Dark Matter and Baryon Asymmetry Production during Inflation

Dmitry Gorbunov
Institute for Nuclear Research of RAS, Moscow

New Frontiers in Physics
ICNFP 2018

OAC
Kolymbari, Crete, Greece
Interplay: Standard Model and Cosmology

Gauge fields (interactions): γ, W^\pm, Z, g

Three generations of matter: $L = \left(\begin{array}{c} \nu_L \\ e_L \end{array} \right)$, e_R; $Q = \left(\begin{array}{c} u_L \\ d_L \end{array} \right)$, d_R, u_R

- SM Describes
 - all experiments dealing with electroweak and strong interactions

- SM fails to describe (PHENO)
 - Neutrino oscillations
 - Dark matter (Ω_{DM})
 - Baryon asymmetry (Ω_B)
 - Inflationary stage

Cosmology asks for new physics
Can all the three have the same origin...?
Astrophysical and cosmological data are in agreement

\[
\left(\frac{\dot{a}}{a} \right)^2 = H^2(t) = \frac{8\pi}{3} G \rho_{\text{energy}}
\]

\[
\rho_{\text{density}} = \rho_{\text{radiation}} + \rho_{\text{matter}} + \rho_{\text{dark matter}} + \rho_{\Lambda}
\]

\[
\rho_{\text{radiation}} \propto \frac{1}{a^4(t)}, \quad \rho_{\text{matter}} \propto \frac{1}{a^3(t)}, \quad \rho_{\Lambda} = \text{const}
\]

\[
\frac{3H_0^2}{8\pi G} = \rho_{\text{energy}}(t_0) \equiv \rho_c \approx 0.53 \times 10^{-5} \text{ GeV cm}^3
\]

Radiation:
\[
\Omega_\gamma \equiv \frac{\rho_\gamma}{\rho_c} = 0.5 \times 10^{-4}
\]

Baryons (H, He):
\[
\Omega_B \equiv \frac{\rho_B}{\rho_c} = 0.05
\]

Neutrino:
\[
\Omega_\nu \equiv \frac{\sum \rho_{\nu_i}}{\rho_c} < 0.01
\]
\[
N_\nu \approx 3, \sum m_\nu \lesssim 0.2 \text{ eV}
\]

Dark matter:
\[
\Omega_{DM} \equiv \frac{\rho_{DM}}{\rho_c} = 0.27
\]

Dark energy:
\[
\Omega_\Lambda \equiv \frac{\rho_\Lambda}{\rho_c} = 0.68
\]
Dark Matter Properties

- dust-like **pressureless** component, $p = 0$
- clumping substance, gets confined in structures

If particles (or compact macroscopic objects):
1. **stable** on cosmological time-scale
2. electrically **neutral**
3. decoupled from visible matter
Dark Matter properties from astrophysics

1. **stable** on cosmological time-scale
 - to form ellipsoidal halos

2. (almost) **collisionless**
 - (almost) electrically neutral
 - (almost) electrically neutral to be Dark
 - stability of globular stellar clusters

3. $M_X \lesssim 10^3 M_\odot \approx 10^{61}$ GeV
 - otherwise too strong tidal forces

4. confinement in a galaxy:
 - de Broglie wavelength: $\lambda = \frac{2\pi}{(M_X v_X)} < l_{\text{galaxy}}$, for bosons
 - in a galaxy $v_X \sim 0.5 \cdot 10^{-3}$
 - $M_X \gtrsim 3 \cdot 10^{-22}$ eV
 - for fermions $M_X \gtrsim 750$ eV

5. Pauli blocking:

$$f(p, x) = \frac{\rho_x(x)}{M_X} \cdot \frac{1}{\left(\sqrt{2\pi} M_X v_X\right)^3} \cdot e^{-\frac{p^2}{2M_X^2 v_X^2}} \bigg|_{p=0} \leq \frac{g_x}{(2\pi)^3}$$

Dmitry Gorbunov (INR)

DM and BAU production at inflation

12.07.2018, OAC Crete

5 / 16
Key observable: matter perturbations

- CMB is isotropic, but “up to corrections, of course...”
 - Earth movement with respect to CMB
 \[\Delta T_{\text{dipole}} \sim 10^{-3} \]
 - More complex anisotropy: \[\frac{\Delta T}{T} \sim 10^{-4} \]
- There were matter inhomogeneties \(\Delta \rho / \rho \sim \Delta T / T \) at the stage of recombination \((e + p \rightarrow \gamma + H^*)\)
 - Jeans instability in the system of gravitating particles at rest \(\Rightarrow \Delta \rho / \rho \uparrow \) galaxies (CDM halos)
 - \(\Delta \rho_{\text{DM}} / \rho_{\text{DM}} \propto a \propto 1 / T \) from \(T = 0.8 \text{ eV} \),
 while \(\Delta \rho_{\text{B}} / \rho_{\text{B}} \propto a \propto 1 / T \) only after recombination \(T = 0.25 \text{ eV} \)
 - without DM total growth factor would be 1100
 not enough to explain structures!
Dark Matter properties from cosmology: $\rho = 0$

(If) particles:

1. stable on cosmological time-scale
 requires new (almost) conserved quantum number

2. produced in the early Universe
 some time before RD/MD-transition ($T = 0.8$ eV)

3. nonrelativistic particles long before RD/MD-transition ($T = 0.8$ eV)
 (either Cold or Warm, $\nu_{RD/MD} \lesssim 10^{-3}$)

Otherwise no small-size structures, like dwarf galaxies:
 smoothed out by free streaming

If were in thermal equilibrium:

4. (almost) collisionless
 $M_X \gtrsim 1$ keV
 $\rho = 0$, $\nu_{\text{sound}} = 0$

5. (almost) electrically neutral
 CMB distortion

6. all matter inhomogeneities (perturbations) are adiabatic:

$$\delta \left(\frac{n_B}{n_{DM}} \right) = \delta \left(\frac{n_B}{n_\gamma} \right) = \delta \left(\frac{n_\nu}{n_\gamma} \right) = 0$$
2.7 K

TODAY

4.4 K

accelerated expansion

matter domination

recombination

matter domination

radiation domination

primordial nucleosynthesis

neutrino decoupling

QCD transition

Electroweak phase transition

baryogenesis

hot Universe

reheating

e + p → H + γ

3H + 4He → 7Li + γ

2H + 2H → n + 3He

p + p → 2H + γ

confinement ↔ free quarks

dark matter production

inflation

14 by 7.7 by

7.7 by

4.4 K

2.7 K

0.26 eV

0.8 eV

50 keV

1 MeV

2.5 MeV

200 MeV

100 GeV

baryogenesis

hot Universe

reheating

inflation

DM and BAU production at inflation

12.07.2018, OAC Crete
Nonthermal production mechanisms

Dark Matter production mechanisms

1. in the primordial plasma of SM particles (via scatterings, oscillations):
 - WIMPs
 - gravitino
 - sterile neutrino of 1-50 keV

2. at phase transitions:
 - axion of $10^{-4} – 10^{-7}$ eV
 - Q-balls
 - strangelets (?)

3. during reheating (after inflation?):
 - black holes
 - any guy coupled (only) to inflaton
 - perturbatively: inflaton decays
 - non-perturbatively: Bose-enhancement of coherent production by external field

4. while the Universe expands:
 - gravity produces any particles at $H \sim M_X$
Nonthermal production mechanisms

2.7 K

TODAY

accelerated expansion
matter domination

370 ty

14 by

7.7 by

4.4 K

0.26 eV

recombination
matter domination

50 ty

0.8 eV

radiation domination

5 min

3 H + 4 He → 7 Li + γ

0.8 eV

e + p → H + γ

50 keV

primordial nucleosynthesis

2.5 MeV

neutrino decoupling

1 s

3 H + 4 He → 7 Li + γ

2 H + 2 H → n + 3 He

0.1 s

p + p → 2 H + γ

200 MeV

QCD transition

10 µs

confinement ↔ free quarks

1 MeV

Electroweak phase transition

0.1 ns

100 GeV

hot Universe

0.1 ns

baryogenesis

reheating

dark matter production

1 MeV

baryogenesis

inflation

Dmitry Gorbunov (INR)
Baryogenesis

– Need BAU $\eta_B \equiv n_B/n_\gamma \approx 6 \times 10^{-10}$ starting from BBN epoch, $T \lesssim 1\text{ MeV}$
– The same number at recombination and later

Sakharov conditions of successful baryogenesis

- B-violation

 \[(\Delta B \neq 0) \quad \text{out of equilibrium:} \quad X Y \rightarrow X' Y' \rightarrow B \]

- C- & CP-violation

 \[(\Delta C \neq 0, \Delta CP \neq 0) \quad \bar{X} \bar{Y} \rightarrow \bar{X}' \bar{Y}' \rightarrow \bar{B} \]

- processes above are out of equilibrium

 \[X' Y' \rightarrow B \rightarrow XY \]

At 100 GeV $\lesssim T \lesssim 10^{12}$ GeV nonperturbative processes (EW-sphalerons) violate B, L_α, so that only three charges are conserved out of four, e.g.

\[B - L, \quad L_e - L_\mu, \quad L_e - L_\tau \]

Leptogenesis: Baryogenesis from lepton asymmetry of the Universe . . . due to sterile neutrinos

Why $\Omega_B \sim \Omega_{DM}$? antropic principle?
Production at inflation

- All particles get separated by exponentially large distance
- All homogeneous scalar fields uncoupled to inflaton
 - either fall to origin (if $M > H$)
 - or remain frozen (if $M < H$) at any pre-inflationary value
- It can be dark matter, but check for isocurvature (non-adiabatic) perturbations
- All homogeneous scalar fields coupled to inflaton
 - either fall to origin (if $M > H$)
 - or participate in inflation (multi-field inflation)
- Only one exception is linear coupling to inflaton

$$\mathcal{L}_{\text{int}} = -\Phi \times F(\text{inflaton})$$

It yields CONSTANT force settling Φ to CONSTANT nonzero value

$$\Phi'' + 3H\Phi' + V'(\Phi) = F(\text{inflaton})$$
Illustration with scalar complex field $\Psi = \lambda e^{i\varphi}$

In this way any relics (including Dark matter and baryons) can be produced

$$S_\Psi = \int d^4x\sqrt{-g} \left[\frac{1}{2} |\partial_\mu \Psi|^2 - \frac{1}{2} |M \Psi|^2 - \beta \varphi T_\mu^\mu (\text{inflaton}) \right]$$

so inflaton couples to φ, but not to λ

$U(1)$ charge $Q \equiv J_0 = \lambda^2 \dot{\varphi}$ evolves as

$$\frac{1}{a^3} \frac{d}{dt} (Q a^3) = \beta T_\mu^\mu (\text{inflaton})$$

and induce a potential for the field amplitude λ

$$\ddot{\lambda} + 3H \dot{\lambda} - \frac{Q^2}{\lambda^3} + M^2 \lambda = 0 .$$

- at inflation $Q \to \beta T_\mu^\mu (\text{inflaton})$ and $\lambda \to \lambda_{\text{min}} = \sqrt{Q/M}$ (attractor)
- after inflation, $T_\mu^\mu \text{inflaton} \to 0$ (reheating, or RD-like stage as for X^4)
 $Q \propto 1/a^3$ like DM or BAU
Production at inflation

Dmitry Gorbunov (INR) DM and BAU production at inflation 12.07.2018, OAC Crete
probably the simplest realization

- take inflation as (keeping coupling to T^μ_μ, and $M \gtrsim H$ to avoid isocurvature):
 \[\varphi X^4 + \xi RX^2 \]

- Dark Matter from Q (responsible for stability)
 \[\beta \approx \frac{T_{end}}{M_{Pl}} \cdot \frac{T_{eq}}{M} \rightarrow \left(T_{end} = 10^{16} \text{GeV}, M = 10^{-5} M_{Pl} \right) \rightarrow 10^{-26}. \]

- Baryon Asymmetry of the Universe, e.g. $Q = B$
 \[\beta \approx 10^{-10} \sqrt{\frac{H(t_{end})}{M_{Pl}}} \]
The both DM and BAU may be originated from inflation.

The mechanism is very simple and can be easily implemented into particular inflationary models.

Feature: Predictions for DM and BAU are fixed by model parameters, rather than inflationary initial conditions.

Feature: DM and baryons are unstable, $\varphi F(\text{inflaton})$.

The Ψ-sector can be more complicated (e.g. transfer of Q to BAU, or Q to another DM candidate).

Light Ψ are allowed with, e.g. $\xi R\bar{\Psi}\Psi$-term.

For more details see arXiv:1805.05904 (with Eugeny Babichev & Sabir Ramazanov).