galaxy $v_x \sim 0.5 \cdot 10^{-3}$ \longrightarrow $M_x \ge 3 \cdot 10^{-22}$ eV for fermions Pauli blocking: $M_x \ge 750 \text{ eV}$ $f(\mathbf{p}, \mathbf{x}) = \frac{\rho_{\mathsf{X}}(\mathbf{x})}{M_{\mathsf{X}}} \cdot \frac{1}{\sqrt{2\pi}M_{\mathsf{X}}}$ $\frac{1}{\left(\sqrt{2\pi}M_{\chi}v_{\chi}\right)^{3}}\cdot \mathrm{e}^{-\frac{\mathbf{p}^{2}}{2M_{\chi}^{2}}}$ 2*M*2 X *v* 2 X $\Bigg|_{\mathsf{p}=0}$ $\leq \frac{g_{x}}{g_{y}}$ $(2\pi)^3$

ЯN ИR

Key observable: matter perturbations

- \bullet CMB is isotropic, but "up to corrections, of course..."
	- Earth movement with respect to CMB ∆*T* dipole *T* ∼ 10−³
	- More complex anisotropy: *T* ∼ 10−⁴
- \bullet There were matter inhomogenities $\Delta \rho / \rho \sim \Delta T / T$ at the stage of recombination $(e + p \rightarrow \gamma + H^*) \implies$
	- Jeans instability in the system of gravitating particles at rest \Longrightarrow $\Delta \rho / \rho \nearrow$ galaxies (CDM halos)
- $\Delta \rho_{DM}/\rho_{DM} \propto a \propto 1/T$ from $T = 0.8$ eV, while $\Delta \rho_B / \rho_B \propto a \propto 1/T$ only after recombination

 $T = 0.25 \text{ eV}$

without DM total growth factor would be 1100 not enough to explain structures!

Dmitry Gorbunov (INR) [DM and BAU production at inflation](#page-0-0) 12.07.2018, OAC Crete 6/16

ЯN ИR

Dark Matter properties from cosmology: $p = 0$

(If) particles:

- **1** stable on cosmological time-scale requires new (almost) conserved quantum number
- 2 produced in the early Universe

some time before RD/MD-transition $(T = 0.8 \text{ eV})$

smoothed out by free streaming

 \bullet nonrelativistic particles long before RD/MD-transition ($T = 0.8 \text{ eV}$) (either Cold or Warm, $v_{RD/MD}$ ≲ 10⁻³) Otherwise no small-size structures, like dwarf galaxies:

If were in thermal equilibrium: $M_X \gtrsim 1$ keV
(almost) collisionless $p = 0$, $v_{\text{sound}} = 0$

- 4 (almost) collisionless
- ⁵ (almost) electrically neutral CMB distortion
- ⁶ all matter inhomogeneities (perturbations) are adiabatic:

$$
\delta\left(\frac{n_B}{n_{DM}}\right) = \delta\left(\frac{n_B}{n_\gamma}\right) = \delta\left(\frac{n_v}{n_\gamma}\right) = 0
$$

Dark Matter production mechanisms

gravity produces any particles at *H* ∼ *M^X*

Baryogenesis

– Need BAU $n_B \equiv n_B/n_v \approx 6 \times 10^{-10}$ starting from BBN epoch, $T \le 1$ MeV

– The same number at recombination and later

Sakharov conditions of successful baryogenesis

- **B**-violation (∆*B* \neq 0) *XY* ··· → *X'Y'* …*B*
- C & CP -violation $(\Delta C \neq 0, \, \Delta CP \neq 0) \bar{X} \bar{Y} \cdots \rightarrow \bar{X}' \bar{Y}' \dots \bar{B}$

• processes above are out of equilibrium

At 100 GeV $\leq T \leq 10^{12}$ GeV nonperturbative processes (EW-sphalerons) violate *B*, L_{α} , so that only three charges are conserved out of four, e.g.

$$
B-L\,,\quad L_e-L_\mu\;,\quad L_e-L_\tau
$$

Leptogenesis: Baryogenesis from lepton asymmetry of the Universe . . . due to sterile neutrinos

Why $\Omega_B \sim \Omega_{DM}$?

 $\gamma' Y' \dots B \rightarrow XY \dots$

ИI ЯN ИR

Production at inflation

- All particles get separated by exponentially large distance
- All homogeneous scalar fields uncoupled to inflaton
	- $-$ either fall to origin (if $M > H$)
	- $-$ or remain frozen (if $M < H$) at any pre-inflationary value
	- It can be dark matter, but check for isocurvature (non-adiabatic) perturbations
- All homogeneous scalar fields coupled to inflaton
	- $-$ either fall to origin (if $M > H$)
	- or participate in inflation (multi-field inflation)
- Only one exception is linear coupling to inflaton

 $L_{int} = -\Phi \times F$ (*inflaton*)

It yields CONSTANT force settling Φ to CONSTANT nonzero value

$$
\Phi'' + 3H\Phi' + V'(\Phi) = F(\text{inflaton})
$$

[Production at inflation](#page-12-0)

Illustration with scalar complex field $\Psi = \lambda e^{i\varphi}$

In this way any relics (including Dark matter and baryons) can be produced

$$
S_\Psi = \int d^4x \sqrt{-g} \left[\frac{1}{2} |\partial_\mu \Psi|^2 - \frac{1}{2} |M \Psi|^2 - \beta \, \phi \, T^\mu_\mu (\text{inflation}) \right]
$$

so inflaton couples to φ , but not to λ *U*(1) charge $Q \equiv J_0 = \lambda^2 \dot{\varphi}$ evolves as

$$
\frac{1}{a^3}\frac{d}{dt}\left(Qa^3\right) = \beta T^{\mu}_{\mu}(\text{inflaton})
$$

and induce a potential for the field amplitude λ

$$
\ddot{\lambda} + 3H\dot{\lambda} - \frac{Q^2}{\lambda^3} + M^2\lambda = 0.
$$

at inflation $Q \to \beta \, T_\mu^{\mu}(\textit{inflaton})$ and $\lambda \to \lambda_{\textit{min}} = \sqrt{2}$

Q/*M* (attractor)

after inflation, T_{μ}^{μ} *inflaton* \rightarrow 0 (reheating, or RD-like stage as for $X^4)$ $Q \propto 1/a^3$ like DM or BAU

Dmitry Gorbunov (INR) [DM and BAU production at inflation](#page-0-0) 12.07.2018, OAC Crete 13 / 16

probably the simlpest realization

take inflation as (keeping coupling to \mathcal{T}^μ_μ , and $M \gtrsim H$ to avoid isocurvature):

$$
\varkappa X^4 + \xi R X^2
$$

Dark Matter from Q (responsible for stability) \bullet

$$
\beta \simeq \frac{T_{end}}{M_{Pl}} \cdot \frac{T_{eq}}{M} \rightarrow \left(T_{end} = 10^{16} \text{GeV}, M = 10^{-5} M_{Pl}\right) \rightarrow 10^{-26}.
$$

 \bullet Baryon Asymmetry of the Universe, e.g. $Q = B$

$$
\beta \simeq 10^{-10} \sqrt{\frac{H(t_{end})}{M_{Pl}}}
$$

Summary

- **•** The both DM and BAU may be orignated from inflation
- The mechanism is very simple and can be easily implemented into particular \bullet inflationary models
- **•** Feature: Predictions for DM and BAU are fixed by model parameters, rather than inflationary initial conditions
- Feature: DM and baryons are unstable, ϕ*F*(*inflaton*)
- The Ψ-sector can be more complicated (e.g. transfer of *Q* to BAU, or *Q* to another DM candidate)
- **■** Light Ψ are allowed with, e.g. *ξ R*ΨΨ-term

For more details see arXiv:1805.05904 (with Eugeny Babichev & Sabir Ramazanov)